
Olga Boudker- Professor (Associate) at Weill Cornell Medicine
Olga Boudker
- Professor (Associate) at Weill Cornell Medicine
About
60
Publications
6,042
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,164
Citations
Introduction
Current institution
Additional affiliations
September 2005 - December 2012
January 2000 - August 2005
January 1993 - July 1999
Publications
Publications (60)
Glutamate is the main excitatory transmitter in the mammalian central nervous system; glutamate transporters keep the synaptic glutamate concentrations at bay for normal brain function. Arachidonic acid (AA), docosahexaenoic acid, and other unsaturated fatty acids modulate glutamate transporters in cell- and tissue slices-based studies. Here, we in...
Excitatory amino acid transporters (EAATs) reside on cell surfaces and uptake substrates, including L-glutamate, L-aspartate, and D-aspartate, using ion gradients. Among five EAATs, EAAT3 is the only isoform that can efficiently transport L-cysteine, a substrate for glutathione synthesis. Recent work suggests that EAAT3 also transports the oncometa...
The Pyrococcus horikoshii amino acid transporter GltPh revealed, like other channels and transporters, activity mode switching, previously termed wanderlust kinetics. Unfortunately, to date, the basis of these activity fluctuations is not understood, probably due to a lack of experimental tools that directly access the structural features of transp...
CLCs are dimeric chloride channels and anion/proton exchangers that regulate processes such as muscle contraction and endo-lysosome acidification. Common gating controls their activity; its closure simultaneously silences both protomers, and its opening allows them to independently transport ions. Mutations affecting common gating in human CLCs cau...
Secondary active membrane transporters use the electrochemical energy of ion gradients to concentrate their substrates. Transporters within the same family often evolve to use different ions, driven by physiological needs or bioavailability. How such functional differences arise despite similar three-dimensional protein structures is mostly unknown...
Excitatory amino acid transporters (EAATs) uptake glutamate into glial cells and neurons. EAATs achieve million-fold transmitter gradients by symporting it with three sodium ions and a proton, and countertransporting a potassium ion via an elevator mechanism. Despite the availability of structures, the symport and antiport mechanisms still need to...
Limited chemical shift dispersion represents a significant barrier to studying multistate equilibria of large membrane proteins by 19F NMR. We describe a novel monofluoroethyl 19F probe that dramatically increases the chemical shift dispersion. The improved conformational sensitivity and line shape enable the detection of previously unresolved stat...
Excitatory amino acid transporters (EAATs) pump glutamate into glial cells and neurons. EAATs achieve million-fold transmitter gradients by symporting it with three sodium ions and a proton and counter-transporting a potassium ion via an elevator mechanism. Despite the availability of structures, the symport and antiport mechanisms remain unclear....
Integral membrane glutamate transporters couple the concentrative substrate transport to ion gradients. There is a wealth of structural and mechanistic information about this protein family. Recent studies of an archaeal homologue, GltPh, revealed transport rate heterogeneity, which is inconsistent with simple kinetic models; however, its structura...
Limited chemical shift dispersion represents a significant barrier to studying multi-state equilibria of large membrane proteins by 19F NMR. We describe a novel monofluoroethyl 19F probe that dramatically increases the chemical shift dispersion. The improved conformational sensitivity and line shape enable the detection of previously unresolved sta...
Significance
Structural snapshots of membrane transporters show that they cycle through several conformational states to bring substrates across the membrane. The rates of these molecular motions determine the activity of the transporters. In this work, we directly compare real-time single-molecule measurements of conformational changes and substra...
Integral membrane glutamate transporters couple the concentrative substrate transport to ion gradients. There is a wealth of structural and mechanistic information about this family, including kinetic models of transport. Recent studies have revealed transport rate heterogeneity in an archaeal glutamate transporter homologue GltPh, inconsistent wit...
Secondary active transporters reside in cell membranes transporting polar solutes like amino acids against steep concentration gradients, using electrochemical gradients of ions as energy sources. Commonly, ensemble-based measurements of radiolabeled substrate uptakes or transport currents inform on kinetic parameters of transporters. Here we descr...
Human excitatory amino acid transporter 3 (hEAAT3) mediates glutamate uptake in neurons, intestine, and kidney. Here, we report cryo-EM structures of hEAAT3 in several functional states where the transporter is empty, bound to coupled sodium ions only, or fully loaded with three sodium ions, a proton, and the substrate aspartate. The structures sug...
Membrane transporters mediate cellular uptake of nutrients, signaling molecules, and drugs. Their overall mechanisms are often well understood, but the structural features setting their rates are mostly unknown. Earlier single-molecule fluorescence imaging of the archaeal model glutamate transporter homologue GltPh from Pyrococcus horikoshii sugges...
Glutamate transporters are essential players in glutamatergic neurotransmission in the brain, where they maintain extracellular glutamate below cytotoxic levels and allow for rounds of transmission. The structural bases of their function are well established, particularly within a model archaeal homolog, sodium, and aspartate symporter Glt Ph . How...
In proteins where conformational changes are functionally important, the number of accessible states and their dynamics are often difficult to establish. Here we describe a novel ¹⁹F-NMR spectroscopy approach to probe dynamics of large membrane proteins. We labeled a glutamate transporter homolog with a ¹⁹F probe via cysteine chemistry and with a N...
Human excitatory amino acid transporter 3 (hEAAT3) mediates glutamate uptake in neurons, intestine, and kidney. Here, we report Cryo-EM structures of hEAAT3 in several functional states where the transporter is empty, bound to coupled sodium ions only, or fully loaded with three sodium ions, a proton, and the substrate aspartate. The structures sug...
Glutamate transporters are essential players in glutamatergic neurotransmission in the brain, where they maintain extracellular glutamate below cytotoxic levels and allow for rounds of transmission. The structural bases of their function are well established, particularly within a model archaeal homologue, sodium and aspartate symporter GltPh. Howe...
Kinetic properties of membrane transporters are typically poorly defined because high-resolution functional assays analogous to single-channel recordings are lacking. Here, we measure single-molecule transport kinetics of a glutamate transporter homolog from Pyrococcus horikoshii , Glt Ph , using fluorescently labeled periplasmic amino acid binding...
Membrane transporters mediate cellular uptake of nutrients, signaling molecules and drugs. Their overall mechanisms are often well understood, but the structural features setting their rates are mostly unknown. Earlier single-molecule fluorescence imaging of a model glutamate transporter homologue suggested that the slow conformational transition f...
In proteins where conformational changes are functionally important, the number of accessible states and their dynamics are often difficult to establish. Here we describe a novel 19F-NMR spectroscopy approach to probe dynamics of large membrane proteins. We labeled a glutamate transporter homologue with a 19F probe via cysteine chemistry and with a...
Many secondary active membrane transporters pump substrates against concentration gradients by coupling their uptake to symport of sodium ions. Symport requires the substrate and ions to be always transported together. Cooperative binding of the solutes is a key mechanism contributing to coupled transport in the sodium and aspartate symporter from...
Kinetic rate constants summary.
* marks the rate constants that were fixed during KinTek analysis. # marks the rate constants that were optimized in KinTek during global data fitting are in bold. $ A stands for the binding ligand, L-Asp or DL-TBOA. Errors are standard errors of the fit.
Membrane proteins such as ion channels and transporters are frequently homomeric. The homomeric nature raises important questions regarding coupling between subunits and complicates the application of techniques such as FRET or DEER spectroscopy. These challenges can be overcome if the subunits of a homomeric protein can be independently modified f...
Glutamate transporters terminate neurotransmission by clearing synaptically released glutamate from the extracellular space, allowing repeated rounds of signalling and preventing glutamate-mediated excitotoxicity. Crystallographic studies of a glutamate transporter homologue from the archaeon Pyrococcus horikoshii, GltPh, showed that distinct trans...
Excitatory neurotransmitter glutamate is packaged into vesicles in presynaptic neurons and is released into the synaptic cleft via exocytosis upon arrival of the action potential. Following activation of the receptors on postsynaptic neurons, glutamate is rapidly removed from the cleft to prevent excitotoxicity. Excitatory amino acid transporters (...
Secondary active transporters harvest the energy of the ionic gradients to drive concentrative uptake of their substrates. This process entails a series of protein conformational transitions that are coupled to binding and unbinding of ions and substrates on the extracellular and intracellular sides of the membrane. Over the last decade, crystallog...
Glutamate transporters are integral membrane proteins that catalyse neurotransmitter uptake from the synaptic cleft into the cytoplasm of glial cells and neurons. Their mechanism of action involves transitions between extracellular (outward)-facing and intracellular (inward)-facing conformations, whereby substrate binding sites become accessible to...
Translocator Proteins (18 kDa), TSPOs, are conserved integral membrane proteins. In both eukaryotes and prokaryotes, TSPOs interact with porphyrins, precursors of heme and photosynthetic pigments. Here we demonstrate that bacterial TSPOs catalyze rapid porphyrin degradation in a light- and oxygen-dependent manner. The reaction is in-hibited by a sy...
Glutamate transporters catalyze concentrative uptake of the neurotransmitter into glial cells and neurons. Their transport cycle involves binding and release of the substrate on the extra- and intracellular sides of the plasma membranes and translocation of the substrate-binding site across the lipid bilayers. The energy of the ionic gradients, mai...
Glutamate transporters are membrane pumps, which catalyze reuptake of the neurotransmitter from the brain synapses driven primarily by symport of sodium ions. A bacterial homologue, GltPh is a sodium/aspartate symporter, for which the crystal structures of sodium and substrate bound states have been determined. The thermodynamic studies have demons...
Sodium and aspartate symporter from Pyrococcus horikoshii, Glt(Ph), is a homolog of the mammalian glutamate transporters, homotrimeric integral membrane proteins that control neurotransmitter levels in brain synapses. These transporters function by alternating between outward-facing and inward-facing states, in which the substrate binding site is o...
We report a structure of a trimeric glutamate transporter homolog from Pyrococcus horikoshii with two protomers in an inward facing state and the third in an intermediate conformation between the outward and inward facing states. The intermediate shows a cavity in the thinnest region of the transporter, which is potentially accessible to extracellu...
Glutamate transporters are secondary active transporters that couple the trans-membrane movement of the substrate to the movement ions, mainly sodium. To achieve this, the transporters alternate between outward- and inward-facing conformations, in which the substrate and ion binding sites are accessible to the extracellular and cytoplasmic sides of...
Secondary active transporters catalyze the concentrative transport of substrates across lipid membranes by harnessing the energy of electrochemical ion gradients. These transporters bind their ligands on one side of the membrane, and undergo a global conformational change to release them on the other side of the membrane. Over the last few years, c...
Glutamate transporters are integral membrane proteins that catalyse a thermodynamically uphill uptake of the neurotransmitter glutamate from the synaptic cleft into the cytoplasm of glia and neuronal cells by harnessing the energy of pre-existing electrochemical gradients of ions. Crucial to the reaction is the conformational transition of the tran...
Glutamate transporters tightly control the extracellular concentration of glutamate in the brain, ensuring excitatory neurotransmission and cell integrity. These transporters utilize the energy of pre-existing ionic gradients to pump the transmitter against steep concentration gradients. Active transport is achieved by alternately exposing the ion...
Secondary transporters are integral membrane proteins that catalyse the movement of substrate molecules across the lipid bilayer by coupling substrate transport to one or more ion gradients, thereby providing a mechanism for the concentrative uptake of substrates. Here we describe crystallographic and thermodynamic studies of Glt(Ph), a sodium (Na+...
Glutamate transporters are integral membrane proteins that catalyse the concentrative uptake of glutamate from the synapse to intracellular spaces by harnessing pre-existing ion gradients. In the central nervous system glutamate transporters are essential for normal development and function, and are implicated in stroke, epilepsy and neurodegenerat...
Catalysis of glutamate transport across cell membranes and coupling of the concentrative transport to sodium, proton, and potassium gradients are processes fundamental to organisms in all kingdoms of life. In bacteria, glutamate transporters participate in nutrient uptake, while in eukaryotic organisms, the transporters clear glutamate from the syn...
N,N'-Diacetylchitobiose is transported/phosphorylated in Escherichia coli by the (GlcNAc)(2)-specific Enzyme II permease of the phosphoenolpyruvate:glycose phosphotransferase system. IIA(Chb), one protein of the Enzyme II complex, was cloned and purified to homogeneity. IIA(Chb) and phospho-IIA(Chb) form stable homodimers (). Phospho-IIA(Chb) behav...
The structural stability of the co-chaperonin GroES has been studied by high sensitivity differential scanning calorimetry and circular dichroism under different solvent conditions. The thermal folding/unfolding of GroES is a spontaneous reversible process involving a highly cooperative transition between folded heptamers and unfolded monomers. Dur...
A calcium-dependent ceramide (Cer) kinase was recently detected in human leukemia (HL-60) cells (Kolesnick, R.N., and Hemer, M.R. (1990) J. Biol. Chem. 265, 18803-18808) where it may function in terminating the regulatory effects of Cer, and in synaptic vesicles (Bajjalieh, S. M., Martin, T. F. J., and Floor, E. (1989) J. Biol. Chem. 264, 14354-143...