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determining the risk of re-intervention
after endovascular aortic aneurysm
repair
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Abstract
This article proposes a Bayesian neural network approach to determine the risk of re-intervention after endovascular
aortic aneurysm repair surgery. The target of proposed technique is to determine which patients have high chance to
re-intervention (high-risk patients) and which are not (low-risk patients) after 5 years of the surgery. Two censored data-
sets relating to the clinical conditions of aortic aneurysms have been collected from two different vascular centers in the
United Kingdom. A Bayesian network was first employed to solve the censoring issue in the datasets. Then, a back pro-
pagation neural network model was built using the uncensored data of the first center to predict re-intervention on the
second center and classify the patients into high-risk and low-risk groups. Kaplan–Meier curves were plotted for each
group of patients separately to show whether there is a significant difference between the two risk groups. Finally, the
logrank test was applied to determine whether the neural network model was capable of predicting and distinguishing
between the two risk groups. The results show that the Bayesian network used for uncensoring the data has improved
the performance of the neural networks that were built for the two centers separately. More importantly, the neural
network that was trained with uncensored data of the first center was able to predict and discriminate between groups
of low risk and high risk of re-intervention after 5 years of endovascular aortic aneurysm surgery at center 2 (p = 0.0037
in the logrank test).
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Introduction

Survival analysis is a statistical method used for analyz-
ing data which contains a variable describing the time
of survival,1 which is also known as lifetime data analy-
sis, reliability analysis, time to event analysis, and event
history analysis.2 Recently, survival techniques have
been extensively used in medical applications in order
to determine the probability of patients’ survival or the
time till an event of interest occurs. This event could be
death, recurrence of a disease, discharge from hospital,
or surgical re-intervention (REINT). However, there is
high probability of the presence of censoring in the
medical datasets. Censored data means the information
about the time to an event for some patients is not
available, the only available information is the time till
death (when the event of interest is not the death) or

the last follow-up which is known as censoring time.
Reasons for censoring include patients that die due to
other reasons than that of the disease under study,
some patients drop out of the study during the follow-
up period,3,4 or the event of interest does not occur at
the end of study period. Right and left censoring are
two well-known types of censoring.5 Patients who were
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censored before the study observation time are consid-
ered to be left censored. Those who were censored dur-
ing or after the study period are called right-censored
cases.

Right censorship is the most common type of
censoring that appears in most medical survival data-
sets. There are two types of right-censored data.
In type 1 data, patients die or leave the follow-up
during the study duration, so the time to the event is
unknown. Type 2 data have patients who have
completed their follow-up observations till the end
of the study and do not experience the event, so the
time to the event is also unknown. Even though
the event is less likely to occur at a time after the end
of the study period, they are considered as censored
as well; as it is not sure whether the event of interest
will happen to these patients or not, the only thing we
are certain of is that the event did not appear till the
end of the observation period. Most of the articles
discussing and using survival analysis methods2,6–13

considered any patient who does not experience the
event of interest during the whole duration of the
study as censored. In this article, we will follow on
this definition. However, some articles such as Zupan
et al.14 and Delen et al.15 state that patients that
either stayed for a long time during the study period
or completed their follow-up observations and the
event of interest did not occurred to them as event-
free patients, and they cannot be considered as
censored.

Survival analysis is used with medical datasets to
solve the censoring issue. It is useful not to ignore any
instance in the dataset even if the event had not
occurred (censored) as this may lead to biasing the
dataset.1

Endovascular aortic aneurysm repair (EVAR) is a
type of surgical intervention used to fix abnormality
caused by ballooning of aorta (aneurysm). Aorta is the
main and biggest blood vessel connected to heart.
Sometimes, the aorta wall becomes too weak which
leads to its ballooning, this phenomenon is known as
aortic aneurysm. EVAR carries significantly lower
operative risk than the traditional open-repair surgery;
therefore, it is preferred by patients and recommended
by medical guidelines as the choice for treating abdom-
inal aortic aneurysm (AAA).16 Currently, EVAR is fol-
lowed by lifelong surveillance which not only is
expensive but also exposes patients to radiation expo-
sure and contrast nephropathy. Majority of complica-
tions requiring treatment are missed despite the cost
and regular surveillance schedule.17,18 This research is
aimed to develop and validate a prediction system for
aortic complications after EVAR. It will enable clini-
cians to determine which patients have higher chance
of requiring REINT (high-risk group), therefore a
more regular monitoring schedule. The lower chance
patients can be monitored less regularly (low-risk
group). This prediction system is achieved by the
machine-learning survival analysis methods including

Bayesian network and back propagation (BP) neural
network methods.

Two prospectively maintained databases, which
included all patients undergoing EVAR of infra-renal
AAA at two tertiary vascular centers in the United
Kingdom, were collected. Detailed report of the data-
sets can be found in Karthikesalingam et al.18 The vari-
ables of dataset include aneurysm morphology
measured from patients’ computed tomography (CT)
and physiology parameters. The datasets consist of 24
morphological and 12 physiological features, respec-
tively. Centers 1 and 2 have 464 and 259 patient sam-
ples, respectively. Only about 9% of the patients (42
and 22 patients of centers 1 and 2, respectively) did the
REINT (which is the event of interest) during the 7
years of observations, and their targets were set equal
to one. According to the censorship definition that was
used in most of the work done in survival analysis as
discussed previously, both datasets are considered to be
highly censored, they contain 91% (422 and 237
patients for centers 1 and 2, respectively) of the patients
who did not undergo the surgical intervention. Only 62
and 20 of these patients have censoring time greater
than 5 years for centers 1 and 2, respectively (can be
considered as event free or less likely to do REINT).
So, even if we were to consider the event-free patients
as uncensored, we would still have the majority (360
and 217 for centers 1 and 2, respectively) patients as
censored.

Censored patients with zero targets, meaning
REINT, did not occur to those patients due to various
reasons. As the worst case they could be dead as a result
of surgery or other reason (with short censoring time)
or best could be recovering well after the surgery, there-
fore no need for REINT during the study period (with
long censoring time). The long censoring time patients
are considered as censored as they might need REINT
after the study period and the time for the operation is
unknown (they may be considered as patients with
lower probabilities to redo the surgery). For the short
censoring time patients, we do not know which spec-
trum they belong to. The only information on hand is
their censoring time and the corresponding features till
this time. These censored patients cannot be ignored or
deleted from the datasets. As by doing this, huge
amount of information will be lost which leads to bias-
ing the prediction targets when calculating the probabil-
ity of surgical REINT of EVAR. Censoring is an
important cause for unsuccessful survival models built
by standard machine-learning techniques, as censored
patients cannot be all considered as real zero targets
(which means that the event of interest definitely has
not happened). By doing so, it will bias the predictive
model toward the zero targets;19 this phenomenon will
also be shown in section ‘‘Results’’ later. The challenge
in this work is how to solve the issue of high censoring
in the datasets, more specifically, in estimating the
probability that each censored patient belongs to either
high- or low-risk group (uncensoring the dataset). After
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the datasets are uncensored, classification techniques
can then be used to build a model capable of predicting
the low- and high-risk groups.

Machine-learning techniques have been widely
applied in the field of survival analysis in clinical trials.
They are preferred over the standard statistical models
such as Cox proportional hazard model as they can
detect complex relations between data which lead to
better prediction. Additionally, they are capable of cap-
turing nonlinearities between the input variables and
the targets of a dataset.20 The two most popular tech-
niques are Bayesian network and artificial neural net-
works (ANN). Bayesian network is a probabilistic
network that uses probability theory to calculate joint
probabilities between variables. It is also considered
as a graphical model since it looks like a graph repre-
senting relations between the nodes (also called ver-
tices) which correspond to input variables.21 A
Bayesian network was used by Sebastiani et al.22 to
build a model that predicts the risk of death from
sickle-cell disease within 5 years and by Steele et al.23

for estimating preoperative risk of Clostridium
difficile infection following colon surgery. Kaderali
et al.6 combined it with Cox regression model to pre-
dict survival times and select the features that relate
to survival. The algorithm was applied to two types
of cancer patients. Štajduhar and Dalbelo-Bašić
(S&DB)33 proposed a technique that uses Bayesian
network and likelihood information to build a model
for uncensoring the dataset. It is a preprocessing step
after which any machine-learning technique can be
used for classification. Naive Bayesian and decision
tree classifiers were used to predict breast and skin
cancer prognoses.

ANN has been used widely in building prediction
models for medical conditions. For example, in the
study by Damato et al.,24 a model was built for predict-
ing the survivability of patients after being treated from
choroidal melanoma. While in the study by Taktak et
al.,25 ANN is applied to estimate the survivability
curves of intraocular melanoma patients after treat-
ment. Moreover, in several other studies, it was
employed for predicting survivability or recurrence for
several types of cancers such breast, liver, and colorec-
tal cancers.7,8,15,26–29

Although Bayesian network and ANN have been
successfully applied in the above applications, it is still
a challenge to apply them in this study. The reason is
that the previous applications only dealt with low- or
medium-censored datasets, while our dataset is highly
censored with more than 90% of the total patient sam-
ples. Also, in previous studies, performances of the clas-
sifiers used were not tested for other datasets collected
from different centers or hospitals. Usually, measuring
the performance of a classifier was carried out either
through a test set collected from the same center and not
used in building and training the classifier3,7,8,15,17–24,26–29

or through a 10-fold cross-validation test applied for
the whole dataset.14 Yet the cross-center testing is

important if the model built is going to be valid for
wider applications.

This article first presents a new modified approach
to solve the censoring problem in the datasets. Then,
the uncensored data of the first center were used to
build a neural network model in order to determine the
risk of REINT after EVAR and classify patients of the
second center into high-risk and low-risk groups. Next,
Kaplan–Meier curves were plotted for each group of
patients separately. Finally, the logrank test was
applied to determine whether the neural network model
was capable of predicting and distinguishing between
the two risk groups.

Methodology

Data acquisition

Follow-up observations to patients going through
EVAR surgery were taken, and their data were col-
lected during the study period 2004–2010 from two dif-
ferent vascular hospitals. The two datasets contain
details of operative procedure and patient morphologi-
cal and physiological features. Pre-surgical morphology
variables were measured using three-dimensional CT.
The CT images had a slice thickness of 0.625 or
1.25mm and were acquired from the thoracic inlet to
the level of the common femoral artery bifurcation.
Only morphological features were used for constructing
the prediction models as they have greater effect on
aortic complications than physiological ones.30–32

Uncensoring approach

In trying to solve the problem of censored data, several
survival analysis techniques were studied. First, the
technique based on S&DB33 was applied to the EVAR
datasets. All patients who did not undergo the surgical
REINT are used to build a Bayesian network called
censored Bayesian network. This network includes
patients with short censoring time and others with lon-
ger censoring time greater than 5 years, who have lower
chances to do the REINT. Patients who did the REINT
are used to build another network called high-risk (re-
intervened) Bayesian network. As a result of the highly
censored EVAR datasets, the constructed censored
Bayesian network expressed both the inherent distribu-
tions of low-risk (less chance to do the REINT) and
high-risk groups instead of the low-risk group alone.
The S&DB algorithm has slightly improved the predic-
tion accuracy of each dataset. However, the corre-
sponding neural network model constructed with the
first center was not capable of predicting REINT in the
second center which will be shown later in section
‘‘Results.’’ In order to overcome this, a new modified
approach was proposed to deal with the high censoring
of the datasets. The new method is able to determine
the risk of surgical REINT to patients after 5 years
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from undergoing an EVAR operation and classify them
into high- and low-risk groups.

The new approach (Attallah and Ma (A&M)
approach) is discussed in detail: first, Kaplan–Meier
curves (illustrated in section ‘‘Kaplan–Meier curves’’)
are plotted for each EVAR center separately and are
shown in Figure 1. Afterward, the censoring time of
each EVAR center dataset is used to divide patients
into three groups. The first one belongs to patients who
experience the REINT at a time lower than or equal to
5 years (re-intervened or high-risk patients which are
42 and 22 patients for centers 1 and 2, respectively).
The second group refers to patients who did not need
the REINT till a time greater than or equal to 5 years
(62 and 20 patients for centers 1 and 2, respectively).
Because they have low chance of needing the REINT,
we call it low-risk group. Finally, the third group is the
rest of the patients who are considered as censored with
short censoring time. The main difference between the
A&M algorithm and the S&DB approach is that S&DB
uses patients with both short and long censoring time
(lower and greater than 5 years) to build the so-called
censored Bayesian network which is used later for uncen-
soring the data, while the A&M method only uses
patients with long censoring time which is greater than 5
(low-risk group) to construct a Bayesian network called
low-risk Bayesian network which is employed later for
the uncensoring process to differentiate the short censor-
ing time patients into low- and high-risk groups.

In the new proposed approach, the dataset is discre-
tized using an unsupervised discretization technique.
Then, the low- and high-risk groups are used to build
two separate Bayesian networks called the low- and
high-risk Bayesian networks Blow and Bhigh, respec-
tively. Targets of low- and high-risk patients can now
be omitted from the dataset, as its knowledge is already
embedded in the two networks generated. Next, each
censored instance in the third group is compared with

the inherent distribution of high-risk group (phigh) and
inherent distribution of low-risk group (plow). This is
done by calculating the likelihood that the instance
(class omitted) was sampled from either model.
Likelihood ‘(xc=p) is calculated from equations (1) and
(2) by multiplying all the exact probabilities from the
probability tables, following the network topology.
Both Bayesian networks consist of j which indicates
that it is a directed acyclic graph (DAG) network, and
the number of nodes is represented as Vi. Each V repre-
sents a variable of the dataset, and p is the parent of
this node V

‘̂ xc=p
high

� �
= ‘ xc=B

high
� �

= p xc=jhigh, phigh
� �

=
Yn

i=1

phigh V
i
=p(Vi)ð Þ ð1Þ

‘̂ xc=p
low

� �
= ‘ xc=B

low
� �

= p xc=jlow, plow
� �

=
Yn

i=1

plow Vi=p(Vi)ð Þ ð2Þ

The posterior probability P(O=xc), which is the out-
put prediction (O) given that it is censored (xc), is cal-
culated using equations (3) and (4), then normalized to
ignore the effect of probability of a censored instance
P(xc) using equation (5)

P Ohigh=xc
� �

= P̂(Ohigh) �
‘̂ xc=p

high
� �

P(xc)
ð3Þ

P Olow=xc
� �

= P̂(Olow) �
‘̂ xc=p

low
� �

P(xc)
ð4Þ

P O=xcð Þ= P̂(O) � ‘̂ xc=pð Þ= P̂(O)=
Yn

i=1

P Vi=p(Vi)ð Þ

ð5Þ

Finally, a censoring correction threshold PTh is cho-
sen to relocate the censored instance to either high- or

Figure 1. Kaplan–Meier curves for EVAR: (a) center 1 and (b) center 2.
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low-risk groups. If P(Ohigh=xc) is greater than PTh, the
censored instance will be labeled as high risk and vice
versa.

The two Bayesian networks were learned with hill-
climbing structure learning algorithm to produce the
low- and high-risk networks. The scoring function used
was minimum description.34 Parameter learning was
done using maximum likelihood procedure.35 The
thresholds which showed better classification accuracy
results for uncensoring the two centers were in the
range between 0.7 and 0.8.

The structure and parameter learning of the
Bayesian networks were implemented using Weka. The
following neural network model, Kaplan–Meier curve,
and logrank test were implemented using MATLAB.

Classification models and evaluation metrics

A three-layer BP neural network model was constructed
using the uncensored center 1 data in order to deter-
mine the REINT after 5 years from EVAR surgery and
classify patients of the center 2 into high-risk and low-
risk groups. Log-sigmoid and saturating linear transfer
functions were used as activation functions for the two
upper layers. Additionally, two neural networks were
constructed using the EVAR dataset of centers 1 and 2
separately to test the performance of the proposed
uncensoring algorithm; this testing was done for each
network using the 10-fold cross-validation test. The
number of hidden neurons in each network is deter-
mined through iterative approach to produce the mini-
mum mean square error in the test.

Metrics used to evaluate the performance of neural
networks built are discussed below:

� Classification accuracy is the percentage of the cor-
rectly classified (predicted) instances among all the
instances used in the testing set.

� Sensitivity (true positive rate) is the ratio between
the correctly classified positive instances and the
actual positive instances of the original dataset
before classification.

� Specificity (true negative rate) is the ratio between
the correctly classified negative instances and the
actual negative instances of the original dataset
before classification.

� False-positive rate is the ratio between the incor-
rectly classified positive instances and the actual
negative instances of the original dataset before
classification.

� False-negative rate is the ratio between the incor-
rectly classified negative instances and the actual
positive instances of the original dataset before
classification.

� Receiver operating characteristics curve (ROC) is
the curve that plots the sensitivity as a function of
specificity. Usually, area under the receiver operat-
ing characteristics curve (AUROC) is used to evalu-
ate the performance of the model. The greater area

indicates better performance. The maximum area
that can be reached is one which indicates that
100% of the data were correctly classified.

Kaplan–Meier curves

Also known as product limit estimate of the survival
function,36,37 Kaplan–Meier curve is a well-known
nonparametric survival analysis technique which gives
an estimation of the probability of patient’s survival at
any time for the whole dataset even if it is censored. It
is widely used in clinical trials such as the determina-
tion of the effectiveness of a specific treatment on ill-
ness relapses by calculating the number of patients at
risk. Another example is the estimation of the risk of
REINT after a surgical intervention.30

Logrank test

In clinical trials, usually doctors need to check whether
there is a significant difference between two risk groups
of patients. They start by drawing survival curves (usu-
ally Kaplan curves) to determine the probability of sur-
vival using the two risk groups separately. Then,
statistical tests are employed in order to compare the
survival curves of the two risk groups. The most well-
known test is logrank. It is a hypothesis test to compare
the survival distributions of the two risk groups. For
every time t at which an event of interest has occurred,
it calculates the number of the observed (O) events,
expected (E) events, and the variance in the expected
events (V) in each group and then puts them in a table.
Finally, it performs a chi-squared test, which is the
summation of (O� E)=

ffiffiffiffi
V
p

. The result is a statistical
coefficient value known as p value which indicates the
difference between groups.38 Usually, a p value lower
than 0.05 indicates that there is a significant difference
between the two risk groups.

Results

Separate BP neural network models for prediction
of center 1 and center 2 datasets, respectively

The number of hidden neurons, learning rate, and
momentum of the BP neural network for each center is
13, 0.3, and 0.2, respectively. A comparison between
the prediction results of the datasets before and after
using the S&DB and A&M uncensoring approaches for
centers 1 and 2 are illustrated in Tables 1 and 2, respec-
tively. A 10-fold cross-validation test was used to pro-
duce these results in both cases. The number of high-
risk patients in center 1 after uncensoring is 69 (S&DB
approach) and 204 (A&M approach), while in center 2
after uncensoring, it is 52 (S&DB approach) and 73
(A&M approach). It is clear in Tables 1 and 2 that both
techniques were capable of uncensoring the datasets, as
the AUROC for the prediction of results after uncen-
soring has increased than that before uncensoring.
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Also, the prediction model before using the uncensor-
ing techniques was biased toward the low risk (zero tar-
gets) with true negative and true positive values of
0.943 and 0.095, respectively. This means that only
9.5% patients who underwent REINT have been iden-
tified correctly by the censored model; this shows that
censoring is a major cause when standard machine-
learning techniques fail to work properly in construct-
ing survival models. Moreover, the A&M technique
outperforms the S&DB as the AUROC in the former is
0.808 and 0.702, while that in the later is 0.713 and
0.664 for centers 1 and 2, respectively.

Center 1 neural network model for prediction of
center 2 patients

S&DB technique used for uncensoring the datasets. A BP
neural network model was built using the dataset of
uncensored center 1 to predict the risk of REINT on
center 2 patients. The number of hidden neurons used
was 3 in this model. A mean square error of 0.1 was
employed as a stopping criterion. Table 3 illustrates the
results. The AUROC of the trained model in center 1
was 0.8377, while when tested in center 2 dataset, it
was 0.5481. This indicated that the model was incap-
able of properly predicting the risk of REINT on center
2 patients. The Kaplan–Meier curves were plotted for
the predictions as shown in Figure 2, and the logrank
test was used to determine the significance between the

risk groups and also indicate whether the model has
correctly classified patients. The p value obtained from
the logrank test was equal to 0.33454, meaning that the
neural network failed to differentiate between the low-
and high-risk groups.

A&M technique used for uncensoring the dataset. A BP
neural network model was built using the dataset of
center 1 which was processed by the new A&M uncen-
soring technique to predict the risk of REINT on
patients of center 2. The activation function of both
input and hidden layers was log-sigmoid and saturat-
ing linear transfer function. The number of hidden
neurons used was 6. A mean square error of 0.0705
was employed as a stopping criterion. Table 4 illus-
trates the results. The AUROC of the trained model
in center 1 was 0.9498 which is better than that of
S&DB (0.8377), when tested in center 2, the AUROC
was a better value of 0.666 comparing to the value of
0.5481 achieved using the S&DB technique. The
Kaplan–Meier curves were plotted for the uncensored
center 1 as shown in Figure 3, and the predictions of
center 2 are shown in Figure 4. The logrank tests were
used to determine the significance between the two
risk groups of the neural network predictions and the
p value obtained was equal to 0.00037, meaning that
the model has succeeded to differentiate between the
low- and high-risk groups.

Table 1. Comparing prediction metrics of center 1 before uncensoring and after uncensoring using the S&DB and A&M techniques.

Class True (%) False (%) AUROC

Before uncensoring (center 1)
High risk (positive) 9.5 90.5 0.572
Low risk (negative) 94.3 5.7

After uncensoring with S&DB approach (center 1)
High risk (positive) 44.9 55.1 0.713
Low risk (negative) 93.2 6.8

After uncensoring with A&M approach (center 1)
High risk (positive) 66.7 33.3 0.808
Low risk (negative) 75.8 24.8

S&DB: Štajduhar and Dalbelo-Bašić; AUROC: area under the receiver operating characteristics curve.

Table 2. Comparing prediction metrics of center 2 before uncensoring and after uncensoring using the S&DB and A&M techniques.

Class True (%) False (%) AUROC

Before uncensoring (center 2)
High risk (positive) 4.5 95.5 0.472
Low risk (negative) 93.2 6.8

After uncensoring with S&DB approach (center 2)
High risk (positive) 36.5 63.5 0.664
Low risk (negative) 82.6 17.4

After uncensoring with A&M approach (center 2)
High risk (positive) 41.1 58.9 0.702
Low risk (negative) 83.3 16.7

S&DB: Štajduhar and Dalbelo-Bašić; AUROC: area under the receiver operating characteristics curve.

862 Proc IMechE Part H: J Engineering in Medicine 228(9)



Discussion

Bayesian network and BP neural network are capable
of building a predictive model of REINT for EVAR
patients. The Bayesian networks successfully uncen-
sored the clinical datasets. As shown in the Tables 1
and 2, the two BP neural network models that tested
the efficiency of the uncensoring algorithms have
increased the AUROC from 0.572 to 0.808 and 0.472
to 0.702 for center 1 and center 2, respectively.
Additionally, the proposed A&M approach outper-
forms the S&DB approach in all the model construc-
tion processes. The results in Tables 3 and 4 show that
the model constructed using the S&DB approach is
unable to distinguish between the two risk groups of
the censored center 2 data (p value=0.33454); how-
ever, the A&M technique succeeds in differentiating
between them (p value=0.00037).

From the above results, we can see that the neural
network model constructed using the proposed A&M
technique with center 1 is able to predict the risk of
REINT after EVAR of the patients in center 2. The dif-
ferences in freedom from aortic complications between
low- and high-risk patients after 5 years are 100% ver-
sus 20% in center 1 and 95% versus 64% in center 2 as
shown in Figures 3 and 4 (from the estimated survival
functions or probabilities), which means that low-risk
patients have higher probabilities to be free from aortic
complication than the high-risk patients. The p value of
the logrank test was 0 and 0.00037 differentiating the
two risk groups of centers 1 and 2, respectively, using
the new A&M algorithm. It classified 56% and 62% of
the patients as low risk in center 1 and center 2, respec-
tively. Those patients can therefore be monitored at less
regular intervals to reduce their exposure to radiation
and costs involved with frequent monitoring.

Advantages of this Bayesian neural network
approach are as follows: first, usually medical research-
ers are not aware of data mining and machine-learning
techniques. Since Bayesian network is a graphical prob-
abilistic network, it shows the joint probabilities
between variables in the form of a graph consisting of
nodes representing these variables and arcs showing
relations and causality between them. Hence, it is con-
sidered an ideal tool that can be used in medicine to
show causal influence between variables and their

Table 3. Training and prediction metrics results of the neural network model trained with uncensored center 1 data using the
S&DB technique and tested to the data in center 2.

Class True (%) False (%) AUROC

Training with uncensored dataset (center 1)
High risk (positive) 37.4 62.6 0.8377
Low risk (negative) 97.6 2.4

Testing with censored dataset (center 2)
High risk (positive) 23.1 76.9 0.5481
Low risk (negative) 86.5 13.5

S&DB: Štajduhar and Dalbelo-Bašić; AUROC: area under the receiver operating characteristics curve.

Figure 2. Kaplan–Meier curves’ prediction of center 2 EVAR
using the neural network model built from uncensored center 1
dataset produced with S&DB technique.

Figure 3. Kaplan–Meier curve for the uncensored center 1
dataset using the new A&M technique.
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probabilistic relations.39 Moreover, physicians could
calculate the condition and marginal probabilities of
the network which demonstrate the uncertainty of the
studied medical domain.40 Second, this approach was
capable of uncensoring highly censored dataset. This
uncensored data can then be used later in any standard
supervised machine-learning technique as the time vari-
able was embedded in the uncensoring technique.
Third, the neural network model is a powerful classifier
as it successfully predicted aortic complications and
distinguished between the high-risk and low-risk
groups of patients despite the highly censored nature of
the datasets.

Conclusion and future work

Machine-learning techniques have been widely used for
survival analysis in clinical trials. Censoring is a com-
mon problem when dealing with survival data.
Censored patients cannot be ignored or discarded, as
this may bias the prediction model and affect the

prediction results, especially when the data are highly
censored. In this article, a new modified Bayesian
neural network approach was proposed to deal with
the high censoring issue appeared in the EVAR data-
sets of the two different vascular centers, and its perfor-
mance was compared to a more traditional approach
proposed by S&DB.

In the new A&M approach, the dataset was divided
into three groups according to their inherent level of
risks: the true high risk (patients who experience the
REINT at a time lower than or equal 5 years), the true
low risk (patients who did not need the REINT till a
time greater than or equal 5 years), and the rest consid-
ered as the truly censored group. Two Bayesian net-
works were established as the high-risk and low-risk
networks, and they were used to relocate the truly cen-
sored patients to either the low- or high-risk groups.
The S&DB approach only considered the high-risk and
censored patients, and the censored patients can include
the true low-risk patients whose events of interest never
happen even after the 5-year survival time. Therefore,
simply separating the dataset into high-risk and cen-
sored groups will lead to misrepresentation of the data
output, further leading to lower prediction accuracies
and unsuccessful discriminations in the survival models.

After applying the proposed uncensoring algorithm
on the two EVAR datasets, this article presented a suc-
cessful BP neural network model that was constructed
using center 1 dataset and employed to classify patients
of center 2 into high- or low-risk categories. The pro-
posed A&M approach has successfully increased the
AUROC for both centers. Moreover, it was able to
predict the risk of REINT on censored center 2 data. It
also succeeded in differentiating between the low- and
high-risk groups with a p value of the logrank test
equals to 0.00037 which is not the case for the S&DB
approach (p value of the logrank test equals 0.33454).
The high risk means that the patients will more likely
need REINT and therefore frequent monitoring of con-
ditions, whereas less frequent monitoring is needed for
low-risk patients. A future observation plan could then
be implemented to the new EVAR patients with the
proposed Bayesian neural network model.

As for future work, feature selection techniques will
be investigated to choose the optimal variables that
affect the prediction accuracies the most. Minimizing

Table 4. Training and prediction metric results of the neural network model trained with uncensored center 1 data using the new
A&M technique and tested to the data in center 2.

Class True (%) False (%) AUROC

Training with uncensored dataset (center 1)
High risk (positive) 86.3 13.7 0.9498
Low risk (negative) 97.6 2.4

Testing with censored dataset (center 2)
High risk (positive) 80.8 19.2 0.666
Low risk (negative) 66.0 34.0

AUROC: area under the receiver operating characteristics curve.

Figure 4. Kaplan–Meier curves’ prediction of center 2 using
the neural network model built from the uncensored center 1
dataset with the new A&M technique.
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the number of input features needed for building the
model is beneficial, as the process of measuring and col-
lecting the morphological features from the CT images
is exhausting and time-consuming. An optimized and
minimized input feature set will improve the efficiency
of the data collection process and therefore reduces
costs to healthcare authorities.
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