Ondřej Bojar

Ondřej Bojar
  • Professor (Assistant) at Charles University in Prague

About

341
Publications
188,433
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
13,428
Citations
Current institution
Charles University in Prague
Current position
  • Professor (Assistant)

Publications

Publications (341)
Conference Paper
Full-text available
Neural sequence to sequence learning recently became a very promising paradigm in machine translation, achieving competitive results with statistical phrase-based systems. In this system description paper, we attempt to utilize several recently published methods used for neural sequential learning in order to build systems for WMT 2016 shared tasks...
Conference Paper
Full-text available
We illustrate and explain problems of n-grams-based machine translation (MT) metrics (e.g. BLEU) when applied to morphologically rich languages such as Czech. A novel metric SemPOS based on the deep-syntactic representation of the sentence tackles the issue and retains the performance for translation to English as well.
Conference Paper
Full-text available
This paper introduces OVQA, the first multimodal dataset designed for visual question-answering (VQA), visual question elicitation (VQE), and multimodal research for the low-resource Odia language. The dataset was created by manually translating 6,149 English question-answer pairs, each associated with 6,149 unique images from the Visual Genome dat...
Preprint
Full-text available
Simultaneous speech-to-text translation (SimulST) translates source-language speech into target-language text concurrently with the speaker's speech, ensuring low latency for better user comprehension. Despite its intended application to unbounded speech, most research has focused on human pre-segmented speech, simplifying the task and overlooking...
Preprint
Full-text available
This paper reports on the shared tasks organized by the 21st IWSLT Conference. The shared tasks address 7 scientific challenges in spoken language translation: simultaneous and offline translation, automatic subtitling and dubbing, speech-to-speech translation, dialect and low-resource speech translation, and Indic languages. The shared tasks attra...
Preprint
Full-text available
The Transformer model has a tendency to overfit various aspects of the training data, such as the overall sequence length. We study elementary string edit functions using a defined set of error indicators to interpret the behaviour of the sequence-to-sequence Transformer. We show that generalization to shorter sequences is often possible, but confi...
Preprint
Full-text available
This is the preliminary ranking of WMT24 General MT systems based on automatic metrics. The official ranking will be a human evaluation, which is superior to the automatic ranking and supersedes it. The purpose of this report is not to interpret any findings but only provide preliminary results to the participants of the General MT task that may be...
Preprint
Human evaluation is a critical component in machine translation system development and has received much attention in text translation research. However, little prior work exists on the topic of human evaluation for speech translation, which adds additional challenges such as noisy data and segmentation mismatches. We take first steps to fill this...
Conference Paper
Full-text available
This study evaluates the extent to which semantic information is preserved within sentence embeddings generated from state-of-art sentence embedding models: SBERT and LaBSE. Specifically, we analyzed 13 semantic attributes in sentence embeddings. Our findings indicate that some semantic features (such as tense-related classes) can be decoded from t...
Article
Full-text available
The overall translation quality reached by current machine translation (MT) systems for high-resourced language pairs is remarkably good. Standard methods of evaluation are not suitable nor intended to uncover the many translation errors and quality deficiencies that still persist. Furthermore, the quality of standard reference translations is comm...
Article
Simultaneous speech-to-text translation (SimulST) translates source-language speech into target-language text concurrently with the speaker’s speech, ensuring low latency for better user comprehension. Despite its intended application to unbounded speech, most research has focused on human pre-segmented speech, simplifying the task and overlooking...
Preprint
Full-text available
Many meetings require creating a meeting summary to keep everyone up to date. Creating minutes of sufficient quality is however very cognitively demanding. Although we currently possess capable models for both audio speech recognition (ASR) and summarization, their fully automatic use is still problematic. ASR models frequently commit errors when t...
Chapter
The Transformer architecture has, since its conception, led to numerous breakthrough advancements in natural language processing. We are interested in finding out whether its success is primarily due to its capacity to learn the various generic language rules, or whether the architecture leverages some memorized constructs without understanding the...
Preprint
Full-text available
We explore the effectiveness of character-level neural machine translation using Transformer architecture for various levels of language similarity and size of the training dataset on translation between Czech and Croatian, German, Hungarian, Slovak, and Spanish. We evaluate the models using automatic MT metrics and show that translation between si...
Preprint
This paper explores negative lexical constraining in English to Czech neural machine translation. Negative lexical constraining is used to prohibit certain words or expressions in the translation produced by the neural translation model. We compared various methods based on modifying either the decoding process or the training data. The comparison...
Preprint
Full-text available
Whisper is one of the recent state-of-the-art multilingual speech recognition and translation models, however, it is not designed for real time transcription. In this paper, we build on top of Whisper and create Whisper-Streaming, an implementation of real-time speech transcription and translation of Whisper-like models. Whisper-Streaming uses loca...
Preprint
Full-text available
We propose a genetic algorithm (GA) based method for modifying n-best lists produced by a machine translation (MT) system. Our method offers an innovative approach to improving MT quality and identifying weaknesses in evaluation metrics. Using common GA operations (mutation and crossover) on a list of hypotheses in combination with a fitness functi...
Preprint
Full-text available
This paper presents HaVQA, the first multimodal dataset for visual question-answering (VQA) tasks in the Hausa language. The dataset was created by manually translating 6,022 English question-answer pairs, which are associated with 1,555 unique images from the Visual Genome dataset. As a result, the dataset provides 12,044 gold standard English-Hau...
Preprint
Full-text available
Automatic speech translation is sensitive to speech recognition errors, but in a multilingual scenario, the same content may be available in various languages via simultaneous interpreting, dubbing or subtitling. In this paper, we hypothesize that leveraging multiple sources will improve translation quality if the sources complement one another in...
Preprint
Full-text available
The Shannon game has long been used as a thought experiment in linguistics and NLP, asking participants to guess the next letter in a sentence based on its preceding context. We extend the game by introducing an optional extra modality in the form of image information. To investigate the impact of multimodal information in this game, we use human p...
Conference Paper
Full-text available
Text style transfer (TST) aims to control attributes in a given text without changing the content. The matter gets complicated when the boundary separating two styles gets blurred. We can notice similar difficulties in the case of parallel datasets in spoken and written genres. Genuine spoken features like filler words and repetitions in the existi...
Preprint
Full-text available
We present the CUNI-Bergamot submission for the WMT22 General translation task. We compete in English$\rightarrow$Czech direction. Our submission further explores block backtranslation techniques. Compared to the previous work, we measure performance in terms of COMET score and named entities translation accuracy. We evaluate performance of MBR dec...
Preprint
Full-text available
There have been several studies on the correlation between human ratings and metrics such as BLEU, chrF2 and COMET in machine translation. Most, if not all consider full-sentence translation. It is unclear whether human ratings of simultaneous speech translation Continuous Rating (CR) correlate with these metrics or not. Therefore, we conduct an ex...
Preprint
This study investigates the human translation process from English to Czech in a multi-modal scenario (images) using reaction times. We make a distinction between ambiguous and unambiguous sentences where in the former, more information would be needed in order to make a proper translation (e.g. gender of the subject). Simultaneously, we also provi...
Preprint
Full-text available
In the cascaded approach to spoken language translation (SLT), the ASR output is typically punctuated and segmented into sentences before being passed to MT, since the latter is typically trained on written text. However, erroneous segmentation, due to poor sentence-final punctuation by the ASR system, leads to degradation in translation quality, e...
Preprint
Full-text available
It is unclear whether, how and where large pre-trained language models capture subtle linguistic traits like ambiguity, grammaticality and sentence complexity. We present results of automatic classification of these traits and compare their viability and patterns across representation types. We demonstrate that template-based datasets with surface-...
Conference Paper
This paper presents the results of the shared tasks from the 9th workshop on Asian translation (WAT2022). For the WAT2022, 8 teams submitted their translation results for the human evaluation. We also accepted 4 research papers. About 300 translation results were submitted to the automatic evaluation server, and selected submissions were manually e...
Conference Paper
Full-text available
Multi-modal Machine Translation (MMT) enables the use of visual information to enhance the quality of translations. The visual information can serve as a valuable piece of context information to decrease the ambiguity of input sentences. Despite the increasing popularity of such a technique, good and sizeable datasets are scarce, limiting the full...
Preprint
Full-text available
Summarization is a challenging problem, and even more challenging is to manually create, correct, and evaluate the summaries. The severity of the problem grows when the inputs are multi-party dialogues in a meeting setup. To facilitate the research in this area, we present ALIGNMEET, a comprehensive tool for meeting annotation, alignment, and evalu...
Preprint
Full-text available
Multi-modal Machine Translation (MMT) enables the use of visual information to enhance the quality of translations. The visual information can serve as a valuable piece of context information to decrease the ambiguity of input sentences. Despite the increasing popularity of such a technique, good and sizeable datasets are scarce, limiting the full...
Preprint
Full-text available
In this paper, we describe our submission to the Simultaneous Speech Translation at IWSLT 2022. We explore strategies to utilize an offline model in a simultaneous setting without the need to modify the original model. In our experiments, we show that our onlinization algorithm is almost on par with the offline setting while being $3\times$ faster...
Conference Paper
Full-text available
Eye-Tracking data is a very useful source of information to study cognition and especially language comprehension in humans. In this paper, we describe our systems for the CMCL 2022 shared task on predicting eye-tracking information. We describe our experiments with pretrained models like BERT and XLM and the different ways in which we used those r...
Preprint
Full-text available
Eye-Tracking data is a very useful source of information to study cognition and especially language comprehension in humans. In this paper, we describe our systems for the CMCL 2022 shared task on predicting eye-tracking information. We describe our experiments with pretrained models like BERT and XLM and the different ways in which we used those r...
Preprint
Full-text available
We present the Eyetracked Multi-Modal Translation (EMMT) corpus, a dataset containing monocular eye movement recordings, audio and 4-electrode electroencephalogram (EEG) data of 43 participants. The objective was to collect cognitive signals as responses of participants engaged in a number of language intensive tasks involving different text-image...
Preprint
Full-text available
Neural sequence-to-sequence automatic speech recognition (ASR) systems are in principle open vocabulary systems, when using appropriate modeling units. In practice, however, they often fail to recognize words not seen during training, e.g., named entities, numbers or technical terms. To alleviate this problem, Huber et al. proposed to supplement an...
Preprint
Full-text available
In simultaneous speech translation, one can vary the size of the output window, system latency and sometimes the allowed level of rewriting. The effect of these properties on readability and comprehensibility has not been tested with modern neural translation systems. In this work, we propose an evaluation method and investigate the effects on comp...
Chapter
Multimodal machine translation (MMT) refers to the extraction of information from more than one modality aiming at performance improvement by utilizing information collected from the modalities other than pure text. The availability of multimodal datasets, particularly for Indian regional languages, is still limited, and thus, there is a need to bu...
Preprint
Full-text available
Our book "The Reality of Multi-Lingual Machine Translation" discusses the benefits and perils of using more than two languages in machine translation systems. While focused on the particular task of sequence-to-sequence processing and multi-task learning, the book targets somewhat beyond the area of natural language processing. Machine translation...
Article
The SummDial special session on summarization of dialogues and multi-party meetings was held virtually within the SIGDial 2021 conference on July 29, 2021. SummDial @ SIGDial 2021 aimed to bring together the speech, dialogue, and summarization communities to foster cross-pollination of ideas and fuel the discussions/collaborations to attempt this c...
Preprint
This paper describes Charles University submission for Terminology translation Shared Task at WMT21. The objective of this task is to design a system which translates certain terms based on a provided terminology database, while preserving high overall translation quality. We competed in English-French language pair. Our approach is based on provid...
Preprint
This paper describes Charles University submission for Multilingual Low-Resource Translation for Indo-European Languages shared task at WMT21. We competed in translation from Catalan into Romanian, Italian and Occitan. Our systems are based on shared multilingual model. We show that using joint model for multiple similar language pairs improves upo...
Preprint
Transformer-based sequence-to-sequence architectures, while achieving state-of-the-art results on a large number of NLP tasks, can still suffer from overfitting during training. In practice, this is usually countered either by applying regularization methods (e.g. dropout, L2-regularization) or by providing huge amounts of training data. Additional...
Preprint
Full-text available
We test the natural expectation that using MT in professional translation saves human processing time. The last such study was carried out by Sanchez-Torron and Koehn (2016) with phrase-based MT, artificially reducing the translation quality. In contrast, we focus on neural MT (NMT) of high quality, which has become the state-of-the-art approach si...
Preprint
Full-text available
End-to-end neural automatic speech recognition systems achieved recently state-of-the-art results, but they require large datasets and extensive computing resources. Transfer learning has been proposed to overcome these difficulties even across languages, e.g., German ASR trained from an English model. We experiment with much less related languages...
Conference Paper
Full-text available
We present ParCzech 3.0, a speech corpus of the Czech parliamentary speeches from The Czech Chamber of Deputies which took place from 25th November 2013 to 1st April 2021. Different from previous speech corpora of Czech, we preserve not just orthography but also all the available metadata (speaker identities, gender, web pages links, affiliations c...
Preprint
Full-text available
Lexically constrained machine translation allows the user to manipulate the output sentence by enforcing the presence or absence of certain words and phrases. Although current approaches can enforce terms to appear in the translation, they often struggle to make the constraint word form agree with the rest of the generated output. Our manual analys...
Preprint
Full-text available
Interpreters facilitate multi-lingual meetings but the affordable set of languages is often smaller than what is needed. Automatic simultaneous speech translation can extend the set of provided languages. We investigate if such an automatic system should rather follow the original speaker, or an interpreter to achieve better translation quality at...
Preprint
Existing models of multilingual sentence embeddings require large parallel data resources which are not available for low-resource languages. We propose a novel unsupervised method to derive multilingual sentence embeddings relying only on monolingual data. We first produce a synthetic parallel corpus using unsupervised machine translation, and use...
Preprint
Full-text available
Translating text into a language unknown to the text's author, dubbed outbound translation, is a modern need for which the user experience has significant room for improvement, beyond the basic machine translation facility. We demonstrate this by showing three ways in which user confidence in the outbound translation, as well as its overall final q...
Preprint
Full-text available
We present the first version of a system for interactive generation of theatre play scripts. The system is based on a vanilla GPT-2 model with several adjustments, targeting specific issues we encountered in practice. We also list other issues we encountered but plan to only solve in a future version of the system. The presented system was used to...
Conference Paper
This paper presents an automatic speech translation system aimed at live subtitling of conference presentations. We describe the overall architecture and key processing components. More importantly, we explain our strategy for building a complex system for end-users from numerous individual components, each of which has been tested only in laborato...
Conference Paper
Full-text available
This paper describes the team ("ODIANLP")'s submission to WAT 2020. We have participated in the English→Hindi Multimodal task and Indic task. We have used the state-of-the-art Transformer model for the translation task and InceptionResNetV2 for the Hindi Image Captioning task. Our submission tops in English→Hindi Multimodal task in its track and Od...
Preprint
Being able to predict the length of a scientific paper may be helpful in numerous situations. This work defines the paper length prediction task as a regression problem and reports several experimental results using popular machine learning models. We also create a huge dataset of publication metadata and the respective lengths in number of pages....
Preprint
This paper presents a description of CUNI systems submitted to the WMT20 task on unsupervised and very low-resource supervised machine translation between German and Upper Sorbian. We experimented with training on synthetic data and pre-training on a related language pair. In the fully unsupervised scenario, we achieved 25.5 and 23.7 BLEU translati...
Preprint
This work presents our ongoing research of unsupervised pretraining in neural machine translation (NMT). In our method, we initialize the weights of the encoder and decoder with two language models that are trained with monolingual data and then fine-tune the model on parallel data using Elastic Weight Consolidation (EWC) to avoid forgetting of the...
Preprint
Some methods of automatic simultaneous translation of a long-form speech allow revisions of outputs, trading accuracy for low latency. Deploying these systems for users faces the problem of presenting subtitles in a limited space, such as two lines on a television screen. The subtitles must be shown promptly, incrementally, and with adequate time f...
Article
Full-text available
The quality of human translation was long thought to be unattainable for computer translation systems. In this study, we present a deep-learning system, CUBBITT, which challenges this view. In a context-aware blind evaluation by human judges, CUBBITT significantly outperformed professional-agency English-to-Czech news translation in preserving text...
Chapter
In this paper, we present a new dataset for testing geometric properties of sentence embeddings spaces. In particular, we concentrate on examining how well sentence embeddings capture complex phenomena such paraphrases, tense or generalization. The dataset is a direct expansion of Costra 1.0 [7], which we extended with more sentences and sentence c...
Preprint
We present a new release of the Czech-English parallel corpus CzEng 2.0 consisting of over 2 billion words (2 "gigawords") in each language. The corpus contains document-level information and is filtered with several techniques to lower the amount of noise. In addition to the data in the previous version of CzEng, it contains new authentic and also...

Network

Cited By