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I. INTRODUCTION

Substantial progress achieved in research on the reg-
ularities governing the charge transport in modified
electrodes is largely connected with use of spectros-
copy of the electrochemical impedance. However, the
interpretation of data on the impedance of modified
electrodes is frequently ambiguous, because of the
many-parameteredness of the description of transport
in these objects. For example, in the most developed
model for a uniform electroactive film with two sorts of
charge carries, a correct description of the process of
charging the electric double layers (EDL) on its bound-
aries requires that four parameters be introduced for
each side of the film [1, 2]. Apart from the commonly
used parameters, i.e. the resistance to charge transfer
and the double-layer capacitance, a theory also features
a double-layer number and an asymmetry factor. All
these parameters are phenomenological, for their intro-
duction was usually realized at the expense of the appli-
cation of Gibbs’ adsorption equation [1, 2]. A model
approach that was by the authors of this particular com-
munication in [3] allows the authors of this particular
communication to establish, at the very least in a
numerical form, dependences of the said parameters on
the electrode potential and the concentration of the
washing electrolyte. Calculation of these dependences
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and their subsequent comparison with data obtained
experimentally would allow us to reduce the number of
parameters required for a description of the impedance
of a modified electrode and thus alleviate the interpre-
tation of corresponding results. It is necessary to under-
line at this particular juncture that in [3], apart from the
assumption about a uniform nature of films there was
used the assumption about the inessentialness of inter-
particle interactions in the bulk of a polymer film, i.e.
about the inconsiderableness of the so-called effect of
the short-range interaction. Although the fundamental
aspects pertaining to the effect of such interactions on
the kinetics of the charge transfer processes in the bulk
of films are transparent enough, their introduction in
the course of the description of the injection kinetics of
charge carriers into a film happens to be nontrivial. To
make this statement transparent and to explain the
model that would simultaneously be used in what fol-
lows for the description of a polymer film, it would help
to consider a particular technique used for taking into
account the so-called effect of the short-range interac-
tion, which was performed previously in work [4].

II. THE MODEL

In this work a polymer film was likened to an ideal
cubic lattice at the points of which reduced (Red) and
oxidized (Ox) fragments of something were deployed,
which provided for the electron transfer between neigh-
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boring points of the lattice in accordance with the reac-
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following equation:
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from a substrate so that the value 
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 = 0 corresponds to
the surface of the latter, M is the overall number of lay-
ers in the lattice); and 
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 is the summed up and indepen-
dent of the number 
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 concentration of the oxidized and
reduced forms. As reactions (1) that describe the transfer
between different planes 
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 are similar (with the exception
of 
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 = 0, M and, strictly speaking, 
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 = 1, M – 1), for acti-
vation energies we can write the Broensted rule
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 is a generalized heat effect of reac-
tion (1) that includes variations in the electrostatic con-
stituent of energy (as calculated per mole of every
reacting species):
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 is the electric potential of the 
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th plane of the
lattice (relative to the thickness of the solution washing
the film) and 
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 is the charge of the oxidized species, so
that 
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 – 1 is the charge of the reduced species. The non-
electrostatic constituents of energy 
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 of
relevant species were calculated in the framework of
the Bragg–Williams approximation (or, which is the
same, “molecular field”), which, omitting intermediate
manipulations, was leading to following expression for
the heat effect:
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 is the so-called parameter of
Flori, i.e. the sum of energies of paired interactions
between species of the same type minus twice the
energy of interaction between species of different types
with one another. As the lattice was presumed to be uni-
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form, then, to within an accuracy of the deformational
constituents of energy, which are ignored here, we
deem it possible to presume that the addends in the
braces mutually counterbalance one another and it may
be dropped. Nevertheless, it would make sense to pre-
serve it, in order to always remember about its other-
than-zero value in the case where i = 1, M – 1 and, the
more so, at i = 0, M in similar expressions for the heat
effect of corresponding transfer stages (see further on).

No explanation is required for the physical meaning
of the second addend in the right-hand part of (5). The
third addend apparently corresponds to the difference
between energies of interaction of the reacting species
with the nearest environment surrounding them in the
planes i+1 and i, whereas the fourth addend corre-
sponds to the difference in the interactions of species
with the layers of the cubic lattice adjacent to them
(i+2)nd and i–1st for planes i+1 and i, respectively).
The last addend in the right-hand part of (5) arises
because of the occurring in the course of reaction (1)
change in the localization of reacting species, which
counterbalances in part the effect of the third addend in
the right-hand part of the same relationship.

Further on, the difference of the difference [θR(i + 2) –
θR(i – 1)] from the triple difference [θR(i + 1) – θR(i)] =
∆θR(i) in work [4] was ignored, which in the final anal-
ysis led to the equation

(6)

which was linearized with respect to increments, or, in the
framework of a continuous description, to the equation

(7)

where λ denotes the lattice constant; a0 = 6∆E/RT rep-
resents a dimensionless attraction constant (in the gen-
eral case, the coordination number of the lattice is equal
to c, and then a0 = c∆E/RT); and z is a distance from the
substrate.

It is necessary to underline at this juncture that, fol-
lowing the substitution of the diffusion coefficient of
electrons De for the factor λk0exp[–E0/RT], equation (7)
will completely coincide with the equation that
describes the electron transfer and which was adopted
in models of heterogeneous films of electroactive poly-
mers (see for example [5, 6]). And this circumstance
does not seem to be surprising, because, as was already
mentioned in [4], both in its final content and in the
meaning of transformations that were conducted in the
course of its derivation, equation (7) corresponds to the
proportionality of an electron flux to the gradient of the
electrochemical potential of the electrons in the film,
i.e. to the initial assumption underlying thermodynam-
ics of irreversible processes. At the same time, it is
clearly distinguishable, from the brief description of the
approach to an allowance for the effect of the short-

j i( ) –k0 –E0/RT[ ] ∆CR i( ){exp=

– CR i( ) 1 θR i( )–[ ] F/RT( )∆ϕ i( ) a0∆θR i( )–[ ] }

j z( ) –λk0 –E0/RT[ ] dCR z( )/dz{exp=

– CR z( ) 1 θR z( )–[ ]d Fϕ z( )/RT a0θR z( )–[ ]/dz },



1018

RUSSIAN JOURNAL OF ELECTROCHEMISTRY      Vol. 43      No. 9      2007

MALEV et al.

range interaction that was used in [4], that, apart from
the assumptions that were connected with the applica-
tion of a simplistic model for the polymer lattice, when
deriving equation (6) (and, later on, equation (7)), there
were introduced still additional assumptions. These
additional assumptions, as we have already mentioned
in the foregoing, are the assumptions concerning the
inessentialness of the elastic constituents of the energy
of species and the assumptions concerning the possibility
of representation of the difference [θR(i + 2) – θR(i – 1)] in
the form of the tripled difference [θR(i + 1) – θR(i)].
Finally, it should also be pointed out that, even if all
these assumptions have been valid, the difference
equation (6) would have to alter its shape for values
i = 1, M – 1, i.e. for the planes of the lattice that are
adjacent to the substrate and the solution, respectively.
The necessity to take into account these circumstances,
the more so the last one, as a circumstance directly
affecting the conditions of the charge injection into a
film, seems to be obvious. In connection with this and
to continue with the analysis that was begun in [3], in
this particular communication we offer particular solu-
tion for at least some of the raised questions, which will
be being realized in the framework of the approach that
was used in [4].

III. RESULTS

Complementing an analysis of work [4], we will
take into account the fact that the difference between
the coverages [θR(i + 2) – θR(i – 1)] that appears in (5)
is represented in the general case in the form

[θR(i + 2) – θR(i – 1)] = 3[θR(i + 1) – θR(i)] + {[θR(  +
2) – 2θR(i + 1) + θR(i)] – [θR(i + 1) – 2θR(i) + θR(   –
1)]}= 3∆θR(i) + ∆3θR(i)

where ∆θR(i) and ∆3θR(i) are the first and third differ-
ences with respect to θR(i). In the general case, there-
fore, (6) should be written down in the form

(6‡)

and instead of (7),

(7‡)

In the case of equilibrium equations (6a) after prelim-
inary division by CR(i)[1 – θR(i)]/RT may be summed
from i = 2 to any arbitrary i < M–1, which gives

(8)

i
i

j i( ) –k0 –E0/RT[ ] ∆CR i( ){exp=

– CR i( ) 1 θR i( )–[ ] F/RT( )∆ϕ i( )[

– a0∆θR i( ) a0/c( )∆3θR i( )– ] },

j z( ) –λk0 –E0/RT[ ] dCR z( )/dz{exp=

– CR z( ) 1 θR z( )–[ ]d Fϕ z( )/RT a0θR z( )–[ ]

– λ2a0/c( )d2θR z( )/dz2 ]/dz }.

RTa0/c( )∆2θR i( ) RT θR i( )/ 1 θR i( )–[ ]{ }ln+

+ RTa0θR i( ) Fϕ i( )– µ̃e f( ) µe
0 f( ),–=

where (f) is the electrochemical potential of elec-

trons in a film and (f) is the standard chemical poten-
tial of electrons in the same film. An analogue of (8) in
the case of a continuous description, obviously, is

(9)

Commenting on equations (8) and (9), it should be
noted that their analogues for the case of non-electro-
lytes have long since been known (on the order of
50 years). These are the so-called equations of the sur-
face layer, which were obtained in the framework of the
lattice methods by Ono [7] and, somewhat later, when
the continuous approach was used by Cahn and Hilliard
[8] (see also works [9, 10] concerning simulation of the
cytoskeleton of nerve fibers). The advantage of these
equations (as compared with equations that contain no
addends with a 2nd difference or a 2nd derivative) is
that the equations in question offer one a chance to
describe the following interfaces: liquid/gas and two
immiscible liquids, for one equation ((8) or (9)) ensures
the presence of two different bulk values of θR and a
transitional region in between them. It is also obvious
that with the aid of these equations one can simulate a
solid body/liquid interface. A certain impediment for
such a generalization seems to be that, in contradistinc-
tion to the interfaces: liquid/liquid and liquid/gas, equa-
tion (8) (and, therefore, equation (9) as well) is invalid
for i = 0, 1, M–1, M, as we have already mentioned in
the foregoing and as it must be obvious from what we
stated above. Below we will show that, should some
certain conditions be fulfilled, this impediment may be
removed.

1. Generalization of Previous Results

The obtain generalized results we will turn our
attention to the cases of values of i for which the results
that were obtained in the foregoing are not quite cor-
rect. In the first place, we will perform the correspond-
ing consideration for i = 1, M–1. To perform this con-
sideration, we will use the same scheme that was used
previously. In particular, for the rate of transfer j(1)
from the first layer into the second layer (i.e. i = 1), we
will, as previously, employ equation (2) complemented
by the Broensted rule (3). A calculation of the heat
effect for this particular stage of the transfer process,
which is similar to a calculation that had been per-
formed previously, yields

(10)

µ̃e

µe
0

RTλ2a0/c( )d2θR z( )/dz2 RT θR z( )/ 1 θR z( )–[ ]{ }ln+

+ RTa0θR z( ) Fϕ z( )– µ̃e f( ) µe
0 f( )– .=

∆Q 1 2,( ) WR
0 1( ) WOx

0 2( ) WR
0 2( )– WOx

0 1( )–+=

+ εRM ε00 εR0 ε0M– DEqR 0( )––+

– DE θR 3( ) qR 0( )–[ ] ∆E∆θR 1( ) 4∆E∆θR 1( )–+

+ F ϕ 2( ) ϕ 1( )–[ ].
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The fresh parameters that appear in the last equation
are εRM and ε0M, which are the energies of the interac-
tion of the reduced and oxidized forms (calculated per
mole of these species) with the surface of the substrate.
As far as the addends that are singled out with bold
print are concerned, these cancel out one another, but
these are nevertheless introduced on purpose, in order
for the expression obtained for ∆Q(1, 2) to have a form
that would be identical to the form of ∆Q(i, i + 1) with
1 < i < M–1, that were calculated previously. To attain this,
let us determine the “imaginable” coverage of the surface
of the substrate θR(0) with the aid of the relationship

(11)

Without paying so far any attention to the introduced
definition, we deem it possible to point out that it gives
us a chance to employ equations (6) and (6a) now for
the value i = 1.

We can use the same device in order to generalize
equations (6) and (6a) to the case where i = M–1. The
resultant expression for ∆Q(M – 1, M) in so doing will
have the following form:

(10‡)

Here, ε0S and εRS are the energies of the interaction of
the oxidized and reduced quasi-species with the solu-
tion and the “imaginable” coverage θR(M + 1) will be
determined with the aid of the relationship

(11‡)

With the said definitions, equations (6) and (6a) happen
to be valid for all i from the interval [0, M] and, corre-
spondingly, equations (7) and (7a), for all z out of the
interval [0, L], where L is the thickness of a film. Before
embarking on a discussion concerning the restriction
intrinsic to the performed generalization, one should
look up what the device we used offers for the rate of
injection of electrons into a film j(0), i.e. in the case of
the plane i = 0.

2. The Rate of Injection of Electrons
from the Substrate into the Film

For the injection of rate we will use the equation

(12)

θR 0( ) WR
0 1( ) WOx
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0 2( )– WOx

0 1( )–+{=
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– WOx
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j 0( ) σe –Es 0( )/RT[ ] 1 θR 1( )–[ ]exp=

– ρe –Er 0( )/RT[ ]exp θR 1( ),

where the preexponential factors σe and ρe are now not
equal to one another as was assumed previously. Nev-
ertheless, we will employ the Broensted rule in the pre-
vious form:

(13)

This form differs from (3) only at the expense of the
introduction of an additional subscript. A calculation of
the heat effect ∆Q(0, 1) in the same approximation that
was used previously gives

(14)

where E is the potential of the electrode (substrate sur-

face) and (Me) is the standard chemical potential of
electrons in the substrate. We can again transform this
result in an identical manner by introducing θR(0),
which would allow us to rewrite (14) in the following
form:

(14‡)

With the previously determined expression for θR(0),

specifically, θR(0) = { (1) + (2) – (2) –

(1) + εRM + ε00 – εR0 – ε0M)}/∆E, taken into account,
it follows from (14a) that

(14b)

where ∆2θR(1) = [θR(2) – 2θR(1) + θR(0)] is formally the
second difference with respect to θR(i) for the plane i = 1.
However, the second difference ∆2θR(1) is defined by
equation (8) for i = 1, which is in essence the integral
(6a) in the case of equilibrium. Indeed, we have demon-
strated in the foregoing that (6a) (and, consequently,
(8), as well) is valid at i = 1 at some restrictions that are
thus far unknown. Consequently, presuming that the
injection of stage if the limiting stage and all the subse-
quent stages are equilibrium, we can use (8) in order to
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+ θR 0( ) ] 6∆EθR 1( ).–
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WOx
0

∆Q 0 1,( ) µe
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0 2( )+ +=

– WR
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determine ∆2θR(1). This in the final analysis allows us
to write down the following expression for injection of:

(15)

The constants , and  in the last expression differ
from σe and ρe by some constant factors, which take
into account both the activation energy E01 and the fol-
lowing sum of the constituents of the heat effect

{ (Me) + 5(ε00 – εR0) + (2) – (2)}:

and  and ϕ0 are the occupations of the lattice by the
reduced form in the bulk of the film.

Paying no attention at this juncture to the restric-
tions concomitant to the description we use, let us state
that this approach seems to us to be on the whole cor-
rect. The grounds for such a statement include not only
the generalization, in the framework of the developed
approach, of the earlier-known equations for the sur-
face layer, but also the circumstance that the relation-
ships, which were obtained in the course of derivations,
are very luckily transformed. For example, the cover-
ages θR(0) and θR(M + 1) that were introduced in the
foregoing on the basis of formal considerations fit the
subsequent description in a natural fashion. In particu-
lar, the definition of the first of these “works” in the
expression for the injection rate, leading to the appear-
ance, in the heat effect of this process, of the 2nd differ-
ence ∆2θR(1), which is given, for equilibrium condi-
tions of transfer in subsequent layers of the lattice, by
the obtained condition of the constancy of the electro-
chemical potential of electrons in any arbitrary layer of
the film. We deem it possible to presume with assurance
that, should it have been necessary to determine the rate
of injection of electrons into solution (i.e. j(M)), the
entire chain of lucky transformations performed in the
foregoing would fully have repeated itself. All this
speaks of intrinsic consistency of the developed
description. Speaking now of its limitations, it should
be noted that, in the framework of the simplistic model
we used, the limitation of the approach under discus-
sion as a whole is, obviously, the smallness, by the
absolute value, of the ratio of ∆E∆θR(i)/RT for the val-

j 0( ) θR 1( )[ ]
α1 1 θR 1( )–[ ]

β1 σe' 1 θR
0–( )/θR

0[ ]
α1{=

× –α1a0θR
0[ ] – α1F/RT( ) E ϕ0–( )[ ]expexp

– ρe' θR
0 / 1 θR

0–( )[ ]
β1 β1a0θR

0[ ]exp

× β1F/RT( ) E ϕ0–( )[ ] }.exp

σe' ρe'

µe
0 WOx

0 WR
0

σe' σe –E01/RT α1 µe
0 Me( )[+{exp=

+ 5 ε00 εR0–( ) W+ Ox
0 2( ) WR

0 2( )– ]/RT };

ρe' ρe –E01/RT β1 µe
0 Me( )[–{exp=

+ 5 ε00 εR0–( ) W+ Ox
0 2( ) WR

0 2( )– ]/RT };

θR
0

ues i ≠ 0, 1, M–1, M. If this constraint is complemented by
the requirement that the coverages θR(0) and θR(M + 1)
that were determined in the foregoing be not too far
removed from the values in the interval (0, 1), then the
linearization of exp(±∆E∆3θR(i)/RT) (where i now
includes values i = 1, M), which is performed in the
course of subsequent transformations, would be correct,
i.e. the developed procedure is on the whole justified. It
follows that, by their character, the restrictions that arise
with respect to the coverages θR(0) and θR(M + 1) are
consistent with the said overall limitation of the
approach and, in connection with this, do not seem
excessively hard.

Passing now to a preliminary discussion of the con-
sequences resulting from the description that was pre-
sented in the foregoing and not dwelling upon other
aspects of its application apart from the application to
electroactive films, it should be pointed out that the
starting point for such an application is equation (15).
According to it, in order to write down the injection rate
in an explicit form, it is necessary to know the occupa-
tion of the first layer of the lattice θR(1) or a near-sur-
face occupation in the case of the use made of a contin-
uous description, which is precisely the description we
are going to employ further on. One can find this degree
of occupation by solving equation (9). Sadly enough, in
the general case, only numerical solution of this equa-
tion is feasible. However, the first integral of a system
that comprises this equation, analogous-to-it condition
of constancy of the electrochemical potential of coun-
terions, and the Poisson equation, is possible to find.

3. The First Integral of an Equilibrium System
of Equations for the Surface Layers in Films

of Electroactive Polymers with Two Sorts
of Charge Carriers

The system of equations in question has the follow-
ing form:

(16)

where (f) and (f) are the electrochemical and the
standard chemical potentials of counterions in the film;
Cm(z) and  are their concentration in the film and
chargeness, respectively; and εf is the dielectric con-
stant of the film. Multiplying the first equation of sys-
tem (16) by [dCR(z)/dz]dz and the second equation of
system (16) by [dCm(z)/dz]dz and then taking the sum

RTλ2a0/c( )d2θR z( )/dz2 RT θR z( )/ 1 θR z( )–[ ]{ }ln+

+ RTa0θR z( ) Fϕ z( )– µ̃e f( ) µe
0 f( ),–=

RT cm z( )ln zmFϕ z( )+ µ̃m f( ) µm
0 f( ),–=

d2ϕ z( )/dz2 – 4πF/εf( ) z0C zmCm z( ) cR z( )–+[ ],=

µ̃m µm
0

z̃m
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of the results thus obtained with simultaneous allow-
ance for the third equation of system (16), we obtain

(17)

As seen, both parts of this equation are total differen-
tials (with allowance made for that the integral

[d3ϕ(z)/dz3]dz is taken part by part) and that is

why it is amenable to integration. In so doing one

should bear in mind that (f) – (f) = RTln{ /[1 –

]} + RTa0  – Fϕ0 and (f) – (f) = RT  +

zmFϕ0, where the superscript “0” marks bulk values of
the variables. Subsequent solution should be per-
formed, probably, numerically. Probably, it could in
part be conducted by the boundary-layer method, for
(17) contains small parameter (λ2a0/Cc) at the higher
derivative. This work will be performed later on. As to
here and now, we will point to a simpler continuation.
In particular, we will presume that the addend with the
second derivative in the equation for the electrochemi-
cal potential of electrons is irrelevant. Then integral
(17) will give the link between the squared field
[dϕ(z)/dz]2 and concentrations Cm and CR. The results
that would be obtained as a result of this manipulation
could then be used either for the construction of a solu-
tion of a more total integral (17) (with allowance made
for the addend (RTλ2a0/Cc)d2CR(z)/dz2 by the bound-
ary-layer method) or as a first approximation for the
corresponding numerical solution.

4. Effects of Short-Range Interactions

To within a first approximation (i.e. under the
assumption about the inessentialness of the differential
addend in the expression for the electrochemical poten-
tial of electrons), the integral of the system of equations
for surface layers is probably easier to find by using a
differential way for writing down such equations:

(18)

RTλ2a0/Cc( )d2CR z( )/dz2[
+ RT θR z( )/ 1 θR z( )–[ ]{ } RTa0/C( )CR z( ) ]+ln

× dCR z( )/dz[ ]dz RT Cm z( )ln[ ]dCm z( )+

– εf/4π( )ϕ z( ) d3ϕ z( )/dz3[ ]dz

=  µ̃e f( ) µe
0 f( )–[ ]dCR z( ) µ̃m f( ) µm

0 f( )–[ ]dCm z( ).+

ϕ z( )∫
µ̃e µe

0 θR
0

θR
0 θR

0 µ̃m µm
0 cm

0ln

1/ 1 θR–( )[ ]dCR/dz CRd Fϕ/RT( )/dz–

+ a0CRdθR/dz 0,=

dCm/dz zmCmd Fϕ/RT( )/dz+ 0,=

d2ϕ z( )/dz2 – 4πF/εf( ) z0C zmCm CR–+[ ].=

Upon taking the sum of the first two equations and tak-
ing into account the third equation, we will have

After integrating this equation, we obtain

(19)

The last addend in the braces in the right-hand part of
(19) can be expressed through the degree of occupation
θR, bearing in mind that for the last from the first equa-
tion of system (18) there follows the relationship

(20)

Having expressed F[ϕ – ϕ0]/RT therefrom, after substi-
tution into (19), we will have

(21)

This leads to the equations

(21a)

(21b)

for the special cases of the chargednesses of redox frag-
ments z0 = 0 and zm = 1 that had previously been con-
sidered in paper [3]. The conclusion that suggests itself
from a comparison of these relationships is that the
passing from the first case (z0 = 0, zm = 1) to the second
case (z0 = 1, zm = –1) is likely to correspond to the sub-

stitution of (1 – θR) and (1 – ) for θR and ,
respectively. A more detailed formulation for the rule
of such a transition may be obtained with allowance
made for the expressions describing the degrees of occu-
pation by the reduced form, θR, and by the oxidized form,
(1 – θR), which represent an alternative to equation (20)

dCm/dz 1/ 1 θR–( )[ ]dCR/dz+

– εf/4πRT( )d2ϕ z( )/dz2dϕ/dz

– Fz0C/RT( )dϕ/dz a+ 0CRdθR/dz 0.=

dϕ/dz[ ]2 8πRT /εf( ) Cm Cm
0–{=

– C 1 θR–( )/ 1 θR
0–( )[ ] Ca0/2( ) θR

2 θR
0( )2

–[ ]+ln

– Fz0C/RT( ) ϕ ϕ0–[ ] }.

θR/ 1 θR–( ) θR
0 / 1 θR

0–( )[ ]=

× –a0 θR θR
0–( )[ ]exp F ϕ ϕ0–[ ]/RT{ }.exp

dϕ/dz[ ]2 8πRT /εf( ) Cm Cm
0–{=

– C 1 θR–( )/ 1 θR
0–( )[ ] Ca0/2( ) θR

2 θR
0( )2

–[ ]+ln

+ z0C θR
0 1 θR–( )/θR 1 θR

0–( )[ ] –ln

– a0z0C θR θR
0–[ ] }.

dϕ/dz[ ]2 8πRT /εf( ) Cm Cm
0–{=

– C 1 θR–( )/ 1 θR
0–( )[ ] Ca0/2( ) θR

2 θR
0( )2

–[ ]}+ln

z0 0 zm, 1,= =

dϕ/dz[ ]2 8πRT /εf( ) Cm Cm
0–{=

– C θR/θR
0[ ] Ca0/2( ) 1 θR–( )2 1 θR

0–( )2
–[ ] }+ln

z0 1 zm, –1,= =

θR
0 θR

0
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and which are valid the particular value of z0 notwith-
standing:

(20a)

where ke = /  is a coefficient that refers to the dis-
tribution of electrons between the substrate and the
film. Marking parameters and variables in the first of
these equations with the superscript “(0)” and ascribing
the superscript “(1)” to the same quantities in the sec-
ond equation, i.e. presuming that the values of the
quantities thus singled out correspond to values z0 = 0
and z0 = 1, respectively, we can equate these equations
to one another:

(22)

Using this device is equivalent to the presumed rule of
transition from z0 = 0 to z0 = 1, i.e. to the substitution of
(1 – θR) for θR and allows us to establish correspon-
dence now between potentials ϕ(0) and ϕ(1), E(0) and E(1),

as well as between parameters  and ,  and

. Complementing relationship (22) by the require-
ment that, in the course of the same transition, values of
concentrations of counterions coincide with one

another (  = ), i.e.

(23)

θR ke –a0θR[ ] F ϕ E–[ ]/RT( )/ 1{expexp=

+ ke –a0θR[ ] F ϕ E–[ ]/RT( ) }expexp

1 θR–( ) 1 ke –a0θR[ ]exp+{=

× F ϕ E–[ ]/RT( )exp }–1,

σe' ρe'

ke
0( ) –a0

0( )θR
0( )[ ] F ϕ 0( ) E 0( )–[ ]/RT( )/ 1{expexp

+ ke
0( ) –a0

0( )θR
0( )[ ] F ϕ 0( ) E– 0( )[ ]/RT( )}expexp

=  1/ 1 ke
1( ) –a0

1( )θR
1( )[ ] F ϕ 1( ) E 1( )–[ ]/RT( )exp }.exp+{

a0
0( ) a0

1( )
ke

0( )

ke
1( )

Cm
0( ) Cm

1( )

km
0( )C0 –Fϕ 0( )/RT[ ]exp km

1( )C0 Fϕ 1( )/RT[ ],exp=

where km is a coefficient that takes into account the dis-
tribution of ions between the film and solution, we can
easily obtain conditions for the correspondence of
results realized in the said instances of values of z0:

(24)

In other words, as in the case of a0 = 0 (see [3]), the
results of an analysis conducted at z0 = 0 can be viewed
valid for z0 = 1 by altering in the relationships to be
obtained the sign of potentials and the coefficient of dis-

tribution of electrons  to  = exp[a0]/ . The dis-
covered correspondence allows us to restrict our subse-
quent consideration merely by the case where z0 = 0.

The goal of our further analysis is to establish how
the exchange currents of injection of charge carriers
into a film depend on the electrode potential E and the
concentration of the washing electrolyte Cs in a first
approximation with respect to the effect of the short-
range interactions. When trying to find a solution for
this problem for the structure of EDL at the sub-
strate/film and film/solution interfaces below, as in [3,
11], there will be used models of Stern and Gouy,
respectively. As it will be demonstrated somewhat later,
such a problem reduces to the determination of depen-
dences of the potential of the thickness of a film, ϕ0 =
f1(E, Cs); the potential of the first layer of the film that
is adjacent to the substrate, ϕs(λ) = f2(E, Cs); and the
potential of the last layer of the lattice (i.e. Mth), ϕs(L)
as a function of the same variables. The equation that
defines the potential value in the thickness of the film at

z0 = 0 is the condition of local electroneutrality:  =

 = C , which, with allowance made for the bond
of  with the concentration of counterions in electro-
lyte C0 and potential ϕ0 (see for example [23]), leads to
the following expression:

(25)

On the other hand, from the expression for  we pre-
sented in the foregoing, it is easy to establish with the
aid of (25) that the electrode potential E is connected
with this degree of occupation and with parameters of
the system through the equation

(26)

Ascribing some value or another to the attraction con-
stant a0 in (25) and (26) and specifying a series of val-

ues of  out of the interval (0, 1), we can find poten-
tials ϕ0 and E that correspond to them. This allows us to
find a family of dependences ϕ0(E, a0). The results of
the corresponding calculations are presented in Fig. 1
(see the caption to this figure).

a0
0( ) a0

1( ) a0; km
0( ) km

1( );= = =

ke
1( ) a0[ ]/ke

0( ); ϕ 0( )exp –ϕ 1( ); E 0( ) –E 1( ).= = =

ke
0( ) ke

1( ) ke
0( )

Cm
0

CR
0 θR

0

Cm
0

ϕ0 RT /F( ) kmC0/CθR
0[ ].ln=

θR
0

E RT /F( ) kekmC0 1 θR
0–( )/C θR

0[ ]2{ }ln=

– RTa0θR
0 /F.

θR
0

ϕ0, V

0
E, V
0.2

2

1

–0.2

a0 = –1
a0 = 0
a0 = 1

–0.05

–0.10

0

0.05

Fig. 1. Equilibrium potential ϕ0 of the film bulk as a func-
tion of the electrode potential: (1) km = 0.1, ke = 0.1 and (2)
km = 0.1, ke = 10; all the curves were calculated for zm = 1
and C = C0 = Cs = 1 M.
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Presuming that the Stern model is valid for the EDL
structure at the substrate/film interface and the Gouy
model holds true for the film/solution interface, the con-
ditions for the continuity of the induction vector at these
two interfaces may be written in the following form:

(27)

i.e. in the form that presumes the absence of any charge
adsorbed at the interfaces z = λ and z = L, where, again,
L is the thickness of the film and parameter ελ is the
dielectric constant of the first layer of the lattice, which
will be set in what follows equal to εf. An explicit form
of writing for the first of these conditions is the equation

(28)

Here, by the quantities ϕs(λ), Cm(λ), and θR(λ) we under-
stand values of the variables in the first plane of a poly-
mer lattice (an analogue of the Helmholtz plane in the
Stern model) that is adjacent to the substrate. It should
also be pointed out that relationship (28) takes into
account the expression for the derivative dϕ/dz|z = λ + 0,
which follows from (21a). In so doing, the derivative
dϕ/dz|z = λ – 0 was presumed, as usual, equal to [ϕs(λ) –
E]/λ. As the links of concentrations Cm(λ) and θR(λ)
with potentials ϕs(λ) and E are known (see for example
(22) and (23)), and as the dependence ϕ0(E, a0) was
determined by the technique described in the foregoing,
then, (28), when solved together with (20a), allows us
to compute the corresponding values of potential ϕs(λ).

ελdϕ/dz
z λ 0–= εfdϕdz

z λ 0+= ;=

εfdϕ/dz
z L 0–= εsdϕdz

z L 0+= ,=

ϕs λ( ) E–[ ]2 8πRTλ2/εf( ) Cm λ( ) Cm
0–{=

– C 1 θR λ( )–( )/ 1 θR
0–( )[ ]ln

+ Ca0/2( ) θR
2 λ( ) θR

0( )2
–[ ] }.

The results of such computations, which were carried
out for the collection of parameters that was applied for
the construction of Fig. 1, are presented in Fig. 2.

As is known, in the case of a washing solution of a
symmetrical 1.1-electrolyte of the concentration Cs and
dielectric constant εs, the field’s square is given by the
equation

(29)

That is why the second condition in conditions (27) will
be written in the form

(30)

Here, ϕs(L) is the potential of the film surface bordering
the electrolyte that washes it, whereas Cm(L) and θR(L)
are the near-surface (on the side of the film) concentra-
tions of counterions (in the case of under consideration,
cations) and the degree of occupation by the reduced
form, respectively. It is obvious that with the aid of (30)
we can conduct calculation of the surface potential
ϕs(L). The results of such calculations are presented in
Fig. 3 in the form of dependences of ϕs(L) as a function
of the electrode potential E. In this case the electrolyte
concentration Cs was set equal to C0, as is frequently
the case in conditions of experiment.

dϕ/dz[ ]2 8πRTCs/εs( ) –Fϕ/2RT[ ]exp{=

– Fϕ/2RT[ ] }2, z L.≥exp

–Fϕs L( )/2RT[ ] Fϕs L( )/2RT[ ]exp–exp{ }2

=  εf/εsCs( ) Cm L( ) Cm
0–{

– C 1 θR L( )/ 1 θR
0–( )–[ ]ln

+ Ca0/2( ) θR
2 L( ) θR

0( )2
–[ ] }.

ϕs(λ), V

0
E, V

0.2

2

1

–0.2

a0 = –1
a0 = 0
a0 = 1

–0.05

–0.10

0
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Fig. 2. Equilibrium potential ϕs(λ) of the first layer of the
lattice adjacent to the substrate as a function of the electrode
potential: (1) km = 0.1, ke = 0.1 and (2) km = 0.1, ke = 10; all
the curves were calculated forzm= 1 and C = C0 = Cs = 1 M;
the lattice constant λ is equal to 10–7 cm, εs = 10εf = 80ε0,
where ε0 = 0.354π × 10–10.

ϕs(L), V

0
E, V

0.4–0.2

a0 = –2
a0 = 0
a0 = 2

–0.006

–0.010

0.002

–0.4 0.2

–0.002

Fig. 3. Equilibrium potential ϕs(L) at the film/solution inter-
face as a function of the electrode potential, calculated at
km = 0.1, ke = 1, C = C0 = Cs= 1 M, zm = 1, εs = 10εf = 80ε0,
λ = 10–7 cm.
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As we have already mentioned in the foregoing,
knowledge about potentials ϕ0, ϕs(λ), and ϕs(L) allows
us to calculate dependences of exchange current densi-
ties for electrons  and counterions  on the elec-
trode potential E and the concentration C0. Preliminar-
ily it is necessary to point out that the following expres-
sion is valid for the rate of injection of electrons Iim(0) =
–Fj(0) in a first approximation with respect to allow-
ance for the effect of the short-range interactions:

(31)

It is easy to be convinced that this relationship follows

from (15) after the expulsion of  from (15), provid-
ing we take into consideration the substitution of θR(λ)
for θR(1) in the notation we used for the degree of occu-
pation of the first layer of the lattice, which was con-
ducted in this section and which is connected with the
transition to a local description. We can also add that,
previously, (31) was introduced in review [11] without
any detailed justification. After performing lineariza-
tion of (31) with respect to small deviations δθR(λ), δE,

and δϕs(λ) (and, subsequently, with respect to δ  and
δϕ0 as well) from certain initial (equilibrium) values,
we can establish the following expression:

(32)

Here, Λ0 = 1 + a0 (1 – ),  is the density of the
exchange current of the process of injection of elec-
trons, for which, obviously, valid are the expressions

(33)

where the superscript “(0)” marks initial values of the
variables.

Identical, though somewhat different, forms of rela-

tionships (33) may be obtained by passing from (λ)

and (λ) to values of the variables in the thickness of

the film (  and ϕ(0), respectively); such relationships
were presented in [11] and, as was the case with equa-
tions (32) and (33), in the absence of the forces of the
short-range interactions (i.e. in the case of a0 = 0), these
coincide with those that were used in work [3].

I im
0 Im

0

I im 0( ) –F σe' 1 θR λ( )–[ ] –α1a0θR λ( )[ ]exp{=

× – α1F/RT( ) E ϕs λ( )–( )[ ] ρe' θR λ( )–exp

× β1a0θR λ( )[ ] β1F/RT( ) E ϕs λ( )–( )[ ] }.expexp

θR
0

θR
0

I im 0( ) –I im
0 Λ0δCR

0 /CR
0( ) 1 θR

0( )–( )=

– I im
0 F/RT( )δ E ϕ0–[ ].

θR
0 θR

0( ) I im
0

I im
0 –Fσe' 1 θR

0( ) λ( )–[ ] –α1a0θR
0( ) λ( )[ ]exp=

× – α1F/RT( ) E 0( ) ϕs
0( ) λ( )–( )[ ]exp

=  –Fρe' θR
0( ) λ( ) β1a0θR

0( ) λ( )[ ]exp

× β1F/RT( ) E 0( ) ϕs
0( ) λ( )–( )[ ],exp

θR
0( )

ϕs
0( )

θR
0( )

For the rate of injection of counterions into a film
(i.e. at z = L), as was done in works [3, 11], we can use
the equation

(34)

whose linearization with respect to small deviations

δ , δϕs(L), and δϕ0 from the initial values of these
variables gives

(35)

The density of the exchange current by counterions 
that appears here is given by the relationships

(36)

where, as in the foregoing, the superscript “(0)” marks
the initial values of the variables. In the writing of equa-
tion (34) it was presumed that, firstly, the structure of
EDL at the film/solution interface may be described in
terms of the Gouy model (see [3, 11]) and, secondly,
that the limiting stage of the injection of counterions
into the film is localized directly on the physical bound-
ary between the film and the solution (z = L). The emer-
gence of such a limiting stage should, more likely than
not, be attributed to the occurrence of partial desolva-
tion of ions in that process.

The results of calculations of exchange current den-

sities for electrons  and counterions  as functions
of the electrode potential E are presented in Figs. 4 and
5, respectively. Values of constants  and σm in the
calculations were selected so as to ensure the equality
of these currents to within an order of magnitude (see
captions to the figures).

IV. DISCUSSION OF THE RESULTS

Restricting, for the time being, our consideration to
the part of the results that are illustrated by the figures
we presented, we deem it possible to state that the effect
of the short-range interactions is substantial even in a
first approximation. At the same time, its influence is not
considerable enough to lead to qualitative alterations in
the distribution of potential in the film (here, potentials
ϕ0, ϕs(λ), ϕs(L)) and exchange currents as compared with
the role of the zeroth approximation (i.e. at a0 = 0). Such
qualitative alterations should be expected to commence
only in the case of large negative values of a0, for which
parameter Λ0 = 1 + a0 (1 – ) may happen to be

negative. However, as is well known, the molecular-
field approximation that was used in the foregoing hap-
pens to be incorrect in this case (see for example [7]).

From the figures presented in this paper it follows
that a noticeable difference between the results of the
zeroth and first approximations takes place solely for

Im L( ) zmF σmC0 –zmFϕs L( )/RT[ ]exp{=

– ρmCm
0 zmF ϕ0 ϕs L( )–( )/RT[ ] },exp

Cm
0

Im L( ) – Im
0 /Cm

0( )( )δCm
0 FIm

0 /RT( )δ E ϕ0–[ ].–=

Im
0

Im
0 zmFσmC0 –zmFϕs

0( ) L( )/RT[ ]exp=

=  zmFρmCm
0( ) zmF ϕ 0( ) ϕs

0( ) L( )–( )/RT[ ],exp

I im
0 Im

0

σe'

θR
0( ) θR

0( )



RUSSIAN JOURNAL OF ELECTROCHEMISTRY      Vol. 43      No. 9      2007

EFFECT OF INTERPARTICLE INTERACTIONS ON THE RATE OF INJECTION 1025

some intermediate values of the electrode potentials E.
In this intermediate zone of potentials, the calculated
parameters (in particular, exchange currents) do not yet
reach values that correspond to the extremely high pos-
itive or negative values of the electrode potential E. As
in the case of cyclic voltammograms, the transition
from a zero value of parameter a0 to a negative value of
this parameter leads to the narrowing of the interval of
potentials where basic alterations in the calculated
parameters occur; conversely, the transition to positive
values of parameter a0 leads to its expansion. We deem
it possible to presume with much assurance that the
alterations that are discovered for the exchange currents
are likely to be observed also in the case of interfacial
capacitances. Calculations of such capacitances in a
zeroth approximation were performed in [3] and may
apparently be performed in the first approximation
under consideration as well. Mentioning these results in
the particular communication does not seem worth-
while, for it is connected with the generalization of
quite a number of definitions given in work [3]. The
description of a method for obtaining corresponding
data, as well as the results of allowance for the forces of
the short-range interactions in a second approximation,
will be performed separately.

V. CONCLUSIONS

Briefly considering on the whole the analysis per-
formed in this work, it should be noted that it can be
generalized at the expense of using a more complicated
model (allowance for the deformation constituent, the
presence of the solvent, and so on). In the framework of

the same approach it would be possible to consider the
kinetics of the growth of an electroactive film or poly-
layered adsorption and some other heterogeneous pro-
cesses.
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