
Olga Prieto-Ballesteros- Researcher
- Senior Researcher at Instituto Nacional de Técnica Aeroespacial
Olga Prieto-Ballesteros
- Researcher
- Senior Researcher at Instituto Nacional de Técnica Aeroespacial
About
237
Publications
45,725
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
4,130
Citations
Introduction
Current institution
Additional affiliations
December 2002 - March 2021
Centro de Astrobiología (CSIC-INTA)
Position
- Senior Researcher
December 2002 - present
Education
May 1998 - December 2002
Publications
Publications (237)
Several substances besides water ice have been detected on the surface of Europa by spectroscopic sensors, including CO2, SO2, and H2S. These substances might occur as pure crystalline ices, as vitreous mixtures, or as clathrate hydrate phases, depending on the system conditions and the history of the material. Clathrate hydrates are crystalline co...
The complex geology of Europa is evidenced by many tectonic and cryomagmatic resurfacing structures, some of which are “painted” into a more visible expression by exogenic alteration processes acting on the principal endogenic cryopetrology. The surface materials emplaced and affected by this activity are mainly composed of water ice in some areas,...
The presence of methane has been recently detected in the martian
atmosphere, suggesting a contemporary source such as volcanism or
microbial activity. Here we show that methane may be released by the
destabilization of methane clathrate hydrates, triggered by the
interglacial climate change starting 0.4 Ma. Clathrate hydrates are
nonstoichiometric...
Coogoon Valles is an intricate fluvial system, and its main channel was formed during the Noachian period through the erosion of the clay-bearing basement of the Western Arabia Terra. This region is characterized by a thinner crust compared to the rest of the highlands and by the occurrence of massive phyllosilicate-bearing materials. The origin of...
The Jovian moon Europa is a prime target for astrobiology. A global subsurface water ocean and a geologically young surface provide evidence of an active planetary body with a potential deep habitable environment. Tectonism and cryomagmatism are both agents of resurfacing, with structures on the surface spatially related to reddish non‐icy material...
The JANUS instrument (Jovis, Amorum ac Natorum Undique Scrutator) aboard the JUpiter ICy moons Explorer (JUICE) is a multispectral camera enabling imaging in the 380-1080 nm wavelength range. The performance and capability of JANUS fulfils all requirements for imaging the variety of different targets JUICE will investigate, including the icy satell...
We are investigating two Ryugu fragments with identification numbers of A0542 (0.5mg) and A0552 (0.7 mg), which JAXA curation assigned to our team in the 4th Ryugu sample announcement of opportunity. Our work considers two main objectives, which pay special attention to the search for the chemical cyanide group (-CN), as well as to the primordial m...
In 2020, the Japanese space agency's (JAXA) Hayabusa 2 mission returned to Earth 5.4 g of sample that collected from the primitive C-type asteroid Ryugu. Ryugu material offers a unique opportunity to test how the synthesis of origins of life’s building blocks could have happened in the early solar system.
We are investigating two Ryugu fragments,...
There is evidence from the near‐infrared observations of space missions of the presence of carbonates on the surface of several ocean worlds. However, their genesis remains unresolved. We investigate the hypothesis that these carbonates may be in the form of clathrites assuming that clathrate hydrates are stable phases in the crust and ocean of the...
JAXA's upcoming MMX (Martian Moons eXploration) mission will deliver a small rover to Phobos, to explore its surface complementary to the MMX orbiter and the sample return lander. On board this rover is a Raman spectrometer, the RAX Instrument (RAman Spectrometer for MMX), a payload to science. RAX has been designed for being capable to analyze the...
Planetary protection is a set of measures agreed upon at an international level to ensure the protection of scientific investigation during space exploration. As space becomes more accessible with traditional and new actors launching complex and innovative projects that involve robotics (including sample return) and human exploration, we have the r...
Identifying unequivocal signs of life on Mars is one of the most important objectives for sending missions to the red planet. Here we report Red Stone, a 163-100 My alluvial fan-fan delta that formed under arid conditions in the Atacama Desert, rich in hematite and mudstones containing clays such as vermiculite and smectites, and therefore geologic...
The Committee on Space Research's (COSPAR) Planetary Protection Policy states that all types of missions to Venus are classified as Category II, as the planet has significant research interest relative to the processes of chemical evolution and the origin of life, but there is only a remote chance that terrestrial contamination can proliferate and...
The Mars Environmental Dynamics Analyzer (MEDA) on board Perseverance includes first‐of‐its‐kind sensors measuring the incident and reflected solar flux, the downwelling atmospheric IR flux, and the upwelling IR flux emitted by the surface. We use these measurements for the first 350 sols of the Mars 2020 mission (Ls ∼ 6°–174° in Martian Year 36) t...
NASA’s Perseverance rover’s Mars Environmental Dynamics Analyzer is collecting data at Jezero crater, characterizing the physical processes in the lowest layer of the Martian atmosphere. Here we present measurements from the instrument’s first 250 sols of operation, revealing a spatially and temporally variable meteorology at Jezero. We find that t...
This chapter reviews the way the six key questions about planetary systems, from their origins to the way they work and their habitability, identified in Chapter 1 (Blanc et al., 2021), can be addressed by means of solar system exploration, and how one can find partial answers to these six questions by flying to the different provinces to the solar...
In this work, we have analyzed natural samples collected at three hydrothermal areas of Iceland by Raman spectroscopy. The studied high-latitude regions are considered environmentally and mineralogically appropriate Martian analogues since they are rich in weathered basalts that have been altered by hydrothermalism to mineral phases such as silica,...
Microbial activity is a major contributor to the biogeochemical cycles that make up the life support system of planet Earth. A 613 m deep geomicrobiological perforation and a systematic multi-analytical characterization revealed an unexpected diversity associated to the rock matrix microbiome that operates in the subsurface of the Iberian Pyrite Be...
Planetary protection guidance for martian exploration has become a notable point of discussion over the last decade. This is due to increased scientific interest in the habitability of the red planet with updated techniques, missions becoming more attainable by smaller space agencies, and both the private sector and governments engaging in activiti...
This chapter of the Planetary Exploration Horizon 2061 Report reviews the way the six key questions about planetary systems, from their origins to the way they work and their habitability, identified in chapter 1, can be addressed by means of solar system exploration, and how one can find partial answers to these six questions by flying to the diff...
We present the Raman Spectrometer onboard JAXA’s Martian Moons Exploration (MMX) mission. As part of the MMX Rover, the RAX instrument is built to measure and identify the surface mineralogy of Phobos. This is realized by acquiring Raman spectra in-situ, surveying the geology beneath the Rover body. The RAX data supports the MMX top-level science b...
The Martian subsurface is more favorable for organic preservation than its surface because of the shielding effect of rocks from cosmic rays and UV radiation with increasing depth. Nevertheless, the natural radioactivity on Mars owing to U, Th, and K must be considered to study the possible extant and/or extinct life. Here, we demonstrate the impor...
Several icy moons of the Solar system, such as Europa, harbor global oceans below their surfaces. It is conceivable that a number of exoplanetary bodies may also possess them. The presence of aqueous layers, partially or totally liquid, highly influences the bulk physical properties of these bodies, particularly the thermal state, and consequently,...
The icy bodies of the outer solar system have a different chemistry than rocky planets. The main composition of the upper layers is water ice with potentially salts and volatiles. The presence of aqueous ammonia and methanol, if their concentrations at the interior are above trace abundances, could contribute to form liquid layers within the icy sh...
Accurate wavelength calibration is critical for qualitative and quantitative spectroscopic measurements. Many spectrometers for planetary exploration are equipped with onboard calibration sources. However, such calibration sources are not always available because planetary lander missions often have strong limitations in size and mass. In this stud...
Perseverance's Mars Environmental Dynamics Analyzer (MEDA) is collecting data at Jezero Crater, characterizing the physical processes in the lowest layer of the atmosphere as no previous instrument did before. Here we show that temperature measurements at four heights capture the response of the atmospheric surface layer to multiple phenomena. We o...
Finding evidence of life beyond Earth is the aim of future space missions to icy moons. Icy worlds with an ocean underlying the icy crust and in contact with a rocky subsurface have great astrobiological interest due to the potential for water-rock interactions that may provide a source of nutrients necessary to sustain life. Such water-rock intera...
NASA/Mars 2020 and ESA/ExoMars rover are equipped with the first Raman
spectrometers to be ever used for space exploration missions (namely, SuperCam, Sherloc and RLS). Looking ahead, further Raman prototypes are being developed for future rover missions to Europa (Jupiter’s moon) and other icy planetary bodies. The main scientific objectives of th...
This chapter reviews the way the six key questions about planetary systems, from their origins to the way they work and their habitability, identified in Chapter 1 (Blanc et al., 2021), can be addressed by means of solar system exploration, and how one can find partial answers to these six questions by flying to the different provinces to the solar...
The Raman Laser Spectrometer (RLS) is one of three key analytical instruments incorporated within the body of the ExoMars 2022 rover. The rover will collect samples from different sites on the Oxia Planum plain, using a drill capable of penetrating the near subsurface and rocky outcrops to a depth of 2 m. Samples are passed to the Analytical Labora...
Mineralogy is the key to understanding the origin of Phobos and its position in the evolution of the Solar System. In situ Raman spectroscopy on Phobos is an important tool to achieve the scientifc objectives of the Martian Moons eXploration (MMX) mission, and maximize the scientifc merit of the sample return by characterizing the mineral compositi...
The study of thermal properties of frozen salt solutions representative of ice layers in Jovian moons is crucial to support the JUpiter ICy moons Explorer (JUICE) (ESA) and Europa Clipper (NASA) missions, which will be launched in the upcoming years to make detailed observations of the giant gaseous planet Jupiter and three of its largest moons (Ga...
The study of thermal properties of frozen salt solutions representative of ice layers in Jovian moons is crucial to support the JUpiter ICy moons Explorer (JUICE) (ESA) and Europa Clipper (NASA) missions, which will be launched in the upcoming years to make detailed observations of the giant gaseous planet Jupiter and three of its largest moons (Ga...
We have produced a 1:650,000 scale geomorphological map of the southwest Sinus Sabaeus, a region of Mars approximately centered at 25.0°S and 6.5°E and located in the topographic transition between Arabia Terra and Noachis Terra, in the Martian highlands. This heavily cratered region, subjected to extensive surface erosion, shows a complex valley n...
Mineralogy is the key to understanding the origin of Phobos and its position in the evolution of the Solar System. In situ Raman spectroscopy on Phobos is an important tool to achieve the scientific objectives of the Martian Moons eXploration (MMX) mission, and maximize the scientific merit of the sample return by characterizing the mineral composi...
The Raman laser spectrometer (RLS) instrument onboard the Rosalind Franklin rover of the ExoMars 2022 mission will analyze powdered samples on Mars to search for traces of life. To prepare for the mission, the RLS scientific team has developed the RLS ExoMars Simulator (RLS Sim), a flexible model of RLS that operates similarly to the actual instrum...
Planetary Protection is at the heart of space exploration. The international standard for planetary protection has been developed by the Committee on Space Research (COSPAR) which provides a forum for international consultation and has formulated a Planetary Protection Policy with associated requirements. The COSPAR Panel on Planetary Protection (P...
Detecting evidence of life on other planetary bodies requires a certain understanding of known biomarkers and their chemical nature, preservation potential, or biological specificity. In a planetary search for life, carbonates are of special interest due to their known association with life as we know it. On Earth, carbonates serve as an invaluable...
Research interest in NH4-smectites in planetology is increasing after the discovery of their high abundance on the surface of Ceres. This dwarf planet is considered a relic ocean world, showing evidence of extended aqueous alteration and cryovolcanic activity that occurred during the course of its history (De Sanctis et al., 2020). Despite the posi...
Nunataks are permanent ice-free rocky peaks that project above ice caps in polar regions, thus being exposed to extreme climatic conditions throughout the year. They undergo extremely low temperatures and scarcity of liquid water in winter, while receiving high incident and reflected (albedo) UVA-B radiation in summer. Here, we investigate the geom...
NASA’s Mars 2020 (M2020) rover mission includes a suite of sensors to monitor current environmental conditions near the surface of Mars and to constrain bulk aerosol properties from changes in atmospheric radiation at the surface. The Mars Environmental Dynamics Analyzer (MEDA) consists of a set of meteorological sensors including wind sensor, a ba...
Europa is the closest and probably the most promising target to search for extant life in the Solar System, based on complementary evidence that it may fulfil the key criteria for habitability: the Galileo discovery of a sub-surface ocean; the many indications that the ice shell is active and may be partly permeable to transfer of chemical species,...
Mineralogy is a key to understanding the origin of Phobos and its place in the context of the Solar System evolution. In-situ Raman spectroscopy on Phobos would be an important tool to achieve the science objectives of the Martian Moons eXploration (MMX) mission and maximize the science merit of sample return by characterizing the mineral compositi...
The Japan Aerospace Exploration Agency (JAXA)’ Martian Moons eXploration (MMX) remote sensing, robotic and sample return mission, scheduled to be launched in 2024 and to return in 2029, will have a strong focus on studying Phobos, including close-up surface analysis and collecting samples for Earth return. A rover, provided by CNES and DLR, will be...
Executive Summary
In this White Paper we propose that NASA works with ESA and other potentially interested international partners to design and fly jointly an ambitious and exciting planetary mission to characterize Europa’s habitability and search for bio-signatures in the environment of Europa (surface, subsurface and exosphere). By choosing the...
This paper reports the laboratory confirmation of an optical design for a 0.2 numerical aperture confocal miniaturized, ruggedized Raman visible light spectroscope (RAX) to be borne by an autonomous rover landed on the martian moon, Phobos.
Detecting signs of potential extant/extinct life on Mars is challenging because the presence of organics on that planet is expected to be very low and most likely linked to radiation-protected refugia and/or preservative strategies (e.g., organo-mineral complexes). With scarcity of organics, accounting for biomineralization and potential relationsh...
SuperCam is a highly integrated remote-sensing instrumental suite for NASA’s Mars 2020 mission. It consists of a co-aligned combination of Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), Visible and Infrared Spectroscopy (VISIR), together with sound recording (MIC) and high-magnification imaging techniques...
Maritime Antarctica is a climate-sensitive region that has experienced a continuous increase of temperature over the last 50 years. This phenomenon accelerates glacier retreat and promotes the exposure of ice-covered surfaces, triggering physico-chemical alteration of the ground and subsequent soil formation. Here, we studied the biogeochemical com...
The presence of organic matter in lacustrine mudstone sediments at Gale crater was revealed by the Mars Science Laboratory Curiosity rover, which also identified smectite clay minerals. Analogue experiments on phyllosilicates formed under low temperature aqueous conditons have illustrated that these are excellent reservoirs to host organic compound...
Organic chemistry is ubiquitous in the Solar System, and both Mars and a number of icy satellites of the outer Solar System show substantial promise for having hosted or hosting life. Here, we propose a novel astrobiologically focused instrument suite that could be included as scientific payload in future missions to Mars or the icy moons: the Comp...
We present the hypothesis that microorganisms can change the freezing/melting curve of cold salty solutions by protein expression, as it is known that proteins can affect the liquid-to-ice transition, an ability that could be of ecological advantage for organisms on Earth and on Mars. We tested our hypothesis by identifying a suitable candidate, th...
Europa is the closest and probably the most promising target to search for extant life in the Solar System, based on complementary evidence that it may fulfil the key criteria for habitability: the Galileo discovery of a sub-surface ocean; the many indications that the ice shell is active and may be partly permeable to transfer of chemical species,...
The aim of the European Space Agency's ExoMars rover mission is to search for potential traces of present or past life in the swallow subsurface (2 m depth) of Mars. The ExoMars rover mission relies on a suite of analytical instruments envisioned to identify organic compounds with biological value (biomarkers) associated with a mineralogical matrix...
The ExoMars rover, scheduled to be launched in 2020, will be equipped with a novel and diverse payload. It will also include a drill to collect subsurface samples (from 0‐ to 2‐m depth) and deliver them to the rover analytical laboratory, where it will be possible to perform combined science between instruments. For the first time, the exact same s...
At present, the study of diverse habitable environments of astrobiological interest has become a major challenge. Due to the obvious technical and economical limitations on in situ exploration, laboratory simulations are one of the most feasible research options to make advances both in several astrobiologically interesting environments and in deve...
The exploration and use of outer space is the province of all humankind. This principle in Article I of the UN Outer Space Treaty guarantees the freedom to explore outer space, including the Moon and other celestial bodies, without discrimination, and to carry out scientific investigations. This freedom, however, comes with a responsibility describ...
Substrate-atmosphere interfaces in Antarctic geothermal environments are hot-cold regions that constitute thin habitable niches for microorganisms with possible counterparts in ancient Mars. Cerro Caliente hill in Deception Island (active volcano in the South Shetland Islands) is affected by ascending hydrothermal fluids that form a band of warm su...
We produced a geomorphological map of the area of western Coogoon Valles and southeast Oxia Planum to characterize its landscape. The highland unit, which corresponds to the Coogoon Valles region, is heavily cratered and dissected by valleys related to fluvial and probably sapping erosion. The basin unit, within Oxia Planum region, displays less cr...
Oxia Planum is located in west Arabia Terra. This area has been recently chosen as landing site for the ESA's ExoMars 2020 rover due to evidence of water in the past, including phyllosilicate-rich layered deposits widely reported in west Arabia Terra. This work presents a detailed geomorphological map of west Coogoon Valles and southeast Oxia Planu...
Cyanobacteria are ecologically versatile microorganisms inhabiting most environments, ranging from marine systems to arid deserts. Although they possess several pathways for light-independent energy generation, until now their ecological range appeared to be restricted to environments with at least occasional exposure to sunlight. Here we present m...
The search for biomarkers of present or past life is one of the major challenges for in situ planetary exploration. Multiple constraints limit the performance and sensitivity of remote in situ instrumentation. In addition, the structure, chemical, and mineralogical composition of the sample may complicate the analysis and interpretation of the resu...
Recent discoveries from planetary missions show that serpentinization process may act significantly on the geological evolution and potential habitability of the icy bodies of the Solar System, like Enceladus or Europa. Here we review the available experimental data so far about methane formation occurring during serpentinization, which is potentia...
Here we show the salting out phenomenon assessment occurring on MgSO4-CO2-H2O system due to the presence of clathrate hydrates under temperature and pressure conditions of the ocean of Jupiter's icy moon Europa. In order to form clathrate hydrates, water molecules are removed from the aqueous solution. This fact causes great impact on solutes conce...
This paper analyzes the structural, energetic and mechanical properties of carbon dioxide hydrate clathrates calculated using finite cluster and periodic ab initio density-functional theory methodologies. Intermolecular interactions are described by the exchange-hole dipole moment method. The stability, gas saturation energetics, guest–host interac...
First-principles calculations were performed to determine equilibrium geometries, static equation of state parameters, the energetics and orientation of the guest molecule inside the 5 and 56 cages, and vibrational frequencies of methane clathrate hydrate. According to our results, the progressive inclusion of one molecule in each clathrate cavity...