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Abstract

Discrimination of the Local Binary Pattern (LBP) in the classification of di↵erent digital modulation types
was investigated in this study. It has been shown that LBP can be used as a feature extraction method for
AMC schemes. A new AMC scheme is proposed using Extreme Learning Machine (ELM) as a classifier,
which has a faster learning process and better generalization performance than conventional machine learning
methods. The study also investigated the stability of the proposed AMC scheme, which is a↵ected by
variation in the values of the roll-o↵ factor, frequency and phase o↵set that can a↵ect the stability and
performance of the system. Through simulation, a classification accuracy of over 95% was achieved at low
SNR levels such as -2 dB. It was also shown that the proposed AMC scheme is more successful under similar
conditions when making comparisons to other studies.

Keywords: Automatic modulation classification, extreme learning machine, local binary pattern, digital
modulation

soft defined radios, which can automatically adapt to communications standards [1].

1. Introduction

The Automatic Modulation Classification (AMC) was first used in the military field for the identification
of transmitted signals. In recent years, in both military and commercial applications, the importance of
AMC has increased further with the widespread adoption of intelligent receivers such as cognitive radio and
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The AMC is located prior to the demodulation process, which is the last operation of the process of
obtaining information messages from the received signal. AMC becomes even more important in real com-
munication scenarios where synchronization errors occur due to time o↵set, frequency o↵set and multipath
fading e↵ects.

The two main algorithms used to classify modulated signals are maximum likelihood and feature-based.10

With the maximum likelihood algorithm, the likelihood function is calculated for each modulation format,
and the decision is made based on the maximum of this function [2].

The feature-based algorithm consists of two steps: the feature extraction of the received signal and
the feature classification for determination of the modulation type. When previous research found in the
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order to classify di↵erent types of modulation and contains a set of decision criteria. In the second method,

literature is investigated, it can be seen that various feature extraction methods with classifiers are combined
in di↵erent ways, so AMC schemes are determined. Two methods have been proposed by Nandi and
Azzouz for the classification of analogue and digital modulation types [3]. The instantaneous amplitude,
instantaneous phase and instantaneous frequency parameters of the received signals are used as features
in both methods. In the first method, the decision tree approach was employed, which was developed in
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Preprint submitted to Journal of LATEX Templates May 16, 2019

Edited with the trial version of 
Foxit Advanced PDF Editor

To remove this notice, visit:
www.foxitsoftware.com/shopping

Revised manuscript with changes marked Click here to access/download;Revised manuscript with
changes marked;manuscript_2.pdf

Click here to view linked References
 



artificial neural networks were used in the modulation classification process. Swami and Sadler proposed
a method in which the fourth-order cumulants were selected as features and the hierarchical decision tree
structure used as the classifier for classifying M-QAM, M-PSK, and M-ASK modulation types [4], and is
a reference study, especially for research that employs high-order cumulants as features. Wang Yu et al.

25 presented a method using instantaneous amplitude, frequency, phase information of the signal, normalized
fourth-order cumulants and wavelet detail as features, and used PSO-support vector machines as classifiers
[5]. Mobasseri chose the constellation shape as a feature and then classified the selected modulation types
with a Fuzzy-C means clustering method [6]. Wong and Nandi used artificial neural network (ANN) and
genetic algorithm (GA) for modulation classification, and resilient back propagation algorithm for multi-

30 layer perceptron recognizer. GA was used to select the best features from a combined spectral and statistical
feature set [7]. Timothy OShea et al. used raw I/Q data combined with convolution neural network (CNN)
to achieve promising results. However, certain e↵ects such as I/Q balance and phase o↵set may a↵ect the
accuracy of AMC using raw I/Q data [8].

As outlined, various feature types have been used in AMC schemes, e.g., high-order statistics [4, 9],
35 cyclostationarity [10, 11, 12], instantaneous parameters [3, 5, 13] and wavelet coe�cients [13, 14]. The point

here is that if the AMC schemes are designed carefully by choosing the proper set of features, near optimal
results can be obtained.

In the current study, the 1-dimensional LBP (1-D LBP) method is proposed for AMC as a new feature
extraction method. Local binary pattern (LBP) is a texture descriptor that has proven quite e↵ective for

40 various image analysis tasks including texture classification, face recognition and image retrieval applications
[15, 16, 17]. Recently, the 1-D LBP version of LBP has been extensively used in signal processing applications
[18, 19]. Chatlani successfully used 1-D LBP method to detect voice activity in speech signals [18].

Digital communication systems o↵er various challenges and opportunities for machine learning algo-
rithms. Nowadays, machine learning is widely used in areas such as image processing [20, 21], signal
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has advantages such as better generalization performance [24].

processing [22] and power electronics [23]. Moreover, machine learning applications play an important role
in AMC schemes. In the proposed AMC scheme, an extreme learning machine (ELM) is used as a classifier
as shown in Figure 1. There are two important reasons for recommending 1-D LBP in feature extraction.
The first is the simplicity of use, and the second is that the complexity of operation may be low due to its
simplicity. The reason why ELM is preferred for the classifier is that it is faster than other classifiers and
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o↵sets in wireless communication systems, noise, Doppler shift and pulse shape filter e↵ects were considered.

Figure 1: Block diagram of the proposed AMC scheme

In the current study, a new AMC scheme is proposed in order to determine the ASK, PSK and QAM
modulation types within additive white Gaussian noise (AWGN) channels. These modulation types were
preferred because ASK, PSK and QAM are widely used in both military and civil communications. When
the proposed AMC scheme was tested, di↵erent modulation levels, unexpected phase, frequency and time

55

The remainder of the paper is organized as follows. The signal model is explained in the second section.
The third section provides information about the LBP and describes the use of the 1-D LBP as a feature
in the classification of digital modulation types. The fourth section presents the structure of the extreme
learning machine, and the fifth section presents the simulation results and their analysis.
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2. Signal model60

In wireless communication systems, a digitally modulated signal (y) is generally expressed as in (1).

y (t) = he
j(2⇡�ft+✓+'(t))

X

k

skg(t� kT � t0) + w (t) (1)

Here, s is a complex-value, zero-mean, independent and identically distributed (i.i.d.) symbol sequence,
which is drawn from an alphabet of symbols (the constellation) that defines the modulation scheme, where ✓
is the phase o↵set, T is the symbol rate, t0 is the timing o↵set, �f is the carrier frequency o↵set, '(t) is the

65

the Lorentzian power spectrum of the oscillators [25].

phase noise and w(t) additive white Gaussian noise with �
2
w variance. The factor g(t) defines the shape of

the pulse. In this signal model, a common example is the raised cosine frequency shaping filter with roll-o↵
factor (� is the roll-o↵ factor between 0 and 1). The imperfections in transmitter and receiver oscillators
cause phase noise which is a result of carrier frequency fluctuation. Phase noise is generally modeled by a
Wiener random process with zero mean and variance 2⇡BL|t|, where BL represents the 3dB bandwidth of

70

In the case of Doppler shift, Rayleigh fading channel coe�cient is expressed [26] as in (2)

hl =
NX

i=1

Ae
j(↵i+

2⇡V lTs
� Cos✓i) (2)

transmitter or receiver and ✓i is the angle between the movement direction of the vehicle and the antenna.

Here, N is the number of beams from di↵erent ↵i angles to the receiver and ↵i random changes between
(0, 2⇡) , A is the coe�cient of power delay profile of the mobile channel, � is the wavelength of the carrier
signal, Ts is the sampling period,l is the time index along the data packet, V is the velocity of the mobile

75

and 4-ASK linear modulation types.

Having become widespread in digital communication systems, the use of digital modulation schemes has
also been increasing. In original digital communication systems, fixed order modulation such as BPSK,
QPSK, and 8PSK is the most widely adopted system.

For this reason, the proposed AMC scheme aimed to classify BPSK, QPSK, 8-PSK, 16-QAM, 64-QAM
80

of the LBP method is shown in Figure 2.

3. Local binary pattern

LBP is an e↵ective and productive method for image processing applications. Using LBP, locally repeat-
ing patterns are revealed. LBP is usually applied to 3x3 pixel images. In the LBP, the central value of the
3x3 pixel images is re-encoded with respect to the neighboring eight pixels. An illustrative visual example

85

Figure 2: LBP coding for 3x3 pixel image

When LBP encoding is performed, grey level values are considered. The central pixel value is compared
with the first pixel (left-top) value. If the central pixel value is greater than the first pixel value, it is encoded
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as 1, else it is encoded as 0. This is performed for other neighboring pixels as well. The binary number is
encoded starting from the left-top pixel, and after proceeding in the direction shown in Figure 2, an 8-bit
binary number is obtained. The new value of the center pixel is the decimal equivalent of the 8-bit binary90

number obtained [27].

Figure 3: 1-D LBP window structure

3.1. 1-D local binary pattern

In the 1-D LBP conversion process from LBP, nine sample-length window structures are considered
instead of the 3x3 pixel image. This window structure is shown in Figure 3.

In Figure 3, Pi represents the i
th sample in the window, and Pc represents the fifth sample, which is95

termed as the central sample. The basic mathematical expression of the 1-D LBP method is presented in
Equation 3.

Pc =
NX

i=1

f (x)2i�1 (3)

Here, f (x ) is the sign function

f(x) =

⇢
0, Pi > Pc

1, Pi < Pc
(4)

Figure 4: 1-D LBP encoding for a sample signal
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In order to illustrate this operation, let us consider a signal such as x (x = 15, 17, 21, 30, 39, 41, 40, 37,
36) as shown in Figure 4a and 4b. In the 1-D LBP, an 8-bit binary sequence is obtained, starting from the100

leftmost neighbor (P1) and comparing the neighboring sequences to the central sample, as shown in Figure
4c. The central sample value is obtained by converting the 8-bit binary number to decimal, using Equation
3 (see Figure 4d). The 1-D LBP process is performed by sliding the window along the entire signal [19].

3.2. Feature extraction with local binary pattern

In this study, 1-D LBP method was used for extracting features from the digital modulated signals.105

QAM, ASK and PSK modulated signals vary in amplitude and phase information according to the shape
of the constellation diagram. This change a↵ects the real and imaginary parts of the complex signal. Here,
the e↵ect of both parts on performance is taken into account.

After the signal vectors of the real and imaginary parts of the modulated signal are evaluated separately,
the feature vector is formed by combining the features extracted from the signal vectors. For all samples110

(see Figure 5a) of the signal vector, a 1-D LBP signal with values in the range of 0 to 255 (see Figure 5b)
is obtained by applying the procedure described in Figure 4. Each 1-D LBP sample value corresponds to a
di↵erent pattern. The histogram of the 1-D LBP signal (see Figure 5c) shows the frequency of these various
patterns.

Figure 5: 1-D LBP applied signal with root raised cosine pulse shaping and roll o↵factor equals 0.25 for QPSK, 8-PSK, 16-QAM
and 64-QAM modulation format. (a) Modulated signal without noise (b) LBP applied signal (c) LBP histogram

With the increase of modulation level, intermediary levels are formed and it was observed that the115

number of instantaneous changes in the rises (P = {0, 0, 0, 0, 1, 1, 1, 1}2 = 1510) and in drops (P =
{1, 1, 1, 1, 0, 0, 0, 0}2 = 24010) are decreased. This led to a reduction in the number of various patterns
and an increase in the number of di↵erent pattern frequencies. Figure 5c shows histograms of 1-D LBP
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signals with di↵erent modulation levels. Here, it is clear from the changes seen in Figure 5c that the in-
tensity in the central regions shifts towards the right and left regions with increasing modulation level, and120

also that there are increases in the number of pattern frequencies corresponding to the rises and drops. For
these reasons, 1-D LBP has a distinctive feature characteristic for the classification of M-QAM, M-ASK and
M-PSK digital modulation types.

4. Extreme learning machine (ELM)

ELM is a recommended learning algorithm for the Single Hidden Layer Feedforward (SLFN) neural125

network [28, 29, 24]. ELM input weights and hidden layer threshold values are randomly generated and
remain constant throughout the process, unlike conventional feed-forward networks. The output weights of
the ELM are calculated analytically. With this approach, the rapid learning process is realized. In addition,
ELM exhibits better generalization performance when compared to conventional feed-forward networks [30].
The SLFN network model is illustrated as in Figure 6.130

Figure 6: SLFN network architecture

For the SLFN network given in Figure 6, it is assumed that there is an input-output (xi = [xi1, xi2, . . . , xin]
T

,yi = [yi1, yi2, . . . , yin]
T ) pair possessing N samples. This input-output pair and the mathematical model of

the SLFN network with M number of hidden layer neuron and g(x ) activation function can be given as;

MX

i=1

�ig (wi.xj + bi) = oj , j = 1, . . . , N (5)

Where wi = [wi1, wi2, . . . , win]
T is the input weight vector, �i = [�i1,�i2, . . . ,�im]T is the output layer

weight vector, bi is the threshold value of the i
th hidden neuron, and oj = [oi, oi, . . . , oj ]

T is the output135

of the SLFN network. In Equation 5, (wi.xj) is the scalar product of wi and xj . If the SLFN network is
assumed to

P
j koj � yjk = 0, the model can be written as;

6



MX

i=1

�ig (wi.xj + bi) = yj , j = 1, . . . , N (6)

The N equations given here can be expressed in matrix form as;

Y = H�

H, � and Y expressions are given in Equation 8.

(7)

Where H is the hidden layer output matrix, � is the output layer weights, and Y is the output vector.
140

H =

2

64
g (w1x1 + b1) · · · g (wNx1 + bN )

... · · ·
...

g (w1xM + b1) · · · g (wNxM + bN )

3

75

NxM

� =

2

64 ..

�
T
1
.

�
T
M

3

75

Mx1

Y =

2

64 ..

y
T
1
.

y
T
N

3

75

Nx1

(8)

As can be seen from Equation 6, the SLFN network can be expressed by a linear equation. In ELM,
training of the network is carried out through the calculation of �. This can be shown as;

� = H
†
Y (9)

Here, H†, indicates the Moore Penrose generalized reverse of H [28, 29, 24].

Table 1: Signal parameters

Parameter Value
Carrier frequency fc = 10 MHz
Sampling rate fs = 1.12 MHz
Symbol rate 1/Ts = 280 KHz
Number of symbol N = 2048

5. Simulation results and evaluations

Six of the most popular modulations were selected to form a candidate modulation type. These were145

BPSK, QPSK, 8-PSK, 16-QAM, 64-QAM and 4-ASK. The alphabet set from the symbol mapping for each
modulation was normalized to zero mean and unit power in MATLAB. When simulating the transmitted
signal symbols, each symbol was assigned from the alphabet set with equal probability. Then, for each
modulation type, a dataset consisting of 1,000 signals and a total of 6,000 signals was generated by using

150 the parameter values given in Table 1. In order to test the performance of the proposed automatic modulation
classifier, the dataset was prepared by adding AWGN noise with SNR levels between -10 dB and 10 dB, with
a 1 dB increase. In order to demonstrate the validity of the proposed AMC scheme, 10-fold cross-validation
was used.

number of hidden neuron as 220 and the activation function was sigmoid.
The ELM parameters for the current study were obtained through an empirical approach, with the

155

parameter value of the raised cosine filter, phase noise, impulsive noise and Doppler shift.

Channel parameters such as channel gain, noise variance, carrier phase o↵set and carrier frequency o↵set
were considered the most important in the classification decision [1].

In the simulations performed, the performance analyses of the proposed AMC scheme were conducted
against conditions in the receiver such as the frequency, phase and timing o↵set, symbol number, the roll-o↵

160

First, known channel scenarios were applied for the accuracy analysis of the proposed AMC scheme. In
other words, it was assumed that the phase o↵set and frequency o↵set e↵ects were compensated prior to
the modulation classifier. When the results shown in Figure 7 and Table 2 are analyzed, it can be seen that
the proposed AMC scheme has high classification accuracy.
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In the reference [1] prepared by Zhu and Nandi, BPSK, QPSK, and 4-ASK were shown to have higher165

classification accuracy at the low SNR levels. However, as the modulation level increased, such as with
16-QAM and 64-QAM, the SNR value required for classification also increased. In addition, in [1], 64-QAM
was shown to have higher classification accuracy than 16-QAM in comparisons using di↵erent AMC schemes.
As shown in Figure 7, 64-QAM was shown to have higher classification accuracy than either QPSK or 16-

170

from the signal vectors of the real and imaginary parts.

QAM. The reason for this is that the distinctive feature of the LBP histogram distribution is enhanced by
the increasing level of modulation (see Figure 5c). One-dimensional modulation types such as BPSK and
4-ASK have higher classification accuracy at low SNR levels than modulation types on two dimensions such
as QPSK, 8-PSK and 16-QAM. This is because the signal vectors of the real and imaginary parts of the
modulated signal are separately evaluated and then the feature vector is merged with the features extracted

175

For the robustness of the proposed AMC scheme, its performance at di↵erent SNR levels was investigated
according to the changes in the symbol number, phase o↵set, frequency o↵set and roll-o↵ parameter of the
raised cosine filter, which is the impulse shaping filter.

As can be seen in Figure 8, the performance of the proposed AMC scheme was significantly a↵ected
180 by the variation of the symbol number. Here, with the increase in the symbol number, the increase in the

classifier performance is an indication of the consistent operation of the proposed AMC structure. When
the SNR level was greater than -2 dB, the average classification accuracy was > 95% for all modulations.
The symbol number required was 2048 in order that the classification accuracy could be higher at low SNR
levels.

In Figure 8, the e↵ect of the number of symbols was analyzed using a fixed window of the received185

samples, because the e↵ect of the sampling rate is similar to the e↵ect of the number of symbols. That is,
increasing the sampling rate means fewer symbols are packed into the fixed window. Therefore, the curves
seen in Figure 8 show the increase in the sampling rate leading to a decrease in the classifier performance.
In other words, higher classifier performance is obtained at low sampling rates.

The AMC scheme in [4] provides good performance in classifying selected modulation types, but does190

not allow for clear distinguishing between 16-QAM and 64-QAM types. In the same way, the same problem
was encountered in the AMC scheme proposed by [7]. The AMC scheme proposed in [31] was composed of
two stages. In the first stage, the 16-QAM and 64-QAM types were evaluated as a whole within a group
while separating the selected modulation types. In the second stage, only 16-QAM and 64-QAM types were

195 distinguished. In this way, the separation performance between 16-QAM and 64-QAM increases. As can
be understood from this, 16-QAM separation from 64-QAM is important because QAM is widely used in
many communication systems for all types of modulation.

Figure 9 shows the performance variation of the proposed AMC scheme between 16-QAM and 64-QAM.
In comparison with other references, in [32],Dobre, Ness, and Su used cyclic cumulants in the 16-QAM and

200 64-QAM classifications and obtained 70% classification accuracy at SNR = 10 dB. In [31], Aslam, Zhu, and
Nandi obtained 99.4% classification accuracy at the same SNR value; and in [4], Swami and Sadler obtained
90% classification accuracy at SNR = 15 dB. In the proposed AMC scheme of the current study, 95.1%
classification accuracy was achieved at SNR = 0 dB.

levels lower than -1 dB, but has almost no significant e↵ect at SNR � -1 dB levels.
As can be seen in Figure 10, the phase o↵set has a small e↵ect on the classifier performance at SNR

205

As can be seen in Figure 11, the frequency o↵set has an e↵ect on the classifier performance at low SNR
levels. However, for �f < %6fc at a level of SNR � 1 dB, there was a significant decrease in the e↵ect rate.
The proposed AMC scheme was hardly a↵ected by the phase o↵set, but was a↵ected only slightly where the
frequency o↵set had high values. The reasons for this are that, when QAM modulated signals are compared

210 with PSK modulated signals, the classification of 16-QAM and 64-QAM types is less sensitive to frequency
o↵sets and requires high SNR for a high degree of accuracy.

Typical roll-o↵ (�) values for wireless communication systems range from 0.2 to 0.4 [33]. As can be
seen in Figure 12, the proposed AMC scheme is similar to the specified roll-o↵ range and showed the best
performance. However, in the case of � > 0.4, a small decrease in classifier performance was seen between

215 SNR value of -2 dB and 6 dB. In the case of SNR � 6 dB, the change of the roll-o↵ value negligibly a↵ects
classifier performance.
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In conventional communication systems, there are three noise sources, which are additive white Gaussian
noise, phase noise from transmitter and receiver oscillators, and impulsive noise from various natural and
manmade sources.

The e↵ect of phase noise on the performance of the proposed AMC scheme was as shown to be negligible220

the output of a filter excited by an amplitude-modulated random binary sequence [34].

(see Figure 13) and therefore robust against the presence of phase noise.
An impulsive noise consists of short duration pulses of random amplitude, duration, and time of occur-

rence. There are many reasons for the generation of impulsive noises, including electromagnetic interferences
and defects and faults in communication and transmission systems. An impulsive noise may be modeled as

225

Figure 14 illustrates a digitally modulated signal with AWGN (SNR = 10 dB) and impulsive noise (IN)
with 10% impulse.

BER versus signal to noise ratio (SNR) performances of the proposed AMC scheme for AWGN and
AWGN with impulsive noise are illustrated as shown in Figure 15. It is seen that at a level of SNR >

230 -4 dB, the proposed AMC scheme was a↵ected by the impulsive noise. The reason for this is that in the
intermediary levels of the 1-D LBP applied signal histogram (see Figure 5c), impulses with random amplitude
and occurrence time in the impulsive noise caused an increase in the number of di↵erent patterns. This led
to a reduction in the performance of the proposed AMC scheme. However, it is clear that as the amplitude
and number of impulses increases, the performance of the proposed AMC scheme decreases.

Figure 16 shows how a single channel coe�cient varies with the e↵ect of Doppler shift according to the235

di↵erent velocities of the mobile device during the transmission of a data packet. When the packet length
is the same, the increase in the velocity of the mobile device causes a variation in the channel coe�cient
values from the beginning to the end of the packet. When there is no Doppler shift, it is assumed that the
channel coe�cients do not change during data packet transmission.

As can be seen in Figure 17, the performance of the proposed AMC scheme was significantly a↵ected240

in which the proposed AMC scheme was shown to be robust against the presence of timing o↵set.

by the Doppler shift, due to its high velocity. Here, with the increase in velocity, the variation seen in the
classifier performance is an indication that the proposed AMC structure is not consistent under the e↵ect
of Doppler shift.

The e↵ect of timing o↵set on the performance of the proposed AMC scheme can be seen in Figure 18,
245

Table 3 shows a comparison of the proposed AMC scheme to the reference works found in the literature.
When Table 3 is examined, it can be seen that the proposed AMC scheme has higher performance at low
SNR levels than the other methods in determining modulation types widely used in digital communication.

6. Conclusion

Due to the widespread application of digital communications in wired, wireless and optical communication250

systems, and the increased usage of digital signal processing methods on the receiver side, the estimation of
signal parameters has now become more significant. The feasible and fast determination of the modulation
type against the signal parameters is the intended purpose; therefore, a new AMC scheme has been presented
in this paper which tested as having high classification accuracy at low SNR levels, and robustness against

255 di↵erent situations that can occur in the receiver. The simplicity, feasibility and performance of the proposed
method has been demonstrated through simulated results and comparisons to the literature. The study
presents that the LBP, which is used as a feature in numerous di↵erent areas, can also be used as a feature
in the classification of digital modulation types.

In future works, multi-carrier digital modulations will be classified with recent deep learning methods.
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SNR = -2 dB BPSK QPSK 8-PSK 16-QAM 64-QAM 4-ASK
BPSK 100
QPSK 94.5 5.5
8-PSK 2.2 86.3 11.5
16-QAM 9 90.9 0.1
64-QAM 1.4 98.6
4-ASK 100
SNR = 0 dB BPSK QPSK 8-PSK 16-QAM 64-QAM 4-ASK
BPSK 100
QPSK 97.5 2.5
8-PSK 0.5 93.4 6.1
16-QAM 5 94.9 0.1
64-QAM 0.8 99.2
4-ASK 100

Table 3: Comparison of existing methods with proposed method

Feature-Classifier Modulations Channel Setting Accuracy (%)

Cumulants - Decision tree [4] BPSK, QPSK, 8-PSK, 16-QAM AWGN
N = 2048

SNR = 6 dB
95.5

LBP-ELM
N = 2048

SNR = 1 dB
97.4

Cumulants-GP/KNN [31] BPSK, QPSK, 16-QAM, 64-QAM AWGN
N = 2048

SNR = 7 dB
96

LBP-ELM
N = 2048

SNR = 0 dB
97

Normalized fourth-order
cumulant - Decision tree [35]

QPSK, 16-QAM, 64-QAM AWGN
N = 2048

SNR = 9 dB
94.2

LBP-ELM
N = 2048

SNR = -1 dB
96.1

Cyclostationarity - Optimum
decision [36]

QPSK, 16-QAM, 64-QAM
AWGN

�f/fc = 0.03
� = 0.3

N = 2048
SNR = 6 dB

96.6

LBP-ELM
N = 2048

SNR = 2 dB
97
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Figure 7: Classification accuracy of the proposed AMC classifier

Figure 8: Average Pcc versus SNR for di↵erent number of symbols (N )

12



Figure 9: Performance of the proposed algorithm pertaining to the classification of MQAM modulations for di↵erent number
of symbols (N )

Figure 10: Average Pcc versus SNR for di↵erent values of phase o↵set (�)
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Figure 11: Average Pcc versus SNR for di↵erent values of frequency o↵set (�f)

Figure 12: Average Pcc versus SNR for di↵erent values of roll-o↵ factor (�)
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Figure 13: Average Pcc versus SNR for di↵erent values of phase noise bandwidth (BL)

Figure 14: Digitally modulated signal with AWGN and impulsive noise. (a) impulsive noise with 10% random-valued impulse,
(b) digitally modulated signal + AWGN with SNR = 10 dB, (c) digitally modulated signal + impulsive noise + AWGN with
SNR = 10 dB
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Figure 15: Average Pcc versus SNR in presence of AWGN and IN

Figure 16: Change of channel coe�cients with the e↵ect of Doppler shift along the data packet for the signal with 3.5 GHz
carrier frequency (a) V = 10 km/h (b) V = 45 km/h (c) V = 90 km/h
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Figure 17: Average Pcc versus SNR for di↵erent values of velocity (V )

Figure 18: Average Pcc versus SNR for di↵erent values of timing o↵set (t0)
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