Oliver Neumann

Oliver Neumann
Karlsruhe Institute of Technology | KIT · Institute for Automation and Applied Informatics

M. Sc.

About

35
Publications
4,537
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
108
Citations

Publications

Publications (35)
Article
Full-text available
Laser-scanning confocal microscopy of the human cornea acquires in vivoimages of corneal tissues with cellular resolution, which offers diagnostic potential for a variety of diseases. However, involuntary fixational eye movements induce motion artefacts that pose a challenge for accurate morphometric analysis and particularly for preceding image da...
Conference Paper
Full-text available
Microfluidic Live-Cell Imaging (MLCI) generates high-quality data that allows biotechnologists to study cellular growth dynamics in detail. However, obtaining these continuous data over extended periods is challenging, particularly in achieving accurate and consistent real-time event classification at the intersection of imaging and stochastic biol...
Preprint
Full-text available
Microfluidic Live-Cell Imaging (MLCI) generates high-quality data that allows biotechnologists to study cellular growth dynamics in detail. However, obtaining these continuous data over extended periods is challenging, particularly in achieving accurate and consistent real-time event classification at the intersection of imaging and stochastic biol...
Article
Full-text available
Measures for balancing the electrical grid, such as peak shaving, require accurate peak forecasts for lower aggregation levels of electrical loads. Thus, the Big Data Energy Analytics Laboratory (BigDEAL) challenge—organised by the BigDEAL—focused on forecasting three different daily peak characteristics in low aggregated load time series. In parti...
Conference Paper
Full-text available
The increasing number of recorded energy time series enables the automated operation of smart grid applications such as load analysis, load forecasting, and load management. However, to perform well, these applications usually require clean data that well represents the typical behavior of the underlying system. Unfortunately, recorded time series...
Chapter
The workshop proceedings contain the contributions of the 33rd workshop "Computational Intelligence" which will take place from 23.11. - 24.11.2023 in Berlin. The focus is on methods, applications and tools for ° Fuzzy systems, ° Artificial Neural Networks, ° Evolutionary algorithms and ° Data mining methods as well as the comparison of methods on...
Chapter
The workshop proceedings contain the contributions of the 33rd workshop "Computational Intelligence" which will take place from 23.11. - 24.11.2023 in Berlin. The focus is on methods, applications and tools for ° Fuzzy systems, ° Artificial Neural Networks, ° Evolutionary algorithms and ° Data mining methods as well as the comparison of methods on...
Article
Full-text available
Renewable energy systems depend on the weather, and weather information, thus, plays a crucial role in forecasting time series within such renewable energy systems. However, while weather data are commonly used to improve forecast accuracy, it still has to be determined in which input shape this weather data benefits the forecasting models the most...
Article
Full-text available
In the smart grid of the future, accurate load forecasts on the level of individual clients can help to balance supply and demand locally and to prevent grid outages. While the number of monitored clients will increase with the ongoing smart meter rollout, the amount of data per client will always be limited. We evaluate whether a Transformer load...
Preprint
Full-text available
In the biomedical environment, experiments assessing dynamic processes are primarily performed by a human acquisition supervisor. Contemporary implementations of such experiments frequently aim to acquire a maximum number of relevant events from sometimes several hundred parallel, non-synchronous processes. Since in some high-throughput experiments...
Preprint
Full-text available
Nowadays, Machine Learning (ML) is experiencing tremendous popularity that has never been seen before. The operationalization of ML models is governed by a set of concepts and methods referred to as Machine Learning Operations (MLOps). Nevertheless, researchers, as well as professionals, often focus more on the automation aspect and neglect the con...
Preprint
Full-text available
Recent work uses Transformers for load forecasting, which are the state of the art for sequence modeling tasks in data-rich domains. In the smart grid of the future, accurate load forecasts must be provided on the level of individual clients of an energy supplier. While the total amount of electrical load data available to an energy supplier will i...
Preprint
Full-text available
Nuclear detection, segmentation and morphometric profiling are essential in helping us further understand the relationship between histology and patient outcome. To drive innovation in this area, we setup a community-wide challenge using the largest available dataset of its kind to assess nuclear segmentation and cellular composition. Our challenge...
Preprint
Full-text available
Probabilistic forecasts are essential for various downstream applications such as business development, traffic planning, and electrical grid balancing. Many of these probabilistic forecasts are performed on time series data that contain calendar-driven periodicities. However, existing probabilistic forecasting methods do not explicitly take these...
Conference Paper
Full-text available
Accurate electrical load forecasts of buildings are needed to optimize local energy storage and to make use of demand-side flexibility. We study the usage of Transformer neural networks for short-term electrical load forecasting of 296 buildings from a public dataset. Transformer neural networks trained on many buildings give the best forecasts on...
Conference Paper
Full-text available
Accurate forecasts of the electrical load are needed to stabilize the electrical grid and maximize the use of renewable energies. Many good forecasting methods exist, including neural networks, and we compare them to the recently developed Transformers, which are the state-of-the-art machine learning technique for many sequence-related tasks. We ap...
Conference Paper
Full-text available
Various research domains use machine learning approaches because they can solve complex tasks by learning from data. Deploying machine learning models, however, is not trivial and developers have to implement complete solutions which are often installed locally and include Graphical User Interfaces (GUIs). Distributing software to various users on-...
Article
Full-text available
In biotechnology, cell growth is one of the most important properties for the characterization and optimization of microbial cultures. Novel live-cell imaging methods are leading to an ever better understanding of cell cultures and their development. The key to analyzing acquired data is accurate and automated cell segmentation at the single-cell l...
Preprint
Full-text available
Various research domains use machine learning approaches because they can solve complex tasks by learning from data. Deploying machine learning models, however, is not trivial and developers have to implement complete solutions which are often installed locally and include Graphical User Interfaces (GUIs). Distributing software to various users on-...
Conference Paper
Various research domains use machine learning approaches because they can solve complex tasks by learning from data. Deploying machine learning models, however, is not trivial and developers have to implement complete solutions which are often installed locally and include Graphical User Interfaces (GUIs). Distributing software to various users on-...
Conference Paper
Full-text available
Accurate forecasts of the electrical load are needed to stabilize the electrical grid and maximize the use of renewable energies. Many good forecasting methods exist, including neural networks, and we compare them to the recently developed Transformers, which are the state-of-the-art machine learning technique for many sequence-related tasks. We ap...
Preprint
Full-text available
In biotechnology, cell growth is one of the most important properties for the characterization and optimization of microbial cultures. Novel live-cell imaging methods are leading to an ever better understanding of cell cultures and their development. The key to analyzing acquired data is accurate and automated cell segmentation at the single-cell l...
Preprint
Full-text available
Reliable deep learning segmentation for microfluidic live-cell imaging requires comprehensive ground truth data. ObiWan-Microbi is a microservice platform combining the strength of state-of-the-art technologies into a unique integrated workflow for data management and efficient ground truth generation for instance segmentation, empowering collabora...
Conference Paper
Full-text available
With the development of the smart grid, the number of recorded energy and power times series increases noticeably. This increase allows for the automation of smart grid applications such as load forecasting and load management. This automation, however, requires data that only represents the typical behavior of the system. To ensure that such data...
Conference Paper
Comprehensible and high-quality automated cell nucleus segmentation and classification are required to assist pathol-ogists in their decision making. Commonly, cell nucleus segmentation and classification are either treated as separate tasks or split into different branches of a convolutional neural network. In this contribution, we present our joi...
Preprint
Full-text available
Automated cell nucleus segmentation and classification are required to assist pathologists in their decision making. The Colon Nuclei Identification and Counting Challenge 2022 (CoNIC Challenge 2022) supports the development and comparability of segmentation and classification methods for histopathological images. In this contribution, we describe...
Article
Full-text available
Supervised deep learning approaches for automated diagnosis support require datasets annotated by experts. Intra-annotator variability of a single annotator and inter-annotator variability between annotators can affect the quality of the diagnosis support. As medical experts will always differ in annotation details, quantitative studies concerning...
Preprint
Full-text available
Deep Neural Networks are able to solve many complex tasks with less engineering effort and better performance. However, these networks often use data for training and evaluation without investigating its representation, i.e.~the form of the used data. In the present paper, we analyze the impact of data representations on the performance of Deep Neu...
Preprint
Full-text available
The virtually error-free segmentation and tracking of densely packed cells and cell nuclei is still a challenging task. Especially in low-resolution and low signal-to-noise-ratio microscopy images erroneously merged and missing cells are common segmentation errors making the subsequent cell tracking even more difficult. In 2020, we successfully par...
Preprint
Full-text available
Time series data are fundamental for a variety of applications, ranging from financial markets to energy systems. Due to their importance, the number and complexity of tools and methods used for time series analysis is constantly increasing. However, due to unclear APIs and a lack of documentation, researchers struggle to integrate them into their...

Network

Cited By