Ole Pedersen

Ole Pedersen
  • PhD
  • Professor at University of Copenhagen

About

176
Publications
72,606
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
8,664
Citations
Introduction
Torrential rains are followed by droughts and it only gets worse. I have therefore decided to make a difference to the world by working with root traits that confer tolerance to both soil flooding and drought, and even saline soils. I also try to identify root traits that can reduce greenhouse gas emissions from rice paddies and other crops, and we will succeed within the next 5-10 years if you come help us!
Current institution
University of Copenhagen
Current position
  • Professor
Additional affiliations
January 2017 - present
Florida Atlantic University
Position
  • Affiliate Professor
Description
  • Research and co-supervision of graduate students
November 2006 - present
The University of Western Australia
Position
  • Adjunct Professor
Description
  • Annual research visits to work on abiotic stress tolerance in plants
January 2006 - present
The University of Western Australia
Education
May 1991 - April 1995
University of Copenhagen
Field of study
  • Plant biology
September 1986 - May 1990
University of Copenhagen
Field of study
  • Limnology

Publications

Publications (176)
Article
Our understanding of how low oxygen (O2) conditions arise in plant tissues and how they shape specific responses has seen major advancement in recent years. Important drivers have been (i) the discovery of the molecular machinery that underpins plant O2 sensing and (ii) a growing set of dedicated tools to define experimental conditions and assess p...
Article
Full-text available
Rice (Oryza sativa L.) and many other wetland plants form an apoplastic barrier in the outer parts of the roots to restrict radial O2 loss to the rhizosphere during soil flooding. This barrier facilitates longitudinal internal O2 diffusion via gas-filled tissues from shoot to root apices, enabling root growth in anoxic soils. We tested the hypothes...
Article
Full-text available
1. Isoëtes are iconic but understudied wetland plants, despite having suffered severe losses globally mainly because of alterations in their habitats. We therefore provide the first global ecological assessment of aquatic Isoëtes to identify their environmental requirements and to evaluate if taxonomically related species differ in their ecology. 2...
Article
Full-text available
Background and aims Roots and rhizomes are critical for the adaptation of clonal plants to soil water gradients. Oryza longistaminata, a rhizomatous wild rice, is of particular interest for perennial rice breeding due to its resilience under abiotic stress conditions. While root responses to soil flooding are well-studied, rhizome responses to wate...
Preprint
Full-text available
Interactions between plant energy organelles, the chloroplasts and the mitochondria, are crucial for plant development and acclimation. These interactions occur at different levels including exchange of metabolites and reducing power, organelle signaling pathways and intracellular gas exchange. Mitochondrial retrograde stress signaling activates ex...
Article
Full-text available
Salinity significantly reduces global rice yield, especially in Eastern and Southern Africa, necessitating the development of salinity-tolerant varieties. We collected and analyzed 201 rice varieties, including Tanzanian landraces. Using 1k-RiCA SNP markers, we found that 36 out of 201 genotypes possessed the Saltol allele, a marker for salinity to...
Chapter
Superhydrophobic leaves retain a thin gas film on the leaf surface when submerged in water. The gas films facilitate gas exchange with the floodwater thereby partly overcoming the 10,000-fold slower diffusion of gasses in water compared to in air. In light, the enhanced gas exchange increases the flux of CO2 into submerged leaves so that underwater...
Chapter
Severe flooding can lead to partial or complete submergence of the shoot, which is an adverse situation triggering a number of responses by the plant, like the formation of aquatic adventitious roots. These roots may not reach the soil surface but instead remain floating in the floodwater. Aquatic adventitious roots partly replace the function of t...
Article
Full-text available
Woody plants display some photosynthetic activity in stems, but the biological role of stem photosynthesis and the specific contributions of bark and wood to carbon uptake and oxygen evolution remain poorly understood. We aimed to elucidate the functional characteristics of chloroplasts in stems of different ages in Fraxinus ornus. Our investigatio...
Article
Full-text available
Salt-affected soils have serious implications for agricultural land quality and productivity, leading to a reduction in the net cultivable area available for food production. This issue has emerged as one of the foremost global challenges in recent years, impacting both food security and environmental sustainability. This research focuses on soil c...
Article
Full-text available
In recent years, research on flooding stress and hypoxic responses in plants has gathered increasing attention due to climate change and the important role of O2 in metabolism and signalling. This Collection of Functional Plant Biology on ‘Flooding stress and responses to hypoxia in plants’ presents key contributions aimed at progressing our curren...
Article
Respiration provides energy, substrates and precursors to support physiological changes of the fruit during climacteric ripening. A key substrate of respiration is oxygen that needs to be supplied to the fruit in a passive way by gas transfer from the environment. Oxygen gradients may develop within the fruit due to its bulky size and the dense fru...
Article
This article comments on: Katsuhiro Shiono and Haruka Matsuura, Exogenous abscisic acid induces the formation of a suberized barrier to radial oxygen loss in adventitious roots of barley (Hordeum vulgare), Annals of Botany, Volume 133, Issue 7, 6 June 2024, Pages 931–940 https://doi.org/10.1093/aob/mcae010
Article
Full-text available
Introduction Partial or complete submergence of trees can occur in natural wetlands during times of high waters, but the submergence events have increased in severity and frequency over the past decades. Taxodium distichum is well-known for its waterlogging tolerance, but there are also numerous observations of this species becoming partially or co...
Article
Full-text available
A method using O2 microsensors enables detailed quantification of respiratory O2 consumption and diffusive resistance to O2 of individual root cell layers.
Article
Full-text available
Wetland plants, including rice (Oryza spp.), have developed multiple functional adaptive traits to survive soil flooding, partial submergence or even complete submergence. In waterlogged soils and under water, diffusion of O2 and CO2 is extremely slow with severe impacts on photosynthesis and respiration. As a response to shallow floods or rising f...
Article
Full-text available
With recent progress in active research on flooding and hypoxia/anoxia tolerance in native and agricultural crop plants, vast knowledge has been gained on both individual tolerance mechanisms and the general mechanisms of flooding tolerance in plants. Research on carbohydrate consumption, ethanolic and lactic acid fermentation, and their regulation...
Article
Full-text available
Background and aims The root barrier to radial O2 loss is a trait induced during soil flooding restricting oxygen loss from the roots to the anoxic soil. It can also restrict radial water loss, potentially providing tolerance towards drought during conditions of water deficit. Several root traits (aerenchyma and xylem vessels area) respond in a sim...
Article
Full-text available
Floods and droughts are becoming more frequent as a result of climate change and it is imperative to find ways to enhance the resilience of staple crops to abiotic stresses. This is crucial to sustain food production during unfavourable conditions. Here, we analyse the current knowledge about suberised and lignified outer apoplastic barriers, focus...
Article
Plant roots are exposed to hypoxia in waterlogged soils, and they are further challenged by specific phytotoxins produced by microorganisms in such conditions. One such toxin is hexanoic acid (HxA), which, at toxic levels, causes a strong decline in root O 2 consumption. However, the mechanism underlying this process is still unknown. We treated pe...
Article
Full-text available
Lobelia dortmanna is an iconic keystone species of northern softwater lakes in Europe as well as North America. It has suffered a dramatic decline in distribution in recent decades and the root causes are not well‐known, although elements such as eutrophication, acidification and brownification have been suggested as underlying reasons for the decl...
Article
Full-text available
Adequate tissue O2 supply is crucial for plant function. We aimed to identify the environmental conditions and plant characteristics that affect plant tissue O2 status. We extracted data and performed meta-analysis on >1500 published tissue O2 measurements from 112 species. Tissue O2 status ranged from anoxic conditions in roots to >53 kPa in subme...
Article
Full-text available
Rice production worldwide represents a major anthropogenic source of greenhouse gas emissions. Nitrogen fertilization and irrigation practices have been fundamental to achieve optimal rice yields, but these agricultural practices together with by-products from plants and microorganisms, facilitate the production, accumulation and venting of vast am...
Article
Full-text available
Salt-affected soils are a global challenge, affecting 1 billion ha of land, with 200 million ha found in Africa. The challenge brings adverse impacts on agricultural productivity, food security, environmental sustainability, and food security. In Tanzania, more than 2 million ha of land are salt-affected, of which 1.7 million ha are saline soil and...
Article
Full-text available
The root barrier to radial O2 loss (ROL) is a key root trait preventing O2 loss from roots to anoxic soils, thereby enabling root growth into anoxic, flooded soils. We hypothesized that the ROL barrier can also prevent intrusion of hydrogen sulphide (H2S), a potent phytotoxin in flooded soils. Using H2S‐ and O2‐sensitive microsensors, we measured t...
Cover Page
Full-text available
The huge variation in key root traits in the genus Oryza is also reflected in the flowers. Eight species of wild rice and three genotypes of cultivated rice showed contrasting differences in root traits including apparent permeance to oxygen of the outer part of the roots, radial water loss, tissue porosity, apoplastic barriers in the exodermis and...
Article
Full-text available
As climate change intensifies, the development of resilient rice that can tolerate abiotic stresses is urgently needed. In nature, many wild plants have evolved a variety of mechanisms to protect themselves from environmental stresses. Wild relatives of rice may have abundant and virtually untapped genetic diversity and are an essential source of g...
Article
Full-text available
A key trait conferring flood tolerance is the ability to grow adventitious roots as a response to submergence. The genetic traits of deepwater rice determining the development and characteristics of aquatic adventitious roots (AAR) had not been evaluated. We used near‐isogenic lines introgressed to test the hypothesis that the impressive shoot elon...
Article
Full-text available
Excess water can induce flooding stress resulting in yield loss of crops, even in wetland plants such as rice. However, traits from species of wild Oryza have already been used to improve tolerance to abiotic stress in cultivated rice. This study aimed to establish root responses to sudden soil flooding among 8 wild relatives of rice with different...
Article
Full-text available
Salt-affected soils among the key constraints to land productivity in irrigated rice schemes, posing a decline in grain yield. This study was conducted to explore the farmers’ perception, knowledge, and management practices of salt-affected soils in selected rice irrigation schemes of the representative districts in Tanzania. Whereas salt-affected...
Article
Hypersalinity is a major stressor to seagrasses, particularly in highly evaporative coastal estuaries and lagoons as well as those subjected to brine effluent from desalination systems, a condition likely to be heightened under a warming climate. While hypersalinity has been well established to cause physiological dysfunction, the effects on intern...
Article
Full-text available
Aims Root tissue water can be lost to the dry topsoil via radial water loss (RWL) resulting in root shrinking and loss of contact with the rhizosphere. The root barrier to radial oxygen loss (ROL) has been shown to restrict RWL, therefore we hypothesized that the inducible barrier can be formed as a response to low soil water potential and play a r...
Article
Full-text available
Flooding is constantly threatening the growth and yield of crops worldwide. When flooding kicks in, the soil becomes water-saturated and, therefore, the roots are the first organs to be exposed to excess water. Soon after flooding, the soil turns anoxic and the roots can no longer obtain molecular oxygen for respiration from the rhizosphere, render...
Article
Full-text available
Throughout the freshwater continuum, Dissolved Organic Carbon (DOC) and the colored fraction, Chromophoric Dissolved Organic Material (CDOM), are continuously being added, removed, and transformed, resulting in changes in the chromophoricity and lability of organic matter over time. We examined, experimentally, the effect of increasing irradiation-...
Article
Full-text available
The stress gradient hypothesis (SGH) states that plant-plant interactions shift from competition to facilitation in increasing stress conditions. In salt marshes, edaphic properties can weaken the application of the SGH by amplifying the intensity of flooding and controlling plant zonation. We identified facilitative and competitive interactions al...
Preprint
Full-text available
AIMS: Root tissue water can be lost to the dry topsoil via radial water loss (RWL) resulting in root shrinking and loss of contact with the rhizosphere. The root barrier to radial oxygen loss (ROL) has been shown to restrict RWL, therefore we hypothesized that the inducible barrier can be formed as a response to low soil water potential and play a...
Article
Hypoxia and hydrogen sulfide (H2S) intrusion at night contribute to large-scale seagrass mortality events world-wide. Declining water quality has lowered irradiance and enhanced hypoxia in seagrass ecosystems, but linkages between low irradiance and seagrass internal pO2 in situ are not well understood. We examined low irradiance effects on leaf an...
Article
Water column hypoxia, low partial pressure of oxygen (pO2), and hydrogen sulfide (H2S) intrusion, a phytotoxin, are factors linked to global seagrass decline. While many lab experiments have examined these relationships, field studies are needed to elucidate complex drivers of internal pO2 in situ. Herein, we examined plant pO2 and H2S dynamics usi...
Article
Full-text available
Background and Aims While trait-based approaches have provided critical insights into general plant functioning, we lack a comprehensive quantitative view on plant strategies in flooded conditions. Plants adapted to flooded conditions have specific traits (e.g. root porosity, low root/shoot ratio and shoot elongation) to cope with the environmental...
Article
Full-text available
In flooded soils, an efficient internal aeration system is essential for root growth and plant survival. Roots of many wetland species form barriers to restrict radial O2 loss (ROL) to the rhizosphere. The formation of such barriers greatly enhances longitudinal O2 diffusion from basal parts towards the root tip, and the barrier also impedes the en...
Article
Full-text available
The root barrier to radial O2 loss (ROL) is a trait enabling waterlogging tolerance of plants. The ROL barrier restricts O2 diffusion to the anoxic soil so that O2 is retained inside root tissues. We hypothesised that the ROL barrier can also restrict radial diffusion of other gases (H2 and water vapour) in rice roots with a barrier to ROL. We used...
Article
Full-text available
Drought and flooding are contrasting abiotic stressors for plants. Evidence is accumulating for root anatomical traits being essential for the adaptation to drought or flooding. However, an integrated approach to comprehensively understand root anatomical traits has not yet been established. Here we analysed the root anatomical traits of 18 wild Po...
Article
Full-text available
C4 perennial Urochloa spp. grasses are widely planted in extensive areas in the tropics. These areas are continuously facing waterlogging events, which limits plant growth and production. However, no commercial cultivar combining excellent waterlogging tolerance with superior biomass production and nutritional quality is available. The objective of...
Article
Large-scale (>80 km²) seagrass mortality events have been reported worldwide. While the mechanisms triggering these sudden die-off events are not well understood, plant hypoxia and H2S intrusion, at times linked to hypersaline conditions, have been suggested to play a role. In the present study, we used microsensors (~100 μm) to measure pO2 light-d...
Article
Flooding is an environmental stress that leads to a shortage of O2 that can be detrimental for plants. When flooded, deepwater rice grow floating adventitious roots to replace the dysfunctional soil-borne root system but the features that ensure O2 supply and hence growth of aquatic roots have not been explored. We investigate the sources of O2 in...
Article
Full-text available
Heavy rainfall causes flooding of natural ecosystems as well as farmland, negatively affecting plant performance. While the responses of the wild model organism Arabidopsis thaliana to such stress conditions is well understood, little is known about the responses of its relative, the important oil crop plant Brassica napus. For the first time, we a...
Article
Full-text available
The leaf economics spectrum (LES) describes consistent correlations among a variety of leaf traits that reflect a gradient from conservative to acquisitive plant strategies. So far, whether the LES holds in wetland plants at a global scale has been unclear. Using data on 365 wetland species from 151 studies, we find that wetland plants in general s...
Article
This Expert View provides an update on the recent development of new microsensors, and briefly summarizes some novel applications of existing microsensors, in plant biology research. Two major topics are covered, i) sensors for gaseous analytes (O2, CO2, H2S) and ii) those for measuring concentrations and fluxes of ions (macro- and micronutrients a...
Article
Full-text available
Plants typically respond to waterlogging by producing new adventitious roots with aerenchyma and many wetland plants form a root barrier to radial O2 loss (ROL), but it was not known if this was also the case for lateral roots. We tested the hypothesis that lateral roots arising from adventitious roots can form a ROL barrier, using root‐sleeving el...
Article
Full-text available
Plants have developed a suite of traits to survive the anaerobic and anoxic soil conditions in wetlands. Previous studies on wetland plant adaptive traits have focused mainly on physiological aspects under experimental conditions, or compared the trait expression of the local species pool. Thus, a comprehensive analysis of potential factors driving...
Article
Full-text available
Flooding causes oxygen deprivation in soils. Plants adapt to low soil oxygen availability by changes in root morphology, anatomy, and architecture to maintain root system functioning. Essential traits include aerenchyma formation, a barrier to radial oxygen loss, and outgrowth of adventitious roots into the soil or the floodwater. We highlight rece...
Article
Full-text available
Roots in flooded soils experience hypoxia, with the least O2 in the vascular cylinder. Gradients in CO2 across roots had not previously been measured. The respiratory quotient (RQ; CO2 produced : O2 consumed) is expected to increase as O2 availability declines. A new CO2 microsensor and an O2 microsensor were used to measure profiles across roots o...
Article
Full-text available
The molecular mechanisms controlling underwater elongation are based extensively on studies on internode elongation in the monocot rice (Oryza sativa) and petiole elongation in Rumex rosette species. Here, we characterize underwater growth in the dicot Nasturtium officinale (watercress), a wild species of the Brassicaceae family, in which submergen...
Article
Change in plants as bicarbonate rises Freshwater plants can be broadly divided into two major categories according to their photosynthetic traits: Some use carbon dioxide as their carbon source, whereas others use bicarbonate. Iversen et al. found that the relative concentrations of these two inorganic carbon forms in water determine the functional...
Article
Full-text available
Complex multicellular organisms evolved on Earth in an oxygen-rich atmosphere¹; their tissues, including stem-cell niches, require continuous oxygen provision for efficient energy metabolism². Notably, the maintenance of the pluripotent state of animal stem cells requires hypoxic conditions, whereas higher oxygen tension promotes cell differentiati...
Article
Deepwater rice has a remarkable shoot elongation response to partial submergence. Shoot elongation to maintain air-contact enables 'snorkelling' of O2 to submerged organs. Previous research has focused on partial submergence of deepwater rice. We tested the hypothesis that leaf gas films enhance internode O2 status and stem elongation of deepwater...
Article
Waterlogged soils contain monocarboxylic acids produced by anaerobic microorganisms. These ‘organic acids’ can accumulate to phytotoxic levels and promote development of a barrier to radial O2 loss (ROL) in roots of some wetland species. Environmental cues triggering root ROL barrier induction, a feature which together with tissue gas‐filled porosi...
Article
Increasing terrestrial input of colored dissolved organic matter (CDOM) to temperate softwater lakes has reduced transparency, distribution of pristine rosette plants and overall biodiversity in recent decades. We examined microbial and UV-induced reduction of absorption by CDOM and dissolved organic carbon pools (DOC) in humic water from a groundw...
Chapter
Life in seawater presents several challenges for seagrasses owing to low O2 and CO2 solubility and slow gas diffusion rates. Seagrasses have evolved numerous adaptations to these environmental conditions including porous tissue providing low-resistance internal gas channels (aerenchyma) and carbon concentration mechanisms involving the enzyme carbo...
Article
Background and aims: Leaf tissue CO2 partial pressure (pCO2) shows contrasting dynamics over a diurnal cycle in C3 and Crassulacean Acid Metabolism (CAM) plants. However, simultaneous and continuous monitoring of pCO2 and pO2 in C3 and CAM plants under the same conditions was lacking. Our aim was to use a new CO2 microsensor and an existing O2 mic...
Article
Full-text available
Responses of wheat (Triticum aestivum) to complete submergence are not well understood as research has focused on waterlogging (soil flooding). The aim of this study was to characterize the responses of two wheat cultivars differing vastly in submergence tolerance to test if submergence tolerance was linked to shoot carbohydrate consumption as seen...
Article
The presence of oxygen in seagrass tissues, which plays a role in preventing seagrass die-off, is partly regulated by environmental conditions. Here, we examined the relationship between oxygen (O2) in the rhizomes of Posidonia sinuosa and key environmental variables at Garden Island, Western Australia. We made in situ measurements of internal oxyg...
Article
Full-text available
Floods impede gas (O 2 and CO 2 ) exchange between plants and the environment. A mechanism to enhance plant gas exchange under water comprises gas films on hydrophobic leaves, but the genetic regulation of this mechanism is unknown. We used a rice mutant ( dripping wet leaf 7 , drp7 ) which does not retain gas films on leaves, and its wild‐type (Ki...
Article
Full-text available
Groundwater-borne contaminants such as nutrients, dissolved organic carbon (DOC), coloured dissolved organic matter (CDOM) and pesticides can have an impact the biological quality of lakes. The sources of pollutants can, however, be difficult to identify due to high heterogeneity in groundwater flow patterns. This study presents a novel approach fo...
Article
Full-text available
Background and aims: Soil waterlogging adversely impacts most plants. Melilotus siculus is a waterlogging-tolerant annual forage legume, but data were lacking for the effects of root-zone hypoxia on nodulated plants reliant on N2 fixation. The aim was to compare the waterlogging tolerance and physiology of M. siculus reliant on N2 fixation or with...
Article
Full-text available
Groundwater borne contaminants such as e.g., nutrients, dissolved organic carbon (DOC), coloured dissolved organic matter (CDOM) and pesticides impact the biological quality of lakes. The sources of pollution can, however, be difficult to identify due to high heterogeneity in groundwater flow patterns. This study presents a novel approach for fast...
Article
Lake Constance is the second largest lake in Europe. While naturally oligotrophic, the lake experienced a period of heavy eutrophication due to the input of domestic and industrial sewage and agricultural runoff in the 1960s and 1970s. This prompted concerted efforts from authorities to purify wastewaters and reduce agricultural nutrient input, ini...
Article
Full-text available
Background and aims: Floating sweet-grass ( Glyceria fluitans ) can form aerial as well as floating leaves, and these both possess superhydrophobic cuticles, so that gas films are retained when submerged. However, only the adaxial side of the floating leaves is superhydrophobic, so the abaxial side is directly in contact with the water. The aim of...
Article
Full-text available
Flooding of fields after sudden rainfall events can result in crops being completely submerged. Some terrestrial plants, including wheat (Triticum aestivum L.), possess superhydrophobic leaf surfaces that retain a thin gas film when submerged, and the gas films enhance gas exchange with the floodwater. However, the leaves lose their hydrophobicity...
Article
Full-text available
Submergence invokes a range of stressors to plants with impeded gas exchange between tissues and floodwater being the greatest challenge. Many terrestrial plants including wheat (Triticum aestivum L.), possess superhydrophobic leaf cuticles that retain a thin gas film when submerged, and the gas films enhance gas exchange with the floodwater. Howev...
Article
Full-text available
Terrestrial saltmarsh plants inhabiting flood-prone habitats undergo recurrent and prolonged flooding driven by tidal regimes. In this study, the role of internal plant aeration in contrasting hypoxic/anoxic conditions during submergence was investigated in the two halophytes Limonium narbonense Mill. and Sarcocornia fruticosa (L.) A.J. Scott. Moni...
Article
Full-text available
The world is currently experiencing dramatic increases in flood events impacting on natural vegetation and crops. Flooding often results in low O2 status in root tissues during waterlogging, but sometimes also in shoot tissues when plants become completely submerged. Plants possess a suite of traits enabling tissue aeration and/or adjusted metaboli...
Article
Full-text available
HIGHLIGHTS: Sedimentation of fine sediment particles onto seagrass leaves severely hampers the plants' performance in both light and darkness, due to inadequate internal plant aeration and intrusion of phytotoxic H2S. Anthropogenic activities leading to sediment re-suspension can have adverse effects on adjacent seagrass meadows, owing to reduced...
Article
Lake Hampen, (Central Jutland, Denmark) is located high in the landscape near a seasonal moving groundwater divide. The lake is regarded as a flow-through lake during average to wet weather conditions with a large catchment making the lake groundwater-dominated. Monitoring of δ¹⁸O in mini-piezometers in the lake bed and wells at the lake shore and...
Article
Full-text available
Apart from playing a key role in important biochemical reactions, molecular oxygen (O2) and its by-products also have crucial signaling roles in shaping plant developmental programs and environmental responses. Even under normal conditions, sharp O2 gradients can occur within the plant when cellular O2 demand exceeds supply, especially in dense org...
Article
The submerged aquatic freshwater macrophyte Isoetes australis S. Williams grows in rock pools situated in south-western Australia, an environment where dissolved inorganic phosphorus (Pi) availability possibly limits growth. In contrast to the two coexisting aquatic species, Glossostigma drummundii and Crassula natans, I. australis did not form rel...
Article
Floods and salinization of agricultural land adversely impact global rice production. We investigated whether gas films on leaves of submerged rice delay salt entry during saline submergence. Two-week-old plants with leaf gas films (+GF) or with gas films experimentally removed (−GF) were submerged in artificial floodwater with 0 or 50 mM NaCl for...
Article
Seagrasses grow submerged in aerated seawater but often in low O 2 sediments. Elevated temperatures and low O 2 are stress factors. Internal aeration was measured in two tropical seagrasses, Thalassia hemprichii and Enhalus acoroides , growing with extreme tides and diel temperature amplitudes. Temperature effects on net photosynthesis ( P N ) and...
Article
Traits for survival during flooding of terrestrial plants include stimulation or inhibition of shoot elongation, aerenchyma formation, and efficient gas exchange. Leaf gas films form on superhydrophobic cuticles during submergence and enhance underwater gas exchange. The main hypothesis tested was that the presence of leaf gas films influences the...
Article
Full-text available
We review the detrimental effects of waterlogging on physiology, growth and yield of wheat. We highlight traits contributing to waterlogging tolerance and genetic diversity in wheat. Death of seminal roots and restriction of adventitious root length due to O2 deficiency result in low root:shoot ratio. Genotypes differ in seminal root anoxia toleran...
Article
Full-text available
Photosynthesis of most seagrass species seems to be limited by present concentrations of dissolved inorganic carbon (DIC). Therefore, the ongoing increase in atmospheric CO2 could enhance seagrass photosynthesis and internal O2 supply, and potentially change species competition through differential responses to increasing CO2 availability among spe...
Article
Full-text available
The general premise for successful archaeological in situ preservation in wetlands is that raising the water table will ‘seal the grave’ by preventing oxygen from reaching the deposit. The present review reveals that this may not be the entire picture, as a change in habitat may introduce new plant species that can damage site stratigraphy and arte...
Article
The presence of epiphytic turf algae may modify the effects of ocean acidification on coralline algal calcification rates by altering seawater chemistry within the diffusive boundary layer (DBL) above coralline algal crusts. We used microelectrodes to measure the effects of turf algal epiphytes on seawater pH and the partial pressure of oxygen (pO2...
Article
Full-text available
Oxygen deficiency associated with soil waterlogging adversely impacts root respiration and nutrient acquisition. We investigated the effects of O2 deficiency and salinity (100 mM NaCl) on radial O2 concentrations and cell-specific ion distributions in adventitious roots of barley (Hordeum vulgare). Microelectrode profiling measured O2 concentration...
Article
Full-text available
Many stem-succulent halophytes experience regular or episodic flooding events, which may compromise gas exchange and reduce survival rates. This study assesses submergence tolerance, gas exchange and tissue oxygen (O2) status of two stem-succulent halophytes with different stem diameters and from different elevations of an inland marsh. Responses t...
Chapter
Full-text available
Submergence impedes plant gas exchange with the environment. Survival depends upon internal aeration to provide O2 throughout the plant body, although short-term anoxia can be tolerated. During nights, plants rely on O2 entry from the floodwater and pO2 in roots declines so that some tissues become severely hypoxic or even anoxic. Underwater photos...
Article
Full-text available
Most functional feeding types are represented within the species rich group of aquatic chironomids. Thus, we hypothesized that different lake types and microhabitats within lakes would (1) host specific chironomid communities and (2) that the individual communities would show specific δ 13C stable isotope signatures reflecting the prevailing origin...
Article
Full-text available
Floods can completely submerge some rice (Oryza sativa L.) fields. Leaves of rice have gas films that aid O2 and CO2 exchange under water. The present study explored the relationship between gas film persistence and underwater net photosynthesis (PN) as influenced by genotype and submergence duration. Four contrasting genotypes (FR13A, IR42, Swarna...
Article
Full-text available
Some terrestrial wetland plants, such as rice, have super-hydrophobic leaf surfaces which retain a gas film when submerged. O2 movement through the diffusive boundary layer (DBL) of floodwater, gas film and stomata into leaf mesophyll was explored by means of a reaction-diffusion model that was solved in a 3D leaf anatomy model. The anatomy and dar...

Network

Cited By