Olivier Zanier

Olivier Zanier
  • Doctor of Medicine
  • University of Oxford

About

20
Publications
1,127
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
48
Citations
Current institution
University of Oxford

Publications

Publications (20)
Article
Full-text available
Background The pursuit of automated methods to assess the extent of resection (EOR) in glioblastomas is challenging, requiring precise measurement of residual tumor volume. Many algorithms focus on preoperative scans, making them unsuitable for postoperative studies. Our objective was to develop a deep learning-based model for postoperative segment...
Chapter
The advent of different realms of computational neurosurgery—including not only machine intelligence but also visualization techniques such as mixed reality and robotic applications—is beginning to impact both open vascular as well as endovascular neurosurgery. Especially in this relatively common patient population of often very fragile patients,...
Chapter
Computational neurosurgery is a novel and disruptive field where artificial intelligence and computational modeling are used to improve the diagnosis, treatment, and prognosis of patients affected by diseases of neurosurgical relevance. The field aims to bring new knowledge to clinical neurosciences and inform on the profound questions related to t...
Article
OBJECTIVE Contemporary oncological paradigms for adjuvant treatment of low- and intermediate-grade gliomas are often guided by a limited array of parameters, overlooking the dynamic nature of the disease. The authors’ aim was to develop a comprehensive multivariate glioma growth model based on multicentric data, to facilitate more individualized th...
Article
Objective: Computed tomography (CT) imaging is a cornerstone in the assessment of patients with spinal trauma and in the planning of spinal interventions. However, CT studies are associated with logistical problems, acquisition costs, and radiation exposure. In this proof-of-concept study, the feasibility of generating synthetic spinal CT images u...
Article
Objective: Virtual and augmented reality have enjoyed increased attention in spine surgery. Preoperative planning, pedicle screw placement, and surgical training are among the most studied use cases. Identifying osseous structures is a key aspect of navigating a 3D virtual reconstruction. To automate the otherwise time-consuming process of labelli...
Article
Full-text available
Purpose Assessment of pituitary adenoma (PA) volume and extent of resection (EOR) through manual segmentation is time-consuming and likely suffers from poor interrater agreement, especially postoperatively. Automated tumor segmentation and volumetry by use of deep learning techniques may provide more objective and quick volumetry. Methods We devel...
Article
Full-text available
Introduction Gross total resection (GTR), Biochemical Remission (BR) and restitution of a priorly disrupted hypothalamus pituitary axis (new improvement, IMP) are important factors in pituitary adenoma (PA) resection surgery. Prediction of these metrics using simple and preoperatively available data might help improve patient care and contribute to...
Article
Background: Various pathologies are associated with changes in ventricular volume. In normal pressure hydrocephalus (NPH), radiological indices usually consist of linear measurement, mostly for practicality. With the help of machine learning, novel possibilities of evaluating the ventricular system arise. Hence, we present a fully automated graphic...
Article
Full-text available
Purpose Volumetric assessments, such as extent of resection (EOR) or residual tumor volume, are essential criterions in glioma resection surgery. Our goal is to develop and validate segmentation machine learning models for pre- and postoperative magnetic resonance imaging scans, allowing us to assess the percentagewise tumor reduction after intracr...
Article
Full-text available
Purpose Biochemical remission (BR), gross total resection (GTR), and intraoperative cerebrospinal fluid (CSF) leaks are important metrics in transsphenoidal surgery for acromegaly, and prediction of their likelihood using machine learning would be clinically advantageous. We aim to develop and externally validate clinical prediction models for outc...

Network

Cited By