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Abstract. In this paper, turbulent flows in media laden with solid structures are considered. A complete set of macroscopic
transport equations is derived by spatially averaging the Reynolds averaged governing equations. A two-scale analysis
highlights energy transfers between macroscopic and sub-filter mean kinetic energies and turbulent kinetic energy. Additional
terms representing solids / fluid interactions and turbulent contributions are modeled. Closure expressions are determined
using physical considerations and spatial averaging of microscopic computations. Results of the present model are successfully
compared to volume-averaged reference results coming from fine scale computations. Furthermore, this model is able to
provide accurate boundary conditions for clear flow turbulent simulations.
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INTRODUCTION

The macroscopic modeling of turbulent flows passing
through porous media concerns many practical appli-
cations such as nuclear reactors, chemical reactors or
canopy flows. The primary interest for industrial pur-
poses is not the microscopic details of the flow, but rather
the description on a large scale of mean flow quanti-
ties and the ability to provide accurate boundary con-
ditions for clear flows upstream and downstream the
porous media. The objective of this work is to derive
an extended and more practical version of the macro-
scopic turbulence model proposed by Pinson et al. [9]. To
this aim, we apply two average operators to the Navier-
Stokes equations to derive macroscopic balance equa-
tions. In a strict mathematical point of view, the order
of application of statistical and spatial averages is im-
material in regard to the mean flow quantities equations
[8]. Nevertheless, the procedure based on the statistical
averaging of the spatially averaged equations will re-
quire small eddies to be modeled. Therefore, applying
spatial filtering with a characteristic length scale larger
than a pore before statistical average would only allow
the treatment of large-scale turbulence. This is ques-
tionnable since the eddies larger than the scale of the
porous structure are not likely to survive long enough
to be detected [7]. Following [1, 7, 8, 10], we choose to
apply first the statistical average in order to get a struc-
tured picture of the turbulent flow and to benefit from
the large amount of knowledge available for Reynolds
Averaged Navier-Stokes (RANS) turbulence modeling.
RANS equations are then integrated over a representa-

tive elementary volume ∆V , which is assumed to be well
adapted to the geometrical characteristics of the media
under study [11, 12]. The spatial average is then defined
by

〈ξ 〉 f (x) =
1

∆Vf (x)

∫
∆V f (x)

ξ dV, (1)

where ∆Vf is the volume of fluid embedded within ∆V .
It can be assumed idempotent if variation length scales
of the macroscopic quantities are large with respect to
the filter size [11, 12]. For each average, any quantity
ξ may be split into mean and fluctuating components
as ξ = ξ̄ + ξ ′ = 〈ξ 〉 f + δξ , and one can write ξ =
〈ξ̄ 〉 f + 〈ξ ′〉 f +δ ξ̄ +δξ ′.

A complete set of spatially averaged equations is first
derived. Then, a two-scale analysis allows us to identify
different types of kinetic energy transfer between scales
and additional source terms in the macroscopic kinetic
energy balance equations. Transfers between large scale
and sub-filter scale are highlighted and two distinct trans-
fer modes are identified: the classical turbulent cascade
transfer, also existing in clear turbulence, and the sup-
plementary transfer induced by the coupling between the
drag of the solid structures and the mean macroscopic
flow [5]. This description also leads us to define the sub-
filter production, which represents energy transfer be-
tween the mean part and the turbulent part of the flow
[9], and the wake dissipation due to the presence of the
solid matrix. A macroscopic model based on three bal-
ance equations for the turbulent kinetic energy, the mean
sub-filter kinetic energy and the wake dissipation is then
proposed. Finally, results of the model are successfully
compared to volume-averaged reference results.



NOMENCLATURE

Dh hydraulic diameter of the pores (m)
fp friction coefficient
Re Reynolds number (UDh/ν f )
ν f kinematic viscosity of the fluid (m2 · s−1)
ρ density of the fluid (kg ·m−3)
· statistical average
·′ fluctuation from the statistical average
〈 〉 f fluid volume average
δ · deviation from the fluid volume average

GOVERNING EQUATIONS

In this study, uncompressible, adiabatic, single phase
flows in saturated, rigid porous media are considered.
Fluid properties (density, viscosity) and the porosity
of the medium are assumed constant. The Reynolds-
averaged set of governing equations, namely the conti-
nuity equation, the Navier-Stokes equation and the tur-
bulent kinetic energy equation, are then given by
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MACROSCOPIC CONTINUITY AND
MOMENTUM EQUATIONS

A velocity no-slip condition at the wall is imposed. The
properties of the spatial average operator allow us to
write the doubly averaged mass conservation
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= 0 (5)

and macroscopic momentum equations
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In eq. (6) Fφ is the drag force applied by the fluid flow on
the solid inclusions,−∂ 〈δuiδu j〉 f/∂x j represents dispersion
effects and −∂ 〈u′iu

′
j〉 f/∂x j has to be modeled.

MACROSCOPIC KINETIC ENERGIES
BALANCE EQUATIONS

Based on the formal commutativity of both average op-
erators, one can write :

〈uiu j〉 f = 〈ui〉 f 〈u j〉 f + 〈δuiδu j〉 f + 〈u′iu′j〉 f . (7)

Three different kinetic energies are then built, depending
on the scale under interest. Averaged turbulence kinetic
energy is defined by 〈k〉 f = 〈u′iu′i〉 f . Two kinetic energies
are defined using the mean velocities, say the macroscale
and sub-filter mean kinetic energies EM = 1

2 〈ui〉 f 〈ui〉 f

and 〈Em〉 f = 1
2 〈δuiδui〉 f . Balance equations for those

three energies are derived [9]
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where
I : dispersion;

II : turbulent diffusion;
III : molecular diffusion;
IV : macroscale shear production: PM;
V : sub-filter production: PSF ;

V I : averaged viscous dissipation.
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where
I : pressure-velocity correlation;

II : diffusion;
III : wake dissipation: 〈εw〉 f ;
IV : turbulent diffusion;
V : opposite of sub-filter production −PSF ;

V I : drag ;
V II : transfer from macroscale mean motion;

V III : dispersion.

DEM

Dt
=− 1

ρ

∂

∂xi

(
〈P〉 f 〈ui〉 f

)
︸ ︷︷ ︸

I

+
∂

∂xi

(
ν f

∂EM

∂xi

)
︸ ︷︷ ︸

II

−ν f
∂ 〈ui〉 f

∂x j

∂ 〈ui〉 f

∂x j︸ ︷︷ ︸
III

− ∂

∂x j
〈ui〉 f 〈Ri j〉 f︸ ︷︷ ︸

IV

+〈Ri j〉 f
∂ 〈ui〉 f

∂x j︸ ︷︷ ︸
V

− ∂

∂x j
〈ui〉 f 〈δuiδu j〉 f︸ ︷︷ ︸

V I

+〈δuiδu j〉 f
∂ 〈ui〉 f

∂x j︸ ︷︷ ︸
V II

−〈ui〉 f Fφi︸ ︷︷ ︸
V III

, (10)

where
I : pressure-velocity correlation;

II : diffusion;
III : macroscale dissipation;
IV : turbulent diffusion;
V : opposite of macroscale

shear production: −PM;
V I : dispersion;

V II : transfer to sub-filter mean motion;
V III : drag.

Energy transfers between scales are summerized in
Fig. 1. Subfilter mean kinetic energy 〈Em〉 f is mainly
fed by the macroscale mean kinetic EM energy through
the drag force applied by the fluid flow on the solid in-
clusions.At subfilter scale, energy is mainly tansferred
form 〈Em〉 f to 〈k〉 f through the so called subfilter pro-
duction. Turbulent energy is finally dissipated into heat.
Moreover, a part of the energy transferred between scales
is directly dissipated into heat by way of wake and
macroscale dissipations.

DERIVATION OF THE TURBULENCE
MODEL

Macroscopic shear production

Macroscopic Reynolds tensor 〈Ri j〉 f is usually mod-
eled by [7, 8, 9]:

FIGURE 1. Description of energy transfer for flows in
porous media.
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3
〈k〉 f δi j, (11)

where the macroscopic turbulent diffusion coefficient is
given by

νt φ = C′µ
〈k〉2f
〈ε〉 f

, Cµ = 0.09. (12)

Diffusion and dispersion

Following [1, 5, 7, 8, 9] turbulent diffusion in eq. (8)
is modeled by
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Dispersion is modeled by a gradient approximation
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One can find in [3] general expressions for Dk
i j.

Pressure-velocity correlation, dispersion and turbulent
diffusion are modeled collectively as
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Macroscopic turbulent viscosity is defined by νt φ =
Cµ
〈k〉2f/〈ε〉 f , Cµ = 0.09 and σk = 1.



Friction factor

Since wake dissipation is tightly linked to velocity
gradient, which is concentrated at walls, it is clearly
related to friction. Based on a dimensionnal argument,
we assume 〈εw〉 f ∝ u3

f/Dh ∝ 〈uz〉3f f
3/2
p /Dh. We thus propose

fp

f ∗p
=

(
〈εw〉 f

〈εw〉∗f

)2/3

, (16)

where f ∗p and 〈εw〉∗f are representative values of the fric-
tion factor and wake dissipation for the flow under con-
sideration. For instance, for flows in channels, represen-
tative values correspond to fully developped flow limit.

Dissipation rate and sub-filter production

Sub-filter production PSF and viscous dissipation
〈ε〉 f are modeled by
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=
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)a(
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)b
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)n

, (18)

where a, b and n are constants and PSF∗, 〈k〉∗f , 〈Em〉∗f and
〈ε〉∗f are representative values of turbulent kinetic energy,
subfilter mean kinetic energy and dissipation for the flow
under consideration.

Wake dissipation

Wake dissipation is induced by the velocity deviation
gradients. It is related the presence of walls. One can then
presume that evolution of wake dissipation results from a
competition between production due to the friction with
the wall (represented by the drag) and dissipation by
viscous effects. The following transport equation is then
postulated for 〈εw〉 f
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where τw1 et τw2 are characteristic time scales and Cεw,1 et
Cεw,2 are constants. By analogy with local k− ε models,
we choose τw1 = τw2 = 〈Em〉 f/〈εw〉 f .

APPLICATION TO STRATIFIED
POROUS MEDIA

In this section, we propose a turbulence model for flows
in stratified porous media (Fig. 2). The turbulent flow
is statistically steady and oriented in the z direction.
Reynolds number is given by Re = 〈uz〉 f Dh/ν f . In such
media, 〈uz〉 f is the bulk flow velocity. No eddies larger
than the pore size can thus exist. There is no macroscopic
velocity gradient and the macroscopic shear production
vanishes. In such configurations, medium study can be
reduced to a unit cell study.

FIGURE 2. Example of stratified porous medium: descrip-
tion of a porous medium composed of flat plates.

In the configuration under study, equations (8), (9) and
(19) can be simplified :
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Asymptotic states

Far downstream, profiles reach non-evolving levels
and shapes. This asymptotic state corresponds to the
fully developped flow limit and is denoted “·∞”. It de-
pends on the Reynolds number of the flow. Correlations
based on averaged fine-sale simulations are proposed for
turbulent asymptotic states in stratified media. The fric-
tion factor asymptotic value fp∞

may be given by the cor-
relations available in the literature [6]. We propose the
following correlations:



〈εw〉 f ,∞ = Cw
〈uz〉3f
2Dh

× fp
3/2
∞

, (23)

〈uz〉 f F∞

φz =
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2Dh
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PSF∞ = 〈ε〉 f ,∞ =
〈uz〉3f
2Dh

fp∞

(
1−Cw fp

1/2
∞

)
, (25)

〈k〉 f ,∞ = ck×〈uz〉2f fp∞/8, (26)

For quasi-parallel flows, 〈Em〉 f has the structure of a dis-
persion contribution. Hence for channel flows we pro-
pose

〈Em〉 f ,∞ = 2DA
z
∗×〈uz〉2f fp∞/8. (27)

For plane channel flows, we find Cw = 3, ck = 1.82.
A detailed description of DA

z
∗ may be found in [3].

Expressions (23) to (27) are compared with reference
results on Fig. 3. Reference results are spatially averaged
fine scale simulations.
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FIGURE 3. Asymptotic states: evaluation of expressions
(23) to (27) for flows in plane channels. The source terms
〈εw〉 f ,∞, PSF∞ and 〈uz〉 f F∞

φz
are adimensionned by 〈uz〉3f/2Dh.

Model constants

For flows in stratified porous media, the present model
should be consistent with asymptotic states. Characteris-
tic scales are then given by f ∗p = fp∞

, 〈εw〉∗f = 〈εw〉 f ,∞,
PSF∗ = PSF∞, 〈k〉∗f = 〈k〉 f ,∞, 〈Em〉∗f = 〈Em〉 f ,∞ and
〈ε〉∗f = 〈ε〉 f ,∞. Moreover, in order to recover reference
asymptotic states, we impose :

Cεw,2 = Cεw,1 ×
〈uz〉 f F∞

φz

〈εw〉 f ,∞

. (28)

For such flows, only Dk
zz, DEm

z and Dεw
zz are needed.

Following [7], dispersion coefficients are modeled by
means of thermal dispersion coefficient DP

zz presented in
[3] and Lewis numbers

Dk
zz = DEm

z = Dεw
zz = ν f D

P
zz
∗(Pr = 1). (29)

It has been shown in [3] that dispersion strongly predom-
inates over turbulent diffusion. Hence turbulent diffusion
is neglected in eqs. (21) and (22).

Optimal values of the model constants a, b, n and Cεw,1
have been determined for turbulent flows in channels.
Formally, the 〈k〉 f − 〈E

m〉 f system can be approached
by a damped oscillator. A frequential analysis of the ref-
erence oscillations leads to a = b = 1/4, n = 1/3. A nu-
merical optimization procedure has been run to deter-
mine an optimal value for Cεw,1 . Eq. (19) is solved for
Cεw,1 ∈ [0.1,10] and the results are compared with refer-
ence results. The spatially integrated error is calculated
for several test cases. The average integrated error is min-
imal for Cεw,1 ∈ [4,5.5]. We choose Cεw,1 = 5.

RESULTS AND DISCUSSION

In order to assess the present macroscopic model,
steady unidirectional turbulent flows entering into porous
medium composed of plane channels shall be investi-
gated from both microscopic and macroscopic points of
view. From the microscopic point of view, fine-scale sim-
ulations are carried out with FLICA-OVAP CFD code
[4] using the low-Reynolds k− ε Chien model [2]. At
the inlet, velocity, TKE and viscous dissipation profiles
are flat. By applying spatial average to fine-scale simula-
tion results, we get reference evolutions for macroscale
quantities. Spatially averaged quantities at the inlet pro-
vide channel inlet boundary conditions hereafter denoted
“·0”. Between inlet and asymptotic state, large scale os-
cillations of spatially averaged physical quantities are
observed [10]. From the macroscopic point of view,
equations (20), (21) and (19) are solved with the clo-
sure relationships (16), (17) and (18). The macroscopic



turbulence model has been implemented in a 1D un-
steady code. Numerical scheme based upon MUSCL for-
mulation is used. Asymptotic states are given by eqs.
(23) and (27). Results of our present model are com-
pared with spatially averaged fine-scale simulations on
Figs. 4 to 5. This test case is characterized by Re =
1.×105 ; 〈k0〉 f/〈k〉 f ,∞

= 3 ; L0 = 〈k0〉
3/2
f /〈ε0〉 f = Dh/10.
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FIGURE 4. Macroscopic turbulence model results for tur-
bulent flow in stratified porous media composed of flat plates.
Comparison with reference results. Evolution of fp/fp∞

and
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CONCLUSION

A macroscopic turbulence model has been proposed for
flows in porous media. A two-scale analysis highlighted
energy transfers between the mean motion and tubulence
embedded in a porous medium. Averaged energies equa-
tions have been derived and closure relationships have
been determined. The model have been tested for unidi-
rectional turbulent flows in stratified porous media. Ref-
erence results are accurately recovered, as well as asymp-
totic values. Further investigations are needed to find out
the applicability of the present model to more general
cases (laminar flows, other geometries, mixing grid, exit
flows from porous media).
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