Oguzhan Avci

Oguzhan Avci

Doctor of Philosophy

About

16
Publications
1,789
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
280
Citations
Additional affiliations
July 2018 - present
Aeva Inc.
Position
  • Researcher
October 2017 - July 2018
Apple Inc.
Position
  • Researcher
May 2015 - August 2015
Mitsubishi Electric Research Laboratories
Position
  • Research Assistant
Education
June 2013 - September 2017
Boston University
Field of study
  • Electrical Engineering
September 2012 - September 2014
Boston University
Field of study
  • Electrical Engineering
September 2010 - June 2011
University of California, San Diego
Field of study
  • Electrical Engineering

Publications

Publications (16)
Article
Label-free, visible light microscopy is an indispensable tool for studying biological nanoparticles (BNPs). However, conventional imaging techniques have two major challenges: (i) weak contrast due to low-refractive-index difference with the surrounding medium and exceptionally small size and (ii) limited spatial resolution. Advances in interferome...
Conference Paper
Single particle interferometric scattering microscopy has demonstrated great capability in label-free imaging of sub-wavelength dielectric nanoparticles (r<25 nm); however, it suffers from diffraction-limited resolution. Here, we demonstrate ~2-fold improvement in lateral resolution upon asymmetric illumination.
Article
Fluorescence based microarray detection systems provide sensitive measurements, however variation of probe immobilization and poor repeatability negatively affect the final readout, and thus quantification capability of these systems. Here, we demonstrate a label-free and high-throughput optical biosensor that can be utilized for calibration of flu...
Article
Full-text available
The sensitive detection and quantitative measurement of biological nanoparticles such as viruses or exosomes is of growing importance in biology and medicine since these structures are implicated in many biological processes and diseases. Interferometric reflectance imaging is a label-free optical biosensing method which can directly detect individ...
Article
Full-text available
Interference enhanced wide-field nanoparticle imaging is a highly sensitive technique that has found numerous applications in labeled and label-free sub-diffraction-limited pathogen detection. It also provides unique opportunities for nanoparticle classification upon detection. More specif- ically, the nanoparticle defocus images result in a partic...
Article
Wide-field interferometric microscopy techniques have demonstrated their utility in sensing minute changes in the optical path length as well as visualization of sub-diffraction-limited nanoparticles. In this work, we demonstrate enhanced signal levels for nanoparticle detection by pupil function engineering in wide-field common-path interferometri...
Article
Full-text available
Single-molecule and single-nanoparticle biosensors are a growing frontier in diagnostics. Digital biosensors are those which enumerate all specifically immobilized biomolecules or biological nanoparticles, and thereby achieve limits of detection usually beyond the reach of ensemble measurements. Here we review modern optical techniques for single n...
Article
Interferometric imaging schemes have gained significant interest due to their superior sensitivity over imaging techniques that are solely based on scattered signal. In this study, we outline the theoretical foundations of imaging and characterization of single nanoparticles in an interferometric microscopy scheme, examine key parameters that influ...
Conference Paper
We have demonstrated Interferometric Reflectance Imaging Sensor (IRIS) with the ability to detect single nanoscale particles. By extending single-particle IRIS to in-liquid dynamic imaging, we demonstrated real-time digital detection of individual viral pathogens as well as single molecules labeled with Au nanoparticles. With this technique we demo...
Conference Paper
In this paper, we demonstrate utilization of a commercial flatbed document scanner as a label-free biosensor for highthroughput imaging of DNA and protein microarrays. We implemented an interferometric sensing technique through use of a silicon/oxide layered substrate, and easy to implement hardware modifications such as re-aligning moving parts an...
Article
Full-text available
Over the last decade, the growing need in disease diagnostics has stimulated rapid development of new technologies with unprecedented capabilities. Recent emerging infectious diseases and epidemics have revealed the shortcomings of existing diagnostics tools, and the necessity for further improvements. Optical biosensors can lay the foundations for...
Article
Quantitative determination of the density and conformation of DNA molecules tethered to the surface can help optimize and understand DNA nanosensors and nanodevices, which use conformational or motional changes of surface-immobilized DNA for detection or actuation. We present an interferometric sensing platform that combines (i) dual-color fluoresc...
Article
Full-text available
Stimuli responsive, smart interface materials are integrated with microfluidic technologies creating new functions for a broad range of biological and clinical applications by controlling the material and cell interactions. Local capture and on-demand local release of cells are demonstrated with spatial and temporal control in a microfluidic system...

Network

Cited By