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Abstract. In this paper, we give a general framework for the Boltzmann gen-
eration of colored objects belonging to combinatorial constructible classes. We
propose an intuitive notion called profiled objects which allows the sampling of
size-colored objects (and also of k-colored objects) although the corresponding
class cannot be described by an analytic ordinary generating function.

Efficient generation of extremely large objects is needed in many situations. For
instance in statistical physics for observing limit behaviors [2], in biology for under-
standing and analysing genome properties [12], or in computer sciences for testing
programs [6] or simulating and modelizing Network as Internet [7, 3]. In 2003,
Duchon, Flajolet, Louchard and Schaeffer [5] proposed a new model, called Boltz-
mann model, which leads to systematically construct samplers for random genera-
tion of objects in combinatorial constructible classes. These samplers depends on a
real parameter x and generate an object a in a combinatorial constructible class A
with a probability essentially proportional to x|a| where |a| is the size of a. Hence
they draw uniformely in the class An of all the objects of size n in A. The size of the
output is a random variable, and parameter x can be tuned for a targetted mean
value. Moreover using rejection, one can obtain exact size samplers or approximate
size samplers. This new approach differs from the ”recursive method” introduced
by Nijenhuis and Wilf [11] by giving the possibility of relaxing the constraint of
an exact size for the output and this implies a significant gain in complexity: no
preprocessing phase is needed and expected time complexity is linear in the size of
the output.

Boltzmann model has been described both in the cases of unlabelled combinato-
rial constructible (also called specifiable or decomposable) classes [5] and labelled
combinatorial constructible classes [5, 8], for the most classical constructions (+,
×, Seq, Set, Cyc,...). In this paper, we are interested in the generation under Boltz-
mann model of size-colored combinatorial objects. Let a be a combinatorial object
with n atoms, we say that this object is size-colored or colored if each of its atoms
can be colored with a color in {1, ..., n}. Our main motivation for this study stems
from the following situation : Consider that the construction of an object of size n
is distributed to n heterogenous processors. Each processors signs the atoms that
it has build. A size-colored object is exactly a possible way to build such an object
and we would like to highlight some properties about it. In order to do that, we
are going to deal with well-known k-colored combinatorial object (in this case, each
atom can be colored with a color in {1, ..., k}, and k does not depend on the size).
k-colored classes can be found in numerous problems as the k-colored necklaces [10],
expression trees with k types of n-ary functions, k-colored planar trees, k-colored
Motzkin paths [13],...

1

http://arxiv.org/abs/0911.2801v1


2 O. BODINI, A. JACQUOT

For instance, all the 2-colored non-planar general trees of size 3 are :
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Each object has to be drawn with the same probability 1
14 . This example points

out that symmetries increase the difficulty to build an uniform sampler. That can be
also observed by comparing Boltzmann sampler codes for labelled and unlabelled
structures. In a naive approach, we could deal with in the classical Boltzmann
model by duplicating k times atoms, but we give here a more general and efficient
point of view. In particular, we obtain a relatively compressed storage that we
explain in a later section and we can postpone the draw of the colors to avoid the
unnecessary coloration during the rejection phase.

A profiled object is by definition an object associated with a set-partition of its
atoms. This concept is derived from Polya theory [1]. We prove that this structure
is lifted to all k-colorations. Roughly speeking, the atoms belonging the same
partition-class could be interpreted as having the same colors. More precisely, for
every k, a sampler for profiled objects can be specialised (by a good choice of the
parameters) to become a sampler for any k-colored objects, so that, in a sense, our
model unifies all k-colorations. Espacially, profiled object samplers can be adapted
to efficient sampling of colored object in approximative size. Profiles enable us to
generate colored objects with Boltzmann methods even if the ordinary generating
function is not analytic in 0 (which is an obstruction in classical Boltzmann theory).
For instance, letA be the unlabelled constructible class Seq(Z), it is well known that
the ordinary generating function is 1/(1− z). In this case, the ordinary generating

function for the class Ã of colored objects is
∑

k≥0

nnzn which is clearly not analytic

in 0. At first sight, it seems impossible to have a Boltzmann-type sampler for this
class, since the parameter x has to be in the disk of convergence of the generating
function.

This paper is organised in four sections. The first section is devoted to the defini-
tions of various taggings for combinatorial classes. We define a general framework,
in terms of language, that allows to describe unlabelled and labelled classes as well
as less studied classes such as semilabelled or colored classes. We also recall the
notion of constructible classes which is central for Boltzmann sampler theory. The
second section adresses the notion of profiled objects. We define the generating
function associated to a profiled combinatorial class and express its relation with
the generating functions of the associated k-colored classes.

In the third section, we construct Boltzmann samplers for the profiled combina-
torial constructible classes and we show how to use it to obtain samplers for the
k-colored combinatorial constructible classes.

In the last section, we propose an approximate size sampler for the colored
combinatorial constructible classes. This sampler is based on a filter that allows to
transform a sampler for n-colored objects into a sampler for colored objects.

1. Combinatorial Classes

Combinatorial classes are very well studied and classical objects [9]. We propose
in this section a general framework, in terms of language, that allows to describe
extended tagged combinatorial classes. Our approach can be seen as an introduction
to a very simplified species theory [1]. Let A be the alphabet on the 7 following
letters �{}[](). The square is called the atom. The other letters correspond to three
different types of parentheses.



BOLTZMANN SAMPLERS FOR COLORED COMBINATORIAL OBJECTS 3

We denote by L the language on A defined as follows :

• �, {}, (), [] belong to L
• ∀k ∈ N

∗, A1, ..., Ak ∈ L ⇒ (A1A2...Ak) ∈ L, the sequences
• ∀k ∈ N

∗, A1, ..., Ak ∈ L ⇒ [A1A2...Ak] ∈ L, the cyclic sequences
• ∀k ∈ N

∗, A1, ..., Ak ∈ L ⇒ {A1A2...Ak} ∈ L, the multisets

The elements of L are called the combinatorial proto-objects.
The size of a proto-object A is the number of atoms contained in A. That is

to say, the number of occurence of � in A. For instance, ({[��](��)}�) is a
combinatorial proto-object of size 5.

Let A be a proto-object, we denote atom(A) the set of the occurences of � in A.
In particular, |atom(A)| is the size of A and each element of atom(A) corresponds
exactly to one occurence of � in A.

At this stage, we just have a support but we need to explain the meaning of the
cycles and the multisets by some equivalences between proto-objects. In order to
do that, let B be a set, a B-colored proto-object is a pair 〈A, f〉 where A is a word
of L and f is a function from atom(A) to B. Let a be an atom of A, f(a) is called
the color of a. We denote by LB the set of all B-colored proto-objects.

We define the equivalence ≡B between B-colored proto-objects of LB as follows :

• Two B-colored squares are equivalent if and only if they are the same color :

〈�, f〉 ≡B 〈�, f ′〉 ⇔ f(�) = f ′(�)

• Two sequences are equivalent if their corresponding substructures are equiv-
alent :

∀A1, ..., Ak, B1, ..., Bk ∈ L, 〈(A1A2...Ak), f〉 ≡B 〈(B1B2...Bk), f ′〉

⇔

∀i, f(Atom(Ai)) = f ′(Atom(Bi)) and 〈Ai, f |Atom(Ai)〉 ≡B 〈Bi, f
′|Atom(Bi)〉

• Two cycles are equivalent if their substructures are equivalent up to a cir-
cular shift :

∀A0, ..., Ak−1, B0, ..., Bk−1 ∈ L, 〈[A0A1...Ak−1], f〉 ≡B 〈[B0...Bk−1], f
′〉

⇔

∃n∀i, f(Atom(Ai)) = f ′(Atom(Bi+n mod k))

and

〈Ai, f |Atom(Ai)〉 ≡B 〈Bi+n mod k, f ′|Atom(Bi+n mod k)〉

• Two sets are equivalent if their substructures are equivalent up to permu-
tations (we denote by Sk the symmetric group of order k) :

∀A0, ..., Ak−1, B0, ..., Bk−1 ∈ L, 〈{A0...Ak−1}, f〉 ≡B 〈{B0...Bk−1}, f ′〉

⇔

∃σ ∈ Sk, ∀i, f(Atom(Ai)) = f ′(Atom(Bσ(i)))

and

〈Ai, f |Atom(Ai)〉 ≡B 〈Bσ(i), f
′|Atom(Bσ(i))〉

The set OB of B-colored combinatorial objects is LB/ ≡B. Now, we can define
the fundamental notion of combinatorial classes as follows :

Definition 1.1. A B-colored combinatorial class is a sub-multiset of LB/ ≡B with
a finite number of object of each size.



4 O. BODINI, A. JACQUOT

We opt in this definition for a multiset version which avoid the traditionnal
problem of the disjoint union. The union A ∪ B of two multisets is the multiset
obtained with all the existing elements and where the multiplicity of a in A ∪B is
the sum of the multplicity a in A and the multiplicity of a in B.

The size of a B-colored combinatorial object A is the size of any proto-object
which represents it.

Every object of size 0 is called neutral object. For instance, {()()[]} is a neutral
object. Clearly, OB contains an infinite number of neutral objects. we carefully
avoid the confusion between the empty combinatorial class ∅ and a combinatorial
class reduced to a neutral element ǫ.

For example, the following {1, 2}-colored combinatorial class C contains 3 objects.
The both objects of size 3 are identical.

C =
{(

1
)

,
{[

2 1
]

1
}

,
{

1
[

1 2
]}}

Now, we can add some restrictions on f to obtain different types of tagged com-
binatorial objects. Some of them are classical (unlabelled, labelled), the other ones
are more unusual but reasonable.

Function Codomain Labelling

one-to-one map {1, ..., n} for an object of size n labelled

constant map for instance {1} unlabelled

quasi-constant map {0, 1} (∃!y∀x 6= yf(x) = 1 and f(y) = 0) pointed

surjective map {1, ..., k} with k ≤ n semi-labelled

arbitrary map {1, ..., n} for an object of size n colored

arbitrary map {1, ..., k} with k fixed k-colored

Figure 1. Different labellings.

For each of these tagged objects, we can easily define the notion of combinatorial
classes.

We essentially study in this paper the notion of colored and k-colored classes.
The semilabelled classes are the topic of another work.

Let A be a combinatorial (unlabelled) class, we denote by An the set of objects
of size n.

1.1. Constructible combinatorial classes. A constructible combinatorial class
A(Z) is a class which can be build from neutral classes and an atomic class Z
by using some of these builders (+,×,Seq,MSet,PSet,Cyc,...). (the builders Seq,
MSet, PSet, Cyc cannot be applied to classes having neutral objects.) For instance,
MSet(Z × Seq(Z)). We also accept the recursive construction : T = f(T ).
These constructions are exactly the ones that we recurrently find in modern theories
of combinatorial analysis. We do not develop here the precise grammar of building.
This can be found for instance in [9].

A colored constructible combinatorial class (resp. k-colored constructible combi-
natorial class) is build from a constructible combinatorial class A(Z) as follows :

Ã =
∞
⋃

n=0
An(Z1 + . . .+Zn) (resp. A[k] = A(Z1 + . . .+Zk)). The unique atom of the

atomic class Zk corresponds to an atom colored with the color k. Strictly speaking,
Ã and A[k] are not combinatorial tagged classes as defined in the previous section.
But they can be obviously identify by expressing the colors in terms of function on
the atoms.
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In the sequel, we denote identically the colored constructible combinatorial class
and its associated unlabelled combinatorial class. For instance, we could speak
about the colored constructible combinatorial class MSet(Z ×Seq(Z)) to say that
we consider the colored constructible combinatorial class build from the unlabelled
constructible class MSet(Z × Seq(Z)).

2. Profiled combinatorial classes

Let A be a set, a subset S of P(A) (the set of all parts of A) is called a set-
partition of A if and only if the elements of S are disjoint, S does not contain ∅
unless that A = ∅ and the union of elements of S are equal to A.

A profiled combinatorial object 〈a, σa〉 is a combinatorial object a equiped with
a set-partition σa of atom(a) which represents its profile or symmetry.

Remark : In the classical Polya theory [1], we deal with an automorphism s of
atom(a) but this is overdimensioned according to what we need. We only want to
mark the undistinguished atoms, a partition is clearly sufficient.

Definition 2.1. A profiled combinatorial class is a multiset of profiled combinato-
rial objects with a finite number of object of each size.

Now, we can define the product and the diagonal of profiled combinatorial objects
as follows :

Product (concatenation). We define the symmetry σm of m = b×c as σb∪σc.
In other words, 〈b× c, σb ∪ σc〉.

Diagonal. We define δka = a...a where a is repeated k times.
The symmetry of δka is defined as follows : Let {P1, ..., Pm} be the symme-

try of a then the symmetry of δka is {
⋃

i

P i
1, ...,

⋃

i

P i
m} where P i

1 corresponds to

Pi but on the atoms of the i-th occurence of a. For instance, let 〈a, σa〉 =
〈({[��](��)}�), {{1, 3}, {2, 5}, {4}}〉 (the first � is linked to the third �...), then
δ2〈a, σa〉 is 〈aa, {{1, 3} ∪ {6, 8}, {2, 5}∪ {7, 10}, {4}∪ {9}}〉

A coloration of a profiled object of size n and symmetry σ is consistant if on each
subset of σ every atom has the same color. We also say that a profile is c-admissible
for a coloration c if each part of σ is monocolor.

2.1. Constructible profiled combinatorial classes. the constructible profiled
combinatorial classes are exactly the classes that we can buld with the following
list of operators :

• Atomic class : Z = {�}, the set-partition is reduce to the singleton.
• Union : A ∪ B is the multiset-union of the classes.
• Product : A× B = {〈a× b, σa ∪ σb〉; a ∈ A, b ∈ B}

• Sequence : Seq(A) =
∞
⋃

i=0

Ai

• Diagonal : ∆k(A) = {δka; a ∈ A}
• MultiSet :

MSet(A) = {{B}; B a concatenation of diagonals of elements in A}
• Cycle :

Cyc(A) = {[B ]; B a diagonal of concatened elements of A}

A classical tool associated to combinatorial classes is the notion of generating
functions. We explain below the building rules for the generating multivariate
functions on the infinite many variables s1, s2, ... associated to constructible profiled
combinatorial classes. The variable si are going to express a set of i linked atoms.
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For example, this profiled general non-planar tree of size 14 :

�

�

δ1

�

δ2

�

� �

δ3

δ2

has s2
1.s

3
2.s6 as associated monomial.

In fact, the multivariate generating function associated to constructible profiled
combinatorial classes can be defined inductively as follows :

• Neutral class : FE = 1
• Atomic class : FZ = s1

• Sum : FA+B = FA + FB

• Product : FA×B = FA × FB

• Sequence : FSeq(A) =
1

1− FA
• Diagonal : F∆k(A)(s1, s2, ...) = FA(sk, s2k, ...)

• MultiSet : FMSet(A) = exp
∑

k≥1
1
k
F∆k(A)

• Cycle : FCyc(A) =
∑

k≥1−
ϕ(k)

k
ln(1− F∆k(A))

Let us notice that FA is not an enumerative generating function for the pro-
filed objects in A. But it has the following very interesting property. Let us
put fA(x, t) = FA(t.x, t.x2, ..., t.xk, ...). It is a classical result of Polya theory that
[xn]fA(x, t) = |An(Z1 + . . . +Zt)|. The subtitution of si by t.xi only says that the
set of i linked atoms represented by si can exactly be colored in t different ways
and it must be considered as an object of size xi. So, the function fA(x, t) is the
ordinary generating function for the t-colored combinatorial class A[t]. In a sense,
the generating function of FA contains the informations of all the generating func-
tions for the t-colored combinatorial classes. In fact, this multivariate generating
function is generally called cycle index sum and it is also fundamental in [4]. For
instance, consider S = Mset(Z), the first terms of the profiled generating function
are FMSet(Z) = 1 + s1 + s2

1/2 + s2/2 + s3
1/6 + s1s2/2 + s3/3 + .... To obtain the

enumerative generating function for the 3-colored Mset(Z), it suffices to replace si

by 3xi. So, we find FMSet(Z) = 1 + 3x + 6x2 + 10x3 + ...

Remark : In constructive profiled classes, every symetries are only obtained
by the diagonal operator. So, in the implementation, we do not need to stock
the partition, we simply keep the diagonals unexpanded. That’s why our profiled
samplers return only an “object” a, instead of a couple 〈a, σ〉 as in our proofs.
Moreover, this choice induces a storage gain, as big as the object has symmetries.

3. Probability and Boltzmann Samplers

The principle of Boltzmann samplers can be describe as follows : Let A be a
combinatorial unlabelled class and A(x) its ordinary generating function. Consider
a non negative real number x in the convergence disk of A(x), a Boltzmann sampler
ΓA is a random generator that draws each object a ∈ A with probability P(a) =
x|a|

A(x) . There are simple rules, described in [5] to build automatically Boltzmann

samplers from the combinatorial specification of A.
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For our purpose, we want to draw t-colored objects coming from a specified class

A(Z) with the following Boltzmann probability Pt,x(a) =
x|a|

fA(x, t)
.

We produce samplers for (non colored) profiled objects with the following Boltz-
mann distribution : the probability to obtain a profiled object 〈a, σ〉 such that σ

has ni parts of size i is
[sn1

1 sn2
2 ...]FA(s(n)∈N∗).sn1

1 sn2
2 ...

FA(s(n)∈N∗)
. We then prove that af-

ter a consistant coloration and a good choice of the parameters, we also obtain a
Boltzmann sampler for the t-colored objects. The notion of powersets is not very
relevant on profiled combinatorial classes. Indeed, in a profiled object, some atoms
are undistinguished, but there is no information on distinguished atoms, they can
be the similar or not. Below, a tabular with the classical distributions of probability
and the design rules for basic sampler constructions where ΓA designs a Boltzmann
sampler for the class A.

Distribution Notation Definition

Bernoulli Bern(p) P(0) = 1 − p and P(1) = p (with 0 ≤ p ≤ 1)

Geometric Geom(λ) P(k) = λk(1 − λ) (with k ∈ N and 0 ≤ λ < 1)

Poisson Pois(λ) P(k) = e−λ λk

k!
(with k ∈ N and λ ∈ R

+∗)

Positive Poisson Pois≥0(λ) P(k) =
1

eλ − 1

λk

k!
(with k ∈ N

∗ and λ ∈ R
+∗)

Figure 2. Distributions of use in Boltzmann sampling.

In the sequel, the symbol ← designs the affection.

• Neutral class : ΓE(s1,s2,...) := return ()
• Atomic class : ΓZ(s1,s2,...) := return �

• Sum : Γ(A+ B)(s1,s2,...) :=

Draw X following a Bernoulli law of parameter Bern(
FA(s1, s2, ...)

FA+B(s1, s2, ...)
)

If X = 1 return ΓA(s1,s2,...) else return ΓB(s1,s2,...)

• Product : Γ(A× B)(s1,s2,...) :=
Let A← ΓA(s1,s2,...) and B ← ΓB(s1,s2,...)

return (AB)
• Diagonal : Γ∆k(A)(s1,s2,...) :=

let A← ΓA(sk,s2k,...)

return δkA.
• Sequence : See Algorithm 1.

• MultiSet : See Algorithm 2.

• Cycle : See Algorithm 3.

Proposition 3.1. The previous samplers are valid Botzmann samplers for profiled
objects.

Algorithm 1: ΓSeq(A)(s1,s2,...)

Input: the parameters s1, s2...
Output: a sequence.
Draw k following the geometric law Geom(FA(s1, s2, ...)).1

for i from 1 to k do2

Ai ← ΓA(s1,s2,...)3

return (A1...Ak).4
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Algorithm 2: ΓMSet(A)(s1,s2,...)

Input: the parameters s1, s2...
Output: a multiset.
let K be a random variable in N

∗ verifying1

P(K ≤ k) =
∏

j>k

exp(1
j
FA(sj , s2j , ...))

Draw k following the law of K.2

S ← ǫ3

if k = 1 then4

Draw q following a Poisson law of parameter FA(s1, s2, ...).5

for i from 1 to q do6

Ai ← ΓA(s1,s2,...)7

S ← Concat(S, Ai).8

return {S}9

else10

for j from 1 to k − 1 do11

Draw q following a Poisson law of parameter 1
j
FA(sj , s2j , ...).12

for i from 1 to q do13

Ai ← Γ∆j(A)(s1,s2,...)14

S ← Concat(S, Ai).15

Draw q following a Poisson≥1 law of parameter 1
k
FA(sk, s2k, ...).16

for i from 1 to q do17

Ai ← Γ∆k(A)(s1,s2,...)18

S ← Concat(S, Ai).19

return {S}20

Algorithm 3: ΓCyc(A)(s1,s2,...)

Input: the parameters s1, s2...
Output: a cycle.
let K be a random variable in N

∗ verifying1

P(K = k) = − 1
FCyc(A)

ϕ(k)
k

ln(1 − F∆k(A))

Draw k following the law of K.2

let L be a random variable in N
∗ verifying P(L = l) = −

(F∆k(A))
l

l
1

ln(1−F∆k(A))3

Draw l following the law of L.4

M ← ǫ5

for i from 1 to l do6

Ai ← ΓA(sk,s2k,...)7

M ← Concat(M, Ai).8

return [δkM ].9

Proof of the proposition 3.1. We only prove that for the sampler for MSet and Cyc.
The other ones are easy exercices. Let us begin with the MSet sampler. First,
suppose that during the execution of the algorithm, we have drawn k = 1. So,
P(K = 1) = exp(FA(s1, s2, ...)). After that, we have choosen q with probability :

P(q) = exp(−FA(s1, s2, ...)).
FA(s1, s2, ...)

q

q!
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and we have drawn q objects in A, each of them has profile σ such that the number
of parts of σ of cardinal i is ni with probability :

Pn =
[sn]FA(s(n)∈N∗).sn

FA(s(n)∈N∗)
.

where we denote sn1
1 sn2

2 ... by sn. So, the probability to obtain an object of profile
σ such that the number of parts of σ of cardinal i is ni (when we draw k = 1) is
the product of all these terms. This can be simplify in :

sn

∞
∏

j=1

1

j
FA(sj , s2j , ...)

∞
∑

q=0

∑

(m1,...,mq);
P

d

md=n

q
∏

d=1

[smd ]FA(s(n)∈N∗)

q!
.

Now, for k > 1, in the same way, we can show that the probability is

∑

k>1

∑

q1>0,...,qk>0

∑

(m1,1,...,mk,qk
);

k
P

i=1

qi
P

j=1

mi,j=n

1

1q1q1!...kqkqk!
.

k
∏

p=1

qp
∏

d=1

[smp,d ]FA(s(n)∈N∗).smp,d

∞
∏

j=1

1

j
FA(sj , s2j , ...)

.

So, using this sampler, the probability to obtain an object of profile σ such that
the number of parts of σ of cardinal i is ni is

∑

k≥1

∑

q1>0,...,qk>0

∑

(m1,1,...,mk,qk
);

k
P

i=1

qi
P

j=1

mi,j=n

1

1q1q1!...kqkqk!
.

sn
k
∏

p=1

qp
∏

d=1

[smp,d ]FA(s(n)∈N∗)

∞
∏

j=1

1

j
FA(sj , s2j , ...)

.

Indeed, this is all the ways to obtain an object of such a profile.
Now, [sn]FMSet(A)(s1, s2, ...) =

∑

P

j

nj=n

∏

j

[snj ] exp(1
j
FA(sj , s2j , ...)). Moreover,

[snj ] exp(
1

j
FA(sj , s2j , ...)) =

∞
∑

α=0

1

α!

∑

α
P

p=1
nj,p=nj

α
∏

p=1

[snj,p ]
FA(sj , s2j ...)

j
.

So,

[sn]FMSet(A)(s1, s2, ...) =
∑

∞
P

j=1

nj=n

∞
∏

j=1

∞
∑

α=0

1

α!

∑

α
P

p=1
nj,p=nj

α
∏

p=1

[snj,p ]
FA(sj , s2j ...)

j
.

We have to change the order of the sums and products. We use two times that
∞
∏

j=1

∑

α∈A

aα,j =
∑

α∈A∞

∞
∏

j=1

aαj ,j , and we obtain that the probability to draw an object

of profile σ is
sn.[sn]FMSet(A)(s1, s2, ...)

FMSet(A)(s1, s2, ...)
.

Now, we analyse the sampler for Cyc. Suppose that the algorithm returns an
object of size n and profile σ such that the number of parts of σ of cardinal i is ni.
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The probability pn to draw such an object is

∑

k.l=n

∑

(m1,...,ml);
l

P

d=1

md=n

P(K = k).P(L = l).

l
∏

i=1

pml

with P(K = k) = −
1

FCyc(A)(s(n)∈N∗)

ϕ(k)

k
ln(1− F∆k(A)),

P(L = l) = −
(F∆k(A)(s(n)∈N∗))l

l

1

ln(1− F∆k(A)(s(n)∈N∗))

and ∀i ∈ {0...l}, pmi
=

[smi ]F∆k(A)(s(n)∈N∗).smi

F∆k(A)(s(n)∈N∗)
So,

pn =
∑

k.l=n

∑

(m1,...,ml);
l

P

d=1

md=n

1

FCyc(A)(s(n)∈N∗)

ϕ(k)

k

1

l

l
∏

i=1

[smi ]F∆k(A)(s(n)∈N∗).smi

=
[sn]FCyc(A)(s(n)∈N∗).sn

FCyc(A)(s(n)∈N∗)

�

4. Boltzmann Samplers for t-colored classes and colored classes

4.1. The t-colored Boltzmann Samplers. In this section, we mention how to
obtain from the sampler for profiled objects the samplers for the t-colored objects.

Proposition 4.1. Let us substitute si by t.xi and generate a profiled object 〈a, σ〉
as previously. For each part p of σ, draw uniformaly a color cp in {1, ..., t} and let
us assign the atoms in p with the color cp.

This sampler is a valid Boltzmann sampler for the t-colored objects in the class
A.

Proof. Let us consider a t-colored object a drawn by this sampler. Suppose that a
is of size n and have ni atoms colored with the color i. The probability to obtain a
is the sum on the a-admissible profiled objects times the probability to put the good

colors. So, we have : P(a) =
∑

σadmissible profile

∏

(t.xi)ni

FA(t.x, t.x2, ...)
.
κσ.[sn]FA(t.x, t.x2, ...)

t
P

ni
=

x|a|

fA(x, t)
.

∑

σadmissible profile

κσ.[sn]FA(t.x, t.x2, ...) where κσ is the number of≡B-equivalent

coloration that corresponds to the color of a.
It can be proved that

∑

σadmissible profile

κσ.[sn]FA(t.x, t.x2, ...) = 1.

Another proof of this proposition is just to observe that after the substitution of
si by t.xi, our sampler is syntaxically identical to a classical Boltzmann sampler for
k-colored objects, except that we have postponed the Bernoulli choice of the color
by the informations stored in the profile. �

So, we have valid Boltzmann samplers for the t-colored objects. We can use it
for exact size generation as well as approximate size sampling.
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4.2. Approximate-size Boltzmann Samplers for size-colored objects. Now,
we want to use profiled object samplers to generate colored objects. Suppose that
we want to generate a colored object of size n in a combinatorial class A. First, we
have to solve the following equation to find the parameter x0 which targets correctly

the samplers : x.
∂
∂x

fA(x, n)

fA(x, n)
= n. We draw a profiled object with the parameters

si = n.xi
0. Now, if we color this object with n colors, the sampler is uniform only

on the class A
[n]
n that is to say when we have drawn a profiled object of size n. We

unbiais the approximate size generator by adding some rejections. The following
lemma explains how we filter the sampler in order to correct it.

Lemma 4.2. Let A = {x1, ..., xk} be a set of objects and Γ a sampler for A that
draws the object xi with probability pi 6= 0. Let (p′1, ..., p

′
k) another distibution of

probability on A, and suppose that the
p′i
pi

forms a decreasing sequence. Consider

the following sampler Γ′ :

Algorithm 4: Γ′

Input: the distribution of p′i
Output: an object.
Draw an object x with Γ1

Let i such that x = xi2

Draw X following a Bernoulli law of parameter
p′i.p1

pi.p′13

if X = 1 then4

return x5

else6

restart Γ′
7

Then Γ′ draws the object xi with probability p′i. Moreover, Γ′ calls on average
p′i
pi

times Γ to obtain an object.

Proof. First, observe that the parameter
p′i.p1

pi.p′1
is in [0, 1]. Put xi =

p′i.p1

pi.p′1
, the

probability to obtain xi is
∞
∑

n=0
(
∑

j

pj x̄j)
npixi =

pixi

1−
∑

j

pj x̄j

=
pixi

∑

j

pjxj

. In this

expression, substitute xi by
p′i.p1

pi.p′1
, we get

pi

p′i.p1

pi.p′1
∑

j

pj

p′j .p1

pj .p′1

=
p′i

∑

j

p′j
= p′i. The expected

time is
∞
∑

n=0
(n + 1)(

∑

j

pjx̄j)
npixi. A similar calculation shows that this is equal to

p′i
pi

. �

Now, consider the problem for sampling for colored objects of size around n,
a sampler is described in Algorithm 5. In a first time, we propose to observe its
running on an example :

Example 4.3. A generation for a colored general tree of specification T = Z +
ZMSet(T ) by Algorithm 5, with parameters 14, x0.
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First, a profiled tree A is drawn by Algorithm 2 with si = 14.xi
0 :

We draw k=2.
For j=1, we draw q=1, consequently we draw an only profiled object using Γ∆1T(s1,s2,...).
Then, we draw q=2, this involves the sampling of 2 profiled object by Γ∆2T(s1,s2,...).
After that, we get the following profiled tree A :

�

�

δ1

�

δ2

�

� �

δ3

δ2

As the size of A is 14 = n (So lucky, we are), we just have to return a 14-coloration
of A respecting its symetries. We find :

8

13

δ1

13

δ2

3

8 4

δ3

δ2

≡
8

13 13 13 3

8 4 4 4

3

8 4 4

Theorem 4.4. The following algorithm is a approximate-size Boltzmann sampler
for the size-colored objects in A. Its overall cost is

O

(

n.((1− ǫ).
fA(x, n)

fA(x, (1− ǫ)n)
+ (1 + ǫ)(1+ǫ)n.

fA(x, n)

fA(x, (1 + ǫ)n)

)
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Algorithm 5: Γcolored

Input: the parameters n, x0

Output: a colored object.
Draw a profiled object a with the parameters si = n.xi

01

Let ñ← size of a2

Let ñi the number of parts of the profile of cardinal i.3

if ñ /∈ [(1 − ǫ)n, (1 + ǫ)n] then4

restart Γcolored5

else6

switch the value ñ do7

case ñ = n8

return a n-coloration of a.9

case ñ < n10

Let α be the minimum in11

{
∑

ni;
∑

ini = ñ and [sn1
1 sn2

2 ...]FA(s1, s2, ...) 6= 0}

Draw X following a Bernoulli of parameter (
ñ

n
)−α+

P

ñi

12

if X = 1 then13

return a ñ-coloration of a14

else15

restart Γcolored16

case ñ > n17

Draw X following a Bernoulli of parameter (
ñ

n
)−ñ+

P

ñi

18

if X = 1 then19

return a ñ-coloration of a20

else21

restart Γcolored22

Proof of the correctness of Γcolored. Using our sampler of profiled objects with the
parameters si = n.xi

0, the probability to draw a profiled object of size ñ having a

profile with ñi parts of cardinal i is Pn(ñ) =
n

P

ñi .xñ.[sñ]FA

fA(x, n)
. We have to add after

that a filter in such a way that the probability becomes Pñ(ñ) =
ñ

P

ñi .xñ.[sñ]FA

fA(x, ñ)
.

So, we only have to know for which profile the ratio
Pñ(ñ)

Pn(ñ)
is maximum. If ñ < n

(resp. ñ > n), this happens when
∑

ni is minimum belongs the (n1, n2, ...) such that
∑

ini = ñ and [sn1
1 sn2

2 ...]FA(s1, s2, ...) 6= 0 (resp. when
∑

ni is maximum belongs
the (n1, n2, ...) such that

∑

ini = ñ and [sn1
1 sn2

2 ...]FA(s1, s2, ...) 6= 0). Notice that
the maximum is always ñ. The choice of the Bernoulli parameters follows directly
from the lemma 4.2.
Under classical conditions explain in [5], the sampling in approximate-size of a
k-colored constructible structure can be done in linear time. Now, it suffices to
evaluate the cost of the added rejection phase. The average number of loops is

(1− ǫ).
fA(x, n)

fA(x, (1 − ǫ)n)
when ñ < n and (1+ ǫ)(1+ǫ)n.

fA(x, n)

fA(x, (1 + ǫ)n)
otherwise. �
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Remark 4.5. At this stage, the explicit evaluation of the ratio
fA(x, n)

fA(x, (1 + ǫ)n)
is

out of reach, but it experimentaly seems that it is often better to choose ñ > n. In
this case, it is more advisable to modify the line 4 in the previous algorithm by
(4’) if ñ /∈ [n, (1 + ǫ)n] then restart Γcolored.

5. Conclusion

We have proved that the profiled objects are powerful tools to generate un-
der Boltzmann model k-colored objects and to obtain a generator in approxi-
mate size for colored objects. Surprisingly, we only have to know the minimum
in {

∑

ni;
∑

ini = ñ and [sn1
1 sn2

2 ...]FA(s1, s2, ...) 6= 0} to unbiais the generation of
colored objects. We also expect to develop our ideas to even more general coloration
types as for instance to impose constraints on the number of atoms with the same
colors. Finally, we would like to thank E. Fusy, C. Pivoteau and M. Soria for their
precious comments and corrections.
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