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Abstract: This research was set to examine the effect Multicollinearity has, on the standard error for 

regression coefficients when it is present in a Classical Linear Regression model (CLRM). A classical linear 

regression model was fitted into the GDP of Nigeria ,and the model was examined for the presence of 

Multicollinearity using various techniques such as Farrar-Glauber test, Tolerance level, Variance inflation 

factor, Eigen values etc and the result obtained shows that Multicollinearity has contributed to the increase of 

the standard error for regression coefficients, thereby rendering the estimated parameters less efficient and less 

significant in the class of Ordinary Least Squares estimators. Tolerance levels of 0.012, 0.005, 0.002 and 0.001 

for𝛽1, 𝛽2, 𝛽3 ,and 𝛽4 respectively clearly shown a very low tolerance among all the explanatory variables with 

very  high Variance Inflation Factors of 84.472, 191.715,502.179 and 675.633 respectively. A  Coefficient of 

determination (R- Square) of 99%, though signaled a very high validity for the CLRM but it is equally an 

indications of a very high degree of Multicollinearity among the explanatory variables. The Eigen values of  

0.431, 0.005, 0.002 and 0.000 for 𝛽0, 𝛽1, 𝛽2, 𝛽3 ,and 𝛽4 respectively clearly shown a very low Eigen value among 

the explanatory variables, which are closer to zero with very  high Condition index of 30.983, 49.759 and 

100.810 for  𝛽2, 𝛽3 ,and 𝛽4 respectively which indicate that the  Multicollinearity present is due greatly to the 

influence of regressors X2, X3, and X4.. 
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I. Introduction 
Multicollinearity is one of the important problems in multiple regression analysis. It is usually regarded 

as a problem arising out of the violation of the assumption that explanatory variables are linearly independent. 

However, just satisfaction of this assumption does not preclude the possibility of an approximate linear 

dependence among the explanatory variables and hence the problem of multicollinearity. Though no precise 

definition of  multicollinearity has been firmly established in the literature. According to (Belsely, Kuh and 

Welsh, 1980), Multicollinearity is generally agreed to be present if there is an approximate linear relationship 

(i.e. shared variance) among some of the predictor variables in the data. In theory, there are two extremes: 
Perfect Multicollinearity and No Multicollinearity. In practice, data typically are somewhere between those 

extremes. Thus, multicollinearity is a matter of degree. Though some multicollinearity is almost present, the real 

issue is to determine the point at which the degree of multicollinearity becomes “harmful”. The econometric 

literature typically takes the theoretical position that predictor variable construct are not collinear in the 

population. Hence, any observed multicollinearity in empirical data is construed as a sample based “problem” 

rather than as representative of the underlying population relationship ( Kmenta, 1986). In many marketing 

research situations, however it is unrealistic to assume that predictor variables will always be strictly orthogonal 

at the population level (especially when one is working with behavioral constructs). Regardless of whether 

Multicollinearity in data is assumed to be a sampling artifact or true reflection of population relationships, it 

must be considered when data are analyzed with regression analysis because it has several potential undesirable 

consequences parameters estimates that fluctuate dramatically with negligible changes in the sample, parameter 
estimates with signs that are wrong in terms of theoretical considerations, theoretically important variables with 

insignificant  coefficients, and the inability to determine the relative important of multicollinearity variables. 

The regression coefficients though determinate,  posses large standard errors which implies that the coefficients 

cannot be estimated with great accuracy (Gujarati and Porter, 2009). Hawking (1983), Bowerman and 

O‟Connell (2006)  states that the term multicollinearity refers to a situation in which there is an exact (or nearly 

exact) linear relation among two or more of the explanatory variables .Exact relations usually arise by mistake 

or lack of understanding. We can define multicollinearity through the concept of orthogonality; when the 

predictors are orthogonal or uncorrelated, all eigenvalues of the design matrix are equal to one and the design 

matrix is full rank. If at least one eigenvalue is different from one, especially when equal to zero or near zero, 

then non-orthogonality exists, meaning that multicollinearity is present (Vinod and Ullah, 1981). 

Multicollinearity can lead to increasing complexity in the research results, thereby posing difficulty for 

researcher interpretation. Multicollinearity complicates interpretation as a function of its influence on the 
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magnitude of regression weights and the potential inflation of their standard error, thereby negatively 

influencing statistical significance tests of these coefficients. Multicollinearity is a statistical phenomenon in 

which two or more predictor variables in a multiple regression model are highly correlated. In this situation the 
Regression coefficient estimates may change erratically in response to small changes in the model or the data. 

Multicollinearity does not reduce the predictive power or reliability of the model as a whole, at least within the 

sample data themselves; it only affects calculations regarding Dependent and independent variables used in 

statistics individual predictors. A high degree of multicollinearity can also prevent computer software packages 

from performing the matrix inversion required for computing the regression coefficients, or it may make the 

results of that inversion inaccurate. Though multicollinearity does not affect the goodness of fit or the goodness 

of prediction, it can be a problem if our purpose is to estimate the individual effects of each explanatory 

variable. Once multicollinearity is detected, the best and obvious solution to the problem is to obtain and 

incorporate more information. Other procedures have been developed instead, for instance, model re-

specification, biased estimation, and various variable selection procedures. Greene, (2000) states that 

multicollinearity may be observed in the following situation: small changes in the data produce wide swings in 
the parameter estimates. Coefficients may have very high standard errors and low significance levels even 

though they are jointly significant and the R2 for the regression is quite high and the coefficients may have the 

wrong sign magnitude. 

Neter, (1989) said that in the process of fitting regression model, when one independent variable is 

nearly combination of other independent variables, the combination will affect parameter estimates. This 

problem is defined as multicollinearity. Basically, multicollinearity may cause serious difficulties. Variances of 

parameter estimates may be unreasonably large, parameter estimates may not be significant and a parameter 

estimate may have a sign different from what is expected. 

The standard error of an estimate can be defined as the square root of the estimated error variance ( δ2 ) 

of the quantity. i.e. SE = δ2  =  δ2   = δ.The larger the sample size, the smaller the standard error and the smaller 
the standard error the more representative the sample will be. 

In our attempt to research into the challenges of Multicollinearity as it affects the standard errors of 

regression coefficients, a Gross Domestic Product (GDP) Model shall be specified as; 

GDP = f (CP, L, FR, FI) +ε                                                                       (1) 
When this model is written in explicit form it becomes 

GDPi = ßo + ß1CPi + ß2Li + ß3FRi + ß4FIi + εi                                           (2) 

Where ßo, ß1, ß2, ß3 and ß4 are estimable parameters 

CP= Crop Production, L= Livestock, FR= Forestry, FI= Fishing, GDP= Gross domestic product income of 

Agriculture and ε = Error term. 

This model shall be critically examined for Multicollinearity and hence establish reasonable inferences on its 

effects on the standard errors of regression coefficients. 

 

II.    Materials And Methods 
To analyze the data collected, the classical linear regression model shall be fitted, the standard error for 

regression coefficients computed and the methods to be adopted in detecting multicollinearity will also be 

illustrated. 

The CLRM model can be written in terms of the k-variable population regression function (PRF) 

model involving the dependent variable Y and k-1 explanatory variables X2, X3 , ........., Xk  as: 

Yi  = β1 + β2X2i +  β3X3i +......... + βkXki  + ui ,   i =  1,2,3,……,n                             (3) 

Where, β1 = the intercept 

            β2 to βk  = partial slope coefficients 

           u = stochastic disturbance term 

And      i = ith observation, n‟ being the size of the population. 

 

This equation identifies k-1 explanatory variables (regressors) namely X1, X2, …….Xk and a constant 

term that assumed to influence the dependent variable (regressand). 

The essence of regression in econometrics is to generalized for the population from what we get from 

the sample. For instance, the linear relationship from Equation (3) holds for the population only if we could 

obtain considerable values of Xs, Y and u which form the population values of these variables. Since this is 

impossible in practice, the alternative is to get sample observations for Xs and Y, specify the distribution of the 

u‟s and try to get satisfactory estimate of true parameters of the relationship. 

This is done by fitting a regression line to the observed sample data as an approximation to the true 
line. If then the true relationship between Xs and Y is as given in Equation (3), the true regression line is 

E (Yi ) = β1   +  β2 X2i+ β3 X3i + ………. + βn  Xki                                             (4) 

And the estimated relationship is: 
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Yi  = b1  + b2X2i +  b3X3i +  ......... + bnXki  + ei                       (5) 

Equation (3) is a shorthand expression for the following set of n simultaneous equations: 

Y1  = β1  + β2X21 +  β3X31 +  ......... + βnXk1 + u1 

Y2  = β1  + β2X22 +  β3X32 +  ......... + βnXk2 + u2           (6) 

.                .                       .               .           .  

Y2  = β1  + β2X2n  +  β3X3n  +  ......... + βnXkn  + un  

We can write the system of equations (6) in matrix form as shown below: 

 

Y1
Y2..
Yn

  =  

1    X21      X31  .  …     Xk 1
1   X22      X32  …….   Xk 2……………………………………………………
1   X2n     X3n  …….  Xkn

   

β1
β2..
βn

  +  

u1
u2..
un
            (7) 

Y =                     X           β         +      u 

n x 1                            n x k        k x 1  n x 1 

where, 

 Y = n x 1 column vector of observations on the dependent variable Y. 

X = n x k matrix giving „n‟ observations on k – 1 variables X2 to Xk , the first column of 1‟s representing the 

intercept term. 

β = k x 1 column vector of the unknown parameters β1, β2, ........., βk . 

u = n x 1 column vector of n disturbances ui. 

Equation (3.1.5) can be written more compactly as: 

Y = Xβ + u                                 (8) 

To obtain the consistent estimators of β, we minimise the residual sum of square (SSE) which is normally given 

as ESS = u‟u                                          (9) 

But u = Y – Xβ                              (10) 
Hence,   u‟u = (Y – Xβ)‟(Y – Xβ) 

  = Y‟Y – β‟X‟Y – Y‟Xβ + β‟X‟Xβ 

  = Y‟Y – 2β‟X‟Y + β‟X‟Xβ 

Since the transpose of a scalar is a scalar, thus;  

Y‟Xβ = (Y‟Xβ)‟ = β‟X‟Y 

Thus,  
∂u ’u

∂B/B 
 = - 2 X‟Y – 2X‟Xβ  = 0 

  2X‟Xβ  =  2 X‟Y 

  β  = (X’X)−1 X‟Y             (11) 

Where equation (11) is the least square estimates for the parameters of a classical linear regression model. 

The standard error for the regression coefficients are as  

SE(ß) =     δ2(XIX)-1      or  δ      (XIX)-1                                                                                  (12) 

Thus, Equation (3.3) is derived as follows  

V(ß)= E   (ß- ß) (ß- ß)I 

E ((XIX)-1 XIY – ß)( (XIX)-1 XIY – ß)I  

Where Y= Xß+ ε 
E(XIX)-1 XI(Xß+ ε) – ß((XIX)-1 XI(Xß+ ε) – ß) 

E((XIX)-1 XIXß+(XIX)-1 XI ε – ß)((XIX)-1 XIXß+(XIX)-1 XI ε) 

E((XIX)-1 XI ε)( εI X (XIX)-1) 

E ((XIX)-1 XIεεI X (XIX)-1) 

((XIX)-1 XIX)E(εεI (XIX)-1) 

Where E(εεI)= δ2 

V(ß)= δ2 (XIX)-1                                                                             (13) 

In detecting the presence of multicollinearity on the standard error for regression coefficients, the following 

techniques shall be adopted. 

 The Tolerance level 

 The Variance inflation factor (VIF) and 

 The Farrar- Glauber tests 

 Eigen values and Eigen vectors 

 

Tolerance Level 

In multiple regressions, tolerance is used as an indicator of multicollinearity. Tolerance is estimated by 

1-R2, where R2 is calculated by regressing the independent variable of interest unto the remaining independent 

variables included in the multiple regression analyses. Researchers desire higher levels of tolerance, as low 

levels are known to affect adversely the result associated with a multiple regression analyses. The tolerance 

level is the 1-R2 value when each of the independent variables is regressed on the other independent variables. 
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Low tolerance levels indicate high levels of multicollinearity. Anytime a tolerance levels get somewhere below 

0.40, then multicollinearity exist. 

 

Variance Inflation Factor (VIF) 

In multiple regressions, the VIF is used as an indicator of multicollinearity. Computationally, it is 

defined as the reciprocal of tolerance: 1\1-R2. Researchers desire lower levels of VIF, as higher levels of VIF are 

known to affect adversely the result associated with a multiple regression analyses. 

Infact, the utility of VIF, as distinct from tolerance is that VIF specifically indicates the magnitude of 

the inflation in the standard errors associated with a particular beta weight that is due to multicollinearity. VIF of 

over 2.50 start to indicate relatively high levels of multicollinearity.   

 

Farrar-Glauber Test  

Farrar and Glauber, (1967) also proposed a procedure for detecting multicollinearity which comprised 

of three tests (i.e Chi-square test, F-test and T-test) . The first one examines whether multicollinearity is present, 
the second one determines which regressors are collinear and the third one determines the form of 

multicollinearity.  

 

Eigen values and Eigen vectors 

When there are one or more close linear dependencies among the variables, one or more Eigen values 

(λ1, λ2, -----------,λp) of the correlation matrix will be smaller thanl the assessment of the matrix condition 

number (CN), given its symmetry, defining CN as the relation between the largest and smallest Eigen values. 

The authors point out that, if CN< 100, multicollinearity is not a serious problem. If 100 < CN < 1000, 

multicollinearity is moderate and if CN > 1000 there is severe multicollinearity (Montgomery and Peck, 1981). 

The analysis of the Eigen values can identify the approximate nature of the linear dependency existing between 

the variables Belsley, (1980). For these analysis, R = VΛV‟, where Λ is a diagonal matrix with dimensions p x 

p, (p is number of variables used to obtain the R correlation matrix), whose elements are the Eigen values λj( j = 
1,2,…,p) of R, and V is an orthogonal matrix with p x p dimension whose columns (v1,v2, …,vp) are the 

normalized Eigen vectors of R . An Eigen value (λj) close to zero indicates linear dependence among the 

observations. The elements of the Eigen vector (vj) associated with this Eigen value describe the nature of this 

independency. 

 

III.      Results And Discussion 
The data collected is on the on the contribution of Agriculture products to the GDP of Nigeria for 

twenty years between year 1992 to 2011.  

 

Fitting of Classical Linear Regression model 

The required OLS model fitted into the collected data is given as 

GDP = -487451.376 + 0.240CP  +  8.929L  +  279.598FR   –  38.951FI                                    (14) 

  

Table 1: Results of OLS Statistic 
Statistic Values 

R 0.996 

R
2 

0.992 

F 463.083 (with significant value of 0.000) 

S.e (ß1) 0.691 

S.e (ß2) 15.350 

S.e (ß3) 125.177 

S.e (ß4) 55.526 

 

Table 2: Results of OLS  Collinearity Statistics 
REGRESSORS Tolerance Level Variance Inflation Factor(VIF) 

Crop Production 0.012 84.472 

Livestock 0.005 191.715 

Forestry 0.002 502.179 

Fishing 0.001 675.633 
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Table 3:        Collinearity Diagonstics 

 
 

From model (14), the value of regression constant β0  is negative, this ordinarily should have been 

positive due to the background econometric principles of the model. This is as a result of the presence of 

multicollinearity as propounded by Neter, (1989) . From table 1, the standard error for the regression 

coefficients (0.691, 15.350, 125.177, 55.526) for β1,β2,β3 ,and β4 respectively clearly shown a very high degree 

of multicollinearity among the explanatory variables except for that of  β1that is moderately fair. The coefficient 

of determination (R- square) clearly shows a very high value (99%), as well as the correlation coefficient of 

0.996 which also indicates a very high degree of multicollinearity among the explanatory variables. The 

significant value shows 0.000 which is less than the significant level (0.05), this indicate that Multicollinearity 
gave a false impression as to the significant of the regression coefficients, which is too perfect to be real.  

According to table 2, the Tolerance levels of 0.012, 0.005, 0.002 and 0.001 for β1, β2, β3 ,and 

β4 respectively clearly shown a very low tolerance level among all the explanatory variables with very  high 

Variance Inflation Factors of 84.472, 191.715,502.179 and 675.633 respectively, except for that of   β1which is 

less than 100, indicate the presence of multicollinearity. 

The Eigen value of 4.562, 0.431, 0.005, 0.002 and 0.000 for β0,β1, β2, β3 ,and β4 respectively clearly 

shown a very low Eigen values among the explanatory variables. The eigen-values are closer to zero with very  

high Condition index of 30.983, 49.759 and 100.810 for  β2, β3 ,and β4 respectively which indicate that the  

Multicollinearity present is due greatly to the influence of regressors X2, X3, and X4.. 

 

IV.    Conclusion 
Going by the analyzed results explained above,  Multicollinearity has exerted significant effect on the 

standard error of regression coefficients. This finding supported the view of Neter, (1989) who noted that 

multicollinearity may cause serious difficulties in Regression analysis. Standard error of parameter estimates 

may be unreasonably large, parameter estimates may not be significant and a parameter estimate may have a 

sign different from what is expected. However, researchers should be aware that complete elimination of 

multicollinearity is not possible, but we can reduce the degree of multicollinearity present in the data. Hence, 

researchers are expected to always check first, for the presence of multicollinearity before fitting a Classical 

Linear Regression Model (CLRM) and if present, should be made to minimize its effects either through Model 

re- specification, Addition of new variables etc. 
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