About
37
Publications
4,868
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
470
Citations
Introduction
Skills and Expertise
Current institution
LERIA
Publications
Publications (37)
This work investigates the Monte Carlo Tree Search (MCTS) method combined with dedicated heuristics for solving the Weighted Vertex Coloring Problem. In addition to the basic MCTS algorithm, we study several MCTS variants where the conventional random simulation is replaced by other simulation strategies including greedy and local search heuristics...
This paper explores a novel approach aimed at overcoming existing challenges in the realm of local search algorithms. Our aim is to improve the decision process that takes place within a local search algorithm so as to make the best possible transitions in the neighborhood at each iteration. To improve this process, we propose to use a neural netwo...
We present a memetic algorithm with adaptive operator selection for k-coloring and weighted vertex coloring. Our method uses online selection to adaptively determine the couple of crossover and local search operators to apply during the search to improve the efficiency of the algorithm. This leads to better results than without the operator selecti...
In this paper, we propose a new deinterleaving method for mixtures of discrete renewal Markov chains. This method relies on the maximization of a penalized likelihood score. It exploits all available information about both the sequence of the different symbols and their arrival times. A theoretical analysis is carried out to prove that minimizing t...
This paper addresses the weighted vertex coloring problem (WVCP) which is an NP-hard variant of the graph coloring problem with various applications. Given a vertex-weighted graph, the problem consists of partitioning vertices in independent sets (colors) so as to minimize the sum of the maximum weights of the colors. We first present an iterative...
This work investigates the Monte Carlo Tree Search (MCTS) method combined with dedicated heuristics for solving the Weighted Vertex Coloring Problem. In addition to the basic MCTS algorithm, we study several MCTS variants where the conventional random simulation is replaced by other simulation strategies including greedy and local search heuristics...
This work presents a hyper-heuristic approach to online learning, which combines Monte Carlo Tree Search with multiple local search operators selected on the fly during the search. The impacts of different operator policies, including proportional bias, one-armed bandit, and neural network, are investigated. Experiments on well-known benchmarks of...
This paper deals with the problem of deinterleaving a sequence of signals received from different emitters at different time steps. It is assumed that this pulse sequence can be modeled by a collection of processes over disjoint finite sub-alphabets, which have been randomly interleaved by a switch process. A known method to solve this problem is t...
Given an undirected graph G=(V,E) with a set of vertices V and a set of edges E, a graph coloring problem involves finding a partition of the vertices into different independent sets. In this paper we present a new framework that combines a deep neural network with the best tools of classical heuristics for graph coloring. The proposed method is ev...
This work presents the first study of using the popular Monte Carlo Tree Search (MCTS) method combined with dedicated heuristics for solving the Weighted Vertex Coloring Problem. Starting with the basic MCTS algorithm, we gradually introduce a number of algorithmic variants where MCTS is extended by various simulation strategies including greedy an...
This work presents the first study of using the popular Monte Carlo Tree Search (MCTS) method combined with dedicated heuristics for solving the Weighted Vertex Coloring Problem. Starting with the basic MCTS algorithm, we gradually introduce a number of algorithmic variants where MCTS is extended by various simulation strategies including greedy an...
Given an undirected graph $G=(V,E)$ with a set of vertices $V$ and a set of edges $E$, a graph coloring problem involves finding a partition of the vertices into different independent sets. In this paper we present a new framework which combines a deep neural network with the best tools of "classical" metaheuristics for graph coloring. The proposed...
The partial Latin square extension problem is to fill as many as possible empty cells of a partially filled Latin square. This problem is a useful model for a wide range of relevant applications in diverse domains. This paper presents the first massively parallel hybrid search algorithm for this computationally challenging problem based on a transf...
Graph coloring involves assigning colors to the vertices of a graph such that two vertices linked by an edge receive different colors. Graph coloring problems are general models that are very useful to formulate many relevant applications and, however, are computationally difficult. In this work, a general population-based weight learning framework...
Along with the analysis of time-to-event data, it is common to assume that only partial information is given at hand. In the presence of right-censored data with covariates, the conditional Kaplan-Meier estimator (also referred as the Beran estimator) is known to propose a consistent estimate for the lifetimes conditional survival function. However...
Finding the causal direction in the cause-effect pair problem has been addressed in the literature by comparing two alternative generative models X → Y and Y → X. In this chapter, we first define what is meant by generative modeling and what are the main assumptions usually invoked in the literature in this bivariate setting. Then we present the th...
This chapter addresses the problem of benchmarking causal models or validating particular putative causal relationships, in the limited setting of cause-effect pairs, when empirical “observational” data are available. We do not address experimental validations e.g. via randomized controlled trials. Our goal is to compare methods, which provide a sc...
The cause-effect pair challenge has, for the first time, formulated the cause-effect problem as a learning problem in which a causation coefficient is trained from data. This can be thought of as a kind of meta learning. This chapter will present an overview of the contributions in this domain and state the advantages and limitations of the method...
A grouping problem involves partitioning a set of items into mutually disjoint groups or clusters according to some guiding decision criteria and imperative constraints. Grouping problems have many relevant applications and are computationally difficult. In this work, we present a general weight learning based optimization framework for solving gro...
This paper presents a new open source Python framework for causal discovery from observational data and domain background knowledge, aimed at causal graph and causal mechanism modeling. The 'cdt' package implements the end-to-end approach, recovering the direct dependencies (the skeleton of the causal graph) and the causal relationships between var...
We introduce a new approach to functional causal modeling from observational data, called Causal Generative Neural Networks (CGNN). CGNN leverages the power of neural networks to learn a generative model of the joint distribution of the observed variables, by minimizing the Maximum Mean Discrepancy between generated and observed data. An approximat...
We present the Structural Agnostic Model (SAM), a framework to estimate end-to-end non-acyclic causal graphs from observational data. In a nutshell, SAM implements an adversarial game in which a separate model generates each variable, given real values from all others. In tandem, a discriminator attempts to distinguish between the joint distributio...
We introduce CGNN, a framework to learn functional causal models as generative neural networks. These networks are trained using backpropagation to minimize the maximum mean discrepancy to the observed data. Unlike previous approaches, CGNN leverages both conditional independences and distributional asymmetries to seamlessly discover bivariate and...
We introduce a new approach to functional causal modeling from observational data. The approach, called Causal Generative Neural Networks (CGNN), leverages the power of neural networks to learn a generative model of the joint distribution of the observed variables, by minimizing the Maximum Mean Discrepancy between generated and observed data. An a...
Cette thèse présente un modèle multi-agent du marché du travail. Le modèle reproduit le fonctionnement du marché tant au niveau agrégé, qu'au niveau des principales catégories de main-d'œuvre, sur la base des décisions d'agents hétérogènes, entreprises et individus, qui interagissent. Les décisions reposent sur des calculs de profits et d'utilités...