Ole Petter Ottersen

Ole Petter Ottersen
  • CEO at Karolinska Institutet

About

484
Publications
36,588
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
46,551
Citations
Introduction
Skills and Expertise
Current institution
Karolinska Institutet
Current position
  • CEO

Publications

Publications (484)
Article
Full-text available
Aquaporin‐4 (AQP4) is the main water channel in brain and is enriched in perivascular astrocyte processes abutting brain microvessels. There is a rich literature on the role of AQP4 in experimental stroke. While its role in oedema formation following middle cerebral artery occlusion (MCAO) has been studied extensively, its specific impact on infarc...
Article
https://acad.ro/sectii2002/proceedingsChemistry/doc2023-2/Art.4.pdf We show that by bridging the current boundary approaches, the toolbox would operate as a resource – planetary health stress test in all areas of human life and activities. How these can be achieved is explored in an anticipation exercise and through nine recommendations targeting a...
Article
Full-text available
Brain edema is a feared complication to disorders and insults affecting the brain. It can be fatal if the increase in intracranial pressure is sufficiently large to cause brain herniation. Moreover, accruing evidence suggests that even slight elevations of intracranial pressure have adverse effects, for instance on brain perfusion. The water channe...
Article
Full-text available
Deceased. The glymphatic system, that is aquaporin 4 (AQP4) facilitated exchange of CSF with interstitial fluid (ISF), may provide a clearance pathway for protein species such as amyloid-b and tau, which accumulate in the brain in Alzheimer's disease. Further, tau protein transference via the extracellular space, the compartment that is cleared by...
Article
Introduction During brain edema (BE), elevated intracranial pressure (ICP) compresses capillaries and reduces cerebral blood flow (CBF) by decreasing perfusion pressure. The reduction in CBF and the increase in ICP during BE may affect individual capillary perfusion. It has previously been shown that the water channel aquaporin‐4 (AQP4) is an impor...
Article
Full-text available
There is currently a lack of non-invasive tools to assess water transport in healthy and pathological brain tissue. Aquaporin-4 (AQP4) water channels are central to many water transport mechanisms, and emerging evidence also suggests that AQP4 plays a key role in amyloid-β (Aβ) clearance, possibly via the glymphatic system. Here, we present the fir...
Article
Full-text available
More than 90% of the cases of Parkinson’s disease have unknown etiology. Gradual loss of dopaminergic neurons of substantia nigra is the main cause of morbidity in this disease. External factors such as environmental toxins are believed to play a role in the cell loss, although the cause of the selective vulnerability of dopaminergic neurons remain...
Data
Tissue damage and immune cell infiltration following ipsilateral intrastriatal injection of MPP+. A-D) Semi-thin sections immunostained for TH (A) or hematoxylin/eosin (B-D) showing local effect of the MPP+ injections. The site of MPP+ injection (Ipsi) in the anterior striatum is indicated by arrow (A). The toxin induces tissue damage in the entire...
Data
Overview of the estimated total cell count of TH-positive neurons. (DOCX)
Data
Humane endpoints checklist. (DOCX)
Data
List of the TaqMan probes used for quantitative RT-PCR. (DOCX)
Article
Full-text available
Aquaporin-4 (AQP4) is the predominant water channel in the brain and is expressed in high density in astrocytes. By fluxing water along osmotic gradients, AQP4 contributes to brain volume and ion homeostasis. Here we ask whether deletion of Aqp4 leads to upregulation of the gap junctional proteins connexin-43 (Cx43) and connexin-30 (Cx30). These mo...
Article
Protein kinase C (PKC) has been recognized to activate NADPH oxidase (PHOX). However, the interaction between PKC and PHOX in vivo remains elusive. Treatment with methamphetamine (MA) resulted in a selective increase in PKCδ expression out of PKC isoforms. PKCδ co-immunoprecipitated with p47phox, and facilitated phosphorylation and membrane translo...
Article
Full-text available
Significance Transport of nutrients and clearance of waste products are prerequisites for healthy brain function. It is still debated whether solutes are transported through the interstitial space by pressure-mediated bulk flow or by diffusion. Here we have simulated interstitial bulk flow within 3D electron microscope reconstructions of hippocampa...
Article
Aquaporin-4 (AQP4) is the predominant water channel in mammalian CNS where it is localized at the perivascular astrocytic foot processes abutting brain microvessels. Several lines of evidence suggest that AQP4 is involved in important homeostatic functions and that mislocalization of the perivascular pool of AQP4 is implicated in several different...
Article
Full-text available
Perivascular endfeet of astrocytes are enriched with aquaporin-4 (AQP4)-a water channel that is critically involved in water transport at the brain-blood interface and that recently was identified as a key molecule in a system for waste clearance. The factors that determine the size of the perivascular AQP4 pool remain to be identified. Here we sho...
Conference Paper
We outline how multicompartmental poroelasticity is applied to the study of dementia. We utilize a 3D version of our poroelastic code to investigate the effects within parenchymal tissue. This system is coupled with multiple pipelines within the VPH-DARE@IT project which account for patient/subject-specific boundary conditions in the arterial compa...
Article
Previous studies have indicated that presynaptic α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors (AMPARs) contribute to the regulation of neurotransmitter release. In hippocampal synapses, the presynaptic surface expression of several AMPAR subunits, including GluA2, is regulated in a ligand dependent manner. However, the molecular mech...
Article
Full-text available
The first aim of this study was to determine how complete or perivascular loss of aquaporin-4 (AQP4) water channels affects membrane permeability for water in the mouse brain grey matter in the steady state. Time-dependent diffusion magnetic resonance imaging was performed on global Aqp4 knock out (KO) and α-syntrophin (α-syn) KO mice, in the latte...
Article
There is a constitutive production of water in brain. The efflux routes of this excess water remain to be identified. We used basal brain water content as a proxy for the capacity of water exit routes. Basal brain water content was increased in mice with a complete loss of aquaporin-4 (AQP4) water channels (global Aqp4−/− mice), but not in mice wit...
Article
Full-text available
Earlier this year, the UN announced the 2030 Agenda for Sustainable Development with the aim of promoting global equity and justice. We claim that the success of this plan depends not only on measures taken, but also on how sustainable development is defined by policy makers. We argue that over the past three decades there has been a pronounced shi...
Article
Full-text available
Objectives: We tested the hypothesis that osmotherapy with hypertonic saline attenuates cerebral edema following experimental cardiac arrest and cardiopulmonary resuscitation by exerting its effect via the perivascular pool of aquaporin-4. We used mice with targeted disruption of the gene encoding α-syntrophin (α-Syn) that demonstrate diminished p...
Article
Background: Cerebral edema is a major cause of mortality following cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). Arginine vasopressin (AVP) and water channel aquaporin-4 (AQP4) have been implicated in the pathogenesis of CA-evoked cerebral edema. In this study, we examined if conivaptan, a V1a and V2 antagonist, attenuates cerebral...
Article
Full-text available
Cortical spreading depression (CSD) is a phenomenon that challenges the homeostatic mechanisms on which normal brain function so critically depends. Analyzing the sequence of events in CSD holds the potential of providing new insight in the physiological processes underlying normal brain function as well as the pathophysiology of neurological condi...
Article
Translational medical research in academia and research and development in drug companies will be discussed. The dependence of translational medical research on basic medical research in both settings will be emphasized. A description of the history of aspirin, one of the most cost-effective and widely used drugs in medicine, will be provided as an...
Chapter
This chapter will cover the writing of grant applications. Obtaining grant funding has become an obligation for all researchers, be they junior or senior. Since available sources of funding are limited, the competition for support can be fierce. Consequently, the process of grant writing is often stressful. To help reduce the stress, this chapter p...
Article
Full-text available
Mossy fiber sprouting is among the best-studied forms of post-lesional synaptic plasticity and is regarded by many as contributory to seizures in both humans and animal models of epilepsy. It is not known whether mossy fiber sprouting increases the number of synapses in the molecular layer or merely replaces lost contacts. Using the pilocarpine (Pi...
Article
The brain-blood interface holds the key to our understanding of how cerebral blood flow is regulated and how water and solutes are exchanged between blood and brain. The highly specialized astrocytic membranes that enwrap brain microvessels are salient constituents of the brain-blood interface. These endfoot membranes contain a distinct set of mole...
Article
Full-text available
In this article, we address a central theme that was discussed at the Durham Health Summit: how can politics be brought back into global health governance and figure much more prominently in discussions around policy? We begin by briefly summarizing the report of the Lancet - University of Oslo Commission on Global Governance for Health: 'The Polit...
Article
Full-text available
Astrocytic endfeet are specialized cell compartments whose important homeostatic roles depend on their enrichment of water and ion channels anchored by the dystrophin associated protein complex (DAPC). This protein complex is known to disassemble in patients with mesial temporal lobe epilepsy and in the latent phase of experimental epilepsies. The...
Article
Full-text available
Brain ependymal cells, which form an epithelial layer covering the cerebral ventricles, have been shown to play a role in the regulation of cerebrospinal and interstitial fluids. The machinery underlying this, however, remains largely unknown. Here, we report the specific localization of an inwardly rectifying K(+) channel, Kir4.1, on the ependymal...
Article
Full-text available
Astrocytes are highly polarised cells with processes that ensheath microvessels, cover the brain surface, and abut synapses. The endfoot membrane domains facing microvessels and pia are enriched with aquaporin-4 water channels (AQP4) and other members of the dystrophin associated protein complex (DAPC). Several lines of evidence show that loss of a...
Article
Full-text available
The coupling between the water channel aquaporin-4 (AQP4) and K+ transport has attracted much interest. In this study, we assessed the effect of Aqp4 deletion on activity-induced [K+]o changes in acute slices from hippocampus and corpus callosum of adult mice. We show that Aqp4 deletion has a layer-specific effect on [K+]o that precisely mirrors th...
Article
Full-text available
The focal swellings of dendrites (“dendritic beading”) are an early morphological hallmark of neuronal injury and dendrotoxicity. They are associated with a variety of pathological conditions, including brain ischemia, and cause an acute disruption of synaptic transmission and neuronal network function, which contribute to subsequent neuronal death...
Article
Full-text available
Despite large gains in health over the past few decades, the distribution of health risks worldwide remains extremely and unacceptably uneven. Although the health sector has a crucial role in addressing health inequalities, its efforts often come into conflict with powerful global actors in pursuit of other interests such as protection of national...
Article
Aquaporin-4 (AQP4) is one of the most abundant molecules in the brain and is particularly prevalent in astrocytic membranes at the blood-brain and brain-liquor interfaces. While AQP4 has been implicated in a number of pathophysiological processes, its role in brain physiology has remained elusive. Only recently has evidence accumulated to suggest t...
Article
Full-text available
Aquaporin-4 (AQP4) is the primary cellular water channel in the brain and is abundantly expressed by astrocytes along the blood-brain barrier and brain-cerebrospinal fluid interfaces. Water transport via AQP4 contributes to the activity-dependent volume changes of the extracellular space (ECS), which affect extracellular solute concentrations and n...
Data
Quantification of GFAP staining in individual astrocytes. Left: A superimposed image of GFAP staining in cortical astrocytes obtained by overlaying 20 individual confocal planes. Right: The superimposed image has been digitally filtered, and a red area (marked by yellow) was used for the quantification of GFAP staining. The area corresponding to th...
Article
It has been suggested that loss of the astrocytic water channel aquaporin-4 (AQP4) from perivascular endfeet in sclerotic hippocampi contributes to increased seizure propensity in human mesial temporal lobe epilepsy (MTLE). Whether this loss occurs prior to or as a consequence of epilepsy development remains to be resolved. In the present study, we...
Article
The complexity of the central nervous system calls for immunocytochemical procedures that allow target proteins to be localized with high precision and with opportunities for quantitation. Immunogold procedures stand out as particularly powerful in this regard. Although these procedures have found wide application in the neuroscience community, the...
Article
Aquaporin 4 (AQP4) is the predominant water channel in the brain, expressed mainly in astrocytes and involved in water transport in physiologic and pathologic conditions. Besides the classical isoforms M1 (a) and M23 (c), additional ones may be present at the plasma membrane, such as the recently described AQP4b, d, e, and f. Water permeability reg...
Article
Full-text available
Using in vivo two-photon imaging, we show that mice deficient in aquaporin-4 (AQP4) display increased fluorescence of nicotinamide adenine dinucleotide (NADH) when subjected to cortical spreading depression. The increased NADH signal, a proxy of tissue hypoxia, was restricted to microwatershed areas remote from the vasculature. Aqp4 deletion had no...
Article
It has been suggested that loss of the astrocytic water channel aquaporin-4 (AQP4) from perivascular endfeet in sclerotic hippocampi contributes to increased seizure propensity in human mesial temporal lobe epilepsy (MTLE). Whether this loss occurs prior to or as a consequence of epilepsy development remains to be resolved. In the present study, we...
Article
Key roles of macroglia are inextricably coupled to specialized membrane domains. The perivascular endfoot membrane has drawn particular attention, as this domain contains a unique complement of aquaporin-4 (AQP4) and other channel proteins that distinguishes it from perisynaptic membranes. Recent studies indicate that the polarization of macroglia...
Article
Full-text available
Aquaporins (AQPs) are channel-forming membrane proteins highly permeable to water. AQP4 is found in mammalian hearts; however, its expression sites, regulation and function are largely unknown. The aim was to investigate cardiac AQP4 expression in humans and mice, its regulation by ischemia and hypoxia, and in particular its role in cardiac ischemi...
Article
Recent experimental data in mice have shown that the inwardly rectifying K channel Kir4.1 mediates K spatial buffering in the hippocampus. Here we used immunohistochemistry to examine the distribution of Kir4.1 in hippocampi from patients with medication-refractory temporal lobe epilepsy. The selectivity of the antibody was confirmed in mice with a...
Article
Aquaporin-4 (AQP4) is known to have two main isoforms M1 and M23 in the brain. Immunoblot analyses have provided evidence of additional AQP4 immunopositive bands, suggesting that the repertoire of AQP4 isoforms is broader than previously assumed. As isoforms beyond M1 and M23 are not observed in recombinant systems, investigation of novel isoforms...
Article
Recent studies have implicated glial cells in modulation of synaptic transmission, so it is plausible that glial cells may have a functional role in the hyperexcitability characteristic of epilepsy. Indeed, alterations in distinct astrocyte membrane channels, receptors, and transporters have all been associated with the epileptic state. This review...
Article
Glutamate has been implicated in signal transmission between inner hair cells and afferent fibers of the organ of Corti. The inner hair cells are enriched in glutamate and the postsynaptic membranes express AMPA glutamate receptors. However, it is not known whether inner hair cells contain a mechanism for glutamate replenishment. Such a mechanism m...
Article
Increased extracellular brain glutamate has been implicated in the pathophysiology of human refractory temporal lobe epilepsy (TLE), but the cause of the excessive glutamate is unknown. Prior studies by us and others have shown that the glutamate degrading enzyme glutamine synthetase (GS) is deficient in astrocytes in the epileptogenic hippocampal...
Article
Full-text available
Dendrodendritic electrical signaling via gap junctions is now an accepted feature of neuronal communication in mammalian brain, whereas axodendritic and axosomatic gap junctions have rarely been described. We present ultrastructural, immunocytochemical, and dye-coupling evidence for "mixed" (electrical/chemical) synapses on both principal cells and...
Article
Little is known about the physiological roles of aquaporin-4 (AQP4) in the central nervous system. AQP4 water channels are concentrated in endfeet membranes of astrocytes but also localize to the fine astrocytic processes that abut central synapses. Based on its pattern of expression, we predicted that AQP4 could be involved in controlling water fl...
Article
Inhibitory and excitatory synaptic inputs onto trigeminal motoneurons play an important role in coordinating jaw movements. Previously, we reported that the phenotype of the inhibitory boutons apposing the somata of jaw-closing (JC) motoneurons changes from γ-aminobutyric acid (GABA)-positive (GABA+) to predominantly glycine-positive (Gly+) during...
Article
Mutations in the human Kir4.1 potassium channel gene (KCNJ10) are associated with epilepsy. Using a mouse model with glia-specific deletion of Kcnj10, we have explored the mechanistic underpinning of the epilepsy phenotype. The gene deletion was shown to delay K(+) clearance after synaptic activation in stratum radiatum of hippocampal slices. The a...
Article
Full-text available
Tissue- and cell-specific deletion of the Aqp4 gene is required to differentiate between the numerous pools of aquaporin-4 (AQP4) water channels. A glial-conditional Aqp4 knockout mouse line was generated to resolve whether astroglial AQP4 controls water exchange across the blood-brain interface. The conditional knockout was driven by the glial fib...
Article
Purpose: Idiopathic intracranial hypertension (IIH) is a condition of increased intracranial pressure of unknown aetiology. Patients with IIH usually suffer from headache and visual disturbances. High intracranial pressure despite normal ventricle size and negative MRI indicate perturbed water flux across cellular membranes, which is provided by th...
Article
Full-text available
Glutamate and the N-methyl-D-aspartate receptor ligand D-serine are putative gliotransmitters. Here, we show by immunogold cytochemistry of the adult hippocampus that glutamate and D-serine accumulate in synaptic-like microvesicles (SLMVs) in the perisynaptic processes of astrocytes. The estimated concentration of fixed glutamate in the astrocytic...
Article
Full-text available
Aquaporin-4 (AQP4) is the predominant water channel in brain and is selectively expressed in astrocytes. Astrocytic endfoot membranes exhibit tenfold higher densities of AQP4 than non-endfoot membranes, making AQP4 an excellent marker of astrocyte polarization. Loss of astrocyte polarization is known to compromise astrocytic function and to be asso...
Article
N-Methyl-D-aspartate receptors (NMDARs) are essential mediators of synaptic plasticity under normal physiological conditions. During brain ischemia, these receptors are excessively activated due to glutamate overflow and mediate excitotoxic cell death. Although organotypical hippocampal slice cultures are widely used to study brain ischemia in vitr...
Article
Full-text available
The occurrence of spontaneous seizures in mesial temporal lobe epilepsy (MTLE) is preceded by a latent phase that provides a time window for identifying and treating patients at risk. However, a reliable biomarker of epileptogenesis has not been established and the underlying processes remain unclear. Growing evidence suggests that astrocytes contr...
Article
Short peptides are important as lead compounds and molecular probes in drug discovery and chemical biology, but their well-known drawbacks, such as high conformational flexibility, protease lability, poor bioavailability and short half-lives in vivo, have prevented their potential from being fully realized. Side chain-to-side chain cyclization, e.g...
Article
"Förster Resonance Energy Transfer", abbreviated "FRET", is a fluorescence phenomenon, which can be used to study and map co-localizations and dynamics of co-localizations at nanometer precision on a light microscope. FRET has been described as a "spectroscopic ruler". The efficiency of the radiationless energy transfer from an excited chromophore,...
Article
Full-text available
Regulatory volume decrease (RVD) is a key mechanism for volume control that serves to prevent detrimental swelling in response to hypo-osmotic stress. The molecular basis of RVD is not understood. Here we show that a complex containing aquaporin-4 (AQP4) and transient receptor potential vanilloid 4 (TRPV4) is essential for RVD in astrocytes. Astroc...
Article
Full-text available
Aquaporin-4 (AQP4) is a primary influx route for water during brain edema formation. Here, we provide evidence that brain swelling triggers Ca(2+) signaling in astrocytes and that deletion of the Aqp4 gene markedly interferes with these events. Using in vivo two-photon imaging, we show that hypoosmotic stress (20% reduction in osmolarity) initiates...
Article
Any discussion of the impact of nutrition and environment on the brain is based on the premise that the brain is malleable, but just how malleable is this most complex of all organs? And to what extent does the term "malleability" extend beyond subtle functional changes into the realms of morphology and connectivity? Recent methodological advances...
Article
The unravelling of the polarized distribution of AQP4 in perivascular astrocytic endfeet has revitalized the interest in the role of astrocytes in controlling water and ion exchange at the brain-blood interface. The importance of the endfeet is based on the premise that they constitute a complete coverage of the vessel wall. Despite a number of stu...
Article
Neuroplasticity can be defined as the ability of the brain to adapt to environmental impacts. These adaptations include synapse formation and elimination, cortical reorganization, and neurogenesis. In epilepsy these mechanisms may become detrimental and contribute to disease progression. It has been proposed that Matrix Metalloproteinase 9 (MMP-9),...
Article
The Na(+)-K(+)-2Cl(-) cotransporter localized in the brain vascular endothelium has been shown to be important in the evolution of cerebral edema following experimental stroke. Previous in vivo studies have demonstrated that bumetanide, a selective Na(+)-K(+)-2Cl(-) cotransport inhibitor, attenuates ischemia-evoked cerebral edema. Recently, bumetan...
Article
Full-text available
Aquaporin-4 (AQP4) plays an important role in the evolution of ischemia-evoked cerebral edema. Experimental studies have also demonstrated anti-edema effects of arginine-vasopressin (AVP) antagonists. In a well-characterized murine model of ischemic stroke, we tested the hypotheses that treatment with selective AVP V(1) but not V(2) receptor antago...
Article
Full-text available
Poly(ADP-ribose) polymerase-1-dependent cell death (known as parthanatos) plays a pivotal role in many clinically important events including ischaemia/reperfusion injury and glutamate excitotoxicity. A recent study by us has shown that uncleaved AIF (apoptosis-inducing factor), but not calpain-hydrolysed truncated-AIF, was rapidly released from the...
Article
The etiopathogenesis of temporal lobe epilepsy (TLE) and its subgroups - mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) and TLE with antecedent febrile seizures (TLE-FS) - is poorly understood. It has been proposed that the water channel aquaporin-4 (AQP4) and the potassium channel Kir4.1 (KCNJ10 gene) act in concert to regulate...
Article
Whether mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) is a condition with a unique biological background that can be delineated from other TLE, is unresolved. Here we performed a comparative analysis of two TLE patient cohorts - one cohort with HS and one without HS - in order to identify phenotypic characteristics specifically...
Article
Calcium-activated potassium channels have been shown to be critically involved in neuronal function, but an elucidation of their detailed roles awaits identification of the microdomains where they are located. This study was undertaken to unravel the precise subcellular distribution of the large-conductance calcium-activated potassium channels (cal...
Article
AQP9 is an aquaglyceroporin that serves important functions in peripheral organs, including the liver. Reflecting the lack of AQP9 knockout mice, uncertainties still prevail regarding the localization and roles of AQP9 in the central nervous system. Here we present a comprehensive analysis of AQP9 gene expression in brain, based on a quantitative a...

Network

Cited By