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Terrestrial mammalian olfaction relies on sniffing for odorant 
transport1. Moreover, sniffs alone, with no odorants, orches-
trate neural activity in the olfactory receptors2, bulb3–5 and 

cortex6,7. In other words, sniffs prime the rhinencephalon (literally 
from Greek: the nose-brain or smell-brain) for incoming olfactory 
information8,9. Olfaction is often referred to as an ancient sense10, 
reflecting its primacy in human evolution11. In this respect, the 
olfactory system can be thought of as a template for human brain 
development12,13. Given that this brain evolutionary template relies 
on inspirium for information processing onset, our overarching 
hypothesis is that the entire human brain retained aspects of this 
functional link. Consistent with an important role for respiration 
in human brain function14, we hypothesize that nasal inhalations, 
which put the olfactory system in a mode that optimizes processing 
of incoming information, similarly optimize non-olfactory mecha-
nisms for incoming information as well.

The notion that overall brain activity is linked to overall respira-
tory cycles is well documented14,15. There is extensive evidence in 
rodents for global16 and local17,18 brain rhythms that are entrained by 
respiration, and evidence for similar effects in humans19,20. However, 
our hypothesis is not about an overall effect of respiratory cycles on 
brain cycles, but rather a more specific hypothesis on respiratory 
phase: we predict specific differences in cognitive processing and 
ensuing behaviour during inhalation versus exhalation. This too, 
has support in the animal literature. For example, sniffing is linked 
to both whisking21,22 and vocalizations23 in mice, and to wing beat-
ing and echolocation24,25 in bats. In other words, inhalations may 
orchestrate diverse complex behaviours26. In humans, nasal inhala-
tion affects patterns of activity in the primary olfactory cortex as 
evidenced with functional magnetic resonance imaging (fMRI)6 and 
intracranial electroencephalography (iEEG)27, and impacts cogni-
tion that relies on these limbic structures. More specifically, odour 
imagery is enhanced by nasal inhalations28, reaction time in dis-
crimination of facial fear is faster during nasal inhalation, as is mem-
ory retrieval27,29,30. However, these tasks all rely on rhinencephalic  

amygdaloidal and hippocampal substrates that are also part of the 
primary olfactory cortex, where sniffing is an inherent modulator of 
activity. Here, to ask whether this is a general brain property rather 
than an olfactory substrate property alone, we tested whether nasal 
inhalation affects performance in cognitive tasks that are less hing-
ing on limbic substrates. We had participants perform visuospatial 
and lexical tasks, during either nasal inhalation or exhalation, and 
concurrently measured brain activity using EEG. We found that 
participants spontaneously opted to inhale at task onset, that per-
formance in the visuospatial task was significantly better during 
inhalation versus exhalation, and that localized task-related brain 
activity was greater on inhalation than on exhalation. Moreover, 
inhalation shifted brain connectivity at rest, and this shift was 
correlated with ensuing inhalation-dependent improvements in 
behavioural accuracy. In other words, we could generate modest 
but significant predictions of respiratory-phase-dependent shifts 
in performance using previously recorded phase-dependent neural 
activity. These results support our notion of a general brain infor-
mation-processing mode triggered by inhalation, and are consistent 
with our hypothesis of an olfaction-guided aspect in the evolution 
of human non-olfactory cognition.

Results
Humans spontaneously nasally inhale at cognitive task onset. 
In experiment 1, we first asked whether participants unwittingly 
spontaneously opt to perform cognitive tasks at any particular 
phase of the respiratory cycle. Concurrent with precise measure-
ment of nasal airflow (Fig. 1a), 31 participants (15 women, mean 
age = 25.67 ± 2.27 years) conducted three tasks in succession: a lexi-
cal task, a visuospatial task and a math task (order counterbalanced) 
(Fig. 1b). The lexical task was a lexical decision paradigm (adapted 
from ref. 31) in which participants had to judge whether on-screen 
words or pseudo-words had semantic meaning (for example, ‘lexi-
cal’ versus ‘exlical’). The visuospatial task was a two-alternative 
selection between two simultaneously presented three-dimensional 
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shapes, where only one could exist in the real world, that is, all its 
facets were correctly joined (adapted from ref. 32). The math task 
relied on arithmetic calculations and consisted of equations pre-
sented to the participant who had to judge whether they were true 
or false. Each task contained 25 trials separated by a jittered inter-
stimulus-interval (ISI) ranging between 15 and 20 s, culminating 
at ~10 min per task (Fig. 1c). Finally, in all tasks, participants self- 
initiated precise trial onset as follows: following the ISI, an on-
screen instruction read ‘press the button when you are ready for the 
next trial’. Participants then pressed a button to initiate every trial 
and a keyboard key to provide answers. Participants were instructed 
to press the button only when they felt ready to optimally conduct a 
trial and to then answer as fast and as accurately as possible.

The averaged nasal airflow trace revealed that participants 
spontaneously opted to initiate trials concurrent with the initia-
tion of a nasal inhalation. Given that participants spent 37.8 ± 6.4% 
of the time inhaling and 50.7 ± 6.6% exhaling (some participants 
also had a nasal ‘dead-flow’ time in between, which amounted 
for 11.4 ± 6.9% of the time), we calculated the deviation from this 
expected pattern by comparing to surrogate randomly selected 
time points (Fig. 1c), and observe that the tendency to nasally 
inhale at task onset was significant in all tasks (visuospatial: maxi-
mal at 1,800 ms post-task onset, trial = 0.52 ± 0.24 normalized flow 
units (NFU), surrogate = 0.34 ± 0.08 NFU, two-tailed paired t-test 
t(28) = 3.77, P < 0.001, Cohen’s d = 0.97, 95% CI = 0.41 ≤ d ≤ 1.50; 
lexical: maximal at 1,600 ms post-task onset, trial = 0.51 ± 0.25 
NFU, surrogate = 0.33 ± 0.09 NFU, two-tailed paired t-test 
t(25) = 3.21, P = 0.0035, Cohen’s d = 0.93, 95% CI = 0.35 ≤ d ≤ 1.49; 
math: maximal at 1,500 ms post-task onset, trial = 0.54 ± 0.28 NFU, 

surrogate = 0.31 ± 0.05 NFU, two-tailed paired t-test t(23) = 3.82, 
P < 0.001, Cohen’s d = 1.14, 95% CI = 0.52 ≤ d ≤ 1.74) (Fig. 1d–f, 
compare to random surrogate data, and Supplementary Fig. 1a–c). 
Moreover, a control analysis verified that these nasal inhalations 
were different from inhalations associated with button press alone 
(Supplementary Fig. 1d–f). In other words, we observed a signifi-
cant tendency for participants to time the onset of a non-limbic cog-
nitive effort to coincide with nasal inhalation.

In experiment 2, we asked whether the spontaneous inhalation 
that we observed at task onset in experiment 1 is related to per-
formance, and if so, how is this reflected in brain activity. In this 
experiment, we probe for brain-evoked responses, necessitating 
many more trials per condition. Thus, to accommodate viable total 
task duration, we discontinued the math task. Thirty participants 
were then studied first over a 20-min resting baseline, and then 
when conducting 160-trial versions of the visuospatial and lexical 
decision tasks, all concurrent with EEG. Here, unbeknownst to par-
ticipants, half of the trials were triggered by inhalation and half by 
exhalation (random order). We mislead participants, telling them 
that trials are randomly triggered over time. Post-experimental 
debriefing implied that no participant was aware of self-triggering 
trials. Stimuli were displayed for 1,200 ms, and participants were 
allowed an additional 300 ms to respond. This assured that each 
trial was restricted to a given respiratory phase.

Inhalation drives changes in functional brain connectivity at rest. 
Before analysing behaviour and brain activity during the task, we 
set out to ask whether there is a pattern of brain activity associated 
with inhalation versus exhalation at rest. Given that at rest we have 
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Fig. 1 | Humans spontaneously nasally inhale at cognitive task onset. a, Experimental setup. b, Task examples. c, Statistical analysis of the respiratory 
signal. The obtained distribution of real events was compared with surrogate data obtained from random windows of the same size along the respiratory 
trace. An example respiratory trace is shown in light blue. Trial onset and surrogate time windows are denoted with orange and grey rectangles, 
respectively. EX, exhale; IN, inhale. d–f, Mean ± s.e. of the event-related respiratory response of all participants (light blue trace) in the visuospatial 
(n = 29) (d), math (n = 26) (e) and lexical (n = 24) (f) tasks. Time 0 denotes task initiation (dashed black line). The black traces are individual mean 
respiration, with inhalation plotted upwards. Overlaid in orange (right y axis) is the P value obtained per time window tested.
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no event-related components, we used graph theory33 to investigate 
the effect of respiratory phase on network connectivity during the 
20-min baseline recording before task onset. In graph theory, sig-
nals acquired from the brain can be represented as a graph—nodes 
denote different brain areas (in this case, electrode recording sites) 
and edges represent functional connectivity (Fig. 2a).

The emerging topology of the graphs can be quantified using 
network measurements, each targeting different aspects of connec-
tivity between neighbouring or distant nodes. We investigated net-
work properties within five discrete frequency bins: delta: 0.5–4 Hz, 
theta: 4–8 Hz, alpha: 8–12 Hz, beta1: 12–16.5 Hz and beta2: 16.5–
24 Hz. Using these data sets, we next constructed graphs as follows: 
edges were defined using the absolute values of pairwise Pearson 
correlations applied to all electrode data with no time delay. Next, 
the correlation matrix was thresholded, and all edges that did not 
survive were removed, retaining an undirected binary graph (with 
the exception of the strength measurement, which relied on the 
weighted version of the graphs). We used six incremental threshold 
values of average degree (see below) ranging between 5% and 30% 
as cut-offs (that is, 5% implies that out of 100 nodes, each node is 
connected on average to five other nodes). We then extracted the 
following network connectivity measures reiteratively per average 

density and frequency band33: (1) strength: reflecting correlation 
values of signals recorded from two nodes. (2) Betweenness cen-
trality: reflecting the prevalence of nodes acting as bridges between 
parts of the network. (3) Global efficiency: reflecting the abil-
ity of the network to support long-range transfer of information.  
(4) Local efficiency: reflecting the resistance of a network structure 
to ‘attack,’ that is, incremental disconnections. (5) Clustering coef-
ficient: reflecting the degree of dense interconnectivity between 
neighbouring nodes (for more details, see ‘Network connectiv-
ity analysis’ in Methods). Finally, to explore the effect of respira-
tory phase on cortical connectivity, we entered these data into an 
omnibus analysis of variance (ANOVA) with conditions of phase 
(inhale and exhale), average density (5, 10, 15, 20, 25 and 30) and 
measurement (strength, betweenness, mean local efficiency, global 
efficiency and clustering coefficient). We observed main effects 
and interactions of measurement and average density, which are 
trivial given the different units and thresholds used for each cal-
culation. More meaningfully, the ANOVA uncovered a three-way 
interaction between phase, measurement and average density, 
suggesting that respiratory phase affected some of the network 
measurements in only part of the predefined network thresholds 
(phase × measurement × average density, F(8,224) = 2.38, P = 0.017, 

IN

IN

Band-pass filter

INEX

EXIN

EX

EX

0

10

20

30

40

50

A
U

5 10 15 20 25 30
Density

5 10 15 20 25 30

Density

0

0.2

0.4

0.6

0.8

1

A
U

5 10 15 20 25 30
Density

θ Clustering coefficient β1 strength β1 global efficiency 

5 10 15 20 25 30
Density

0

0.2

0.4

0.6

0.8

1

A
U

0

0.2

0.4

0.6

0.8

1

A
U

a b

IN

EX

IN

EX

IN

EX IN

EX

** **

*
****

*

*

*

*

Thresholding

c d e f

R

RL

L

0.3
∆r

0.15
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partial η2 = 0.078, 90% CI = 0.007 ≤ η ≤ 0.108). Follow-up analy-
ses revealed that the respiratory phase drove changes in network 
connectivity in the theta (Fig. 2b–d) and beta1 (Fig. 2e,f) ranges. 
Specifically, in the theta range, we observed that nasal inhalation 
drove a reduction in the mean local efficiency (average density = 15, 
inhale = 0.733 ± 0.058, exhale = 0.765 ± 0.050, P = 0.0021, Cohen’s 
d = −0.58, 95% CI = −1.10 ≤ d ≤ −0.07; average density = 20, 
inhale = 0.787 ± 0.039, exhale = 0.811 ± 0.028, P = 0.0055, Cohen’s 
d = −0.70, 95% CI = −1.22 ≤ d ≤ −0.18) and clustering coefficient 
(average density = 15, inhale = 0.611 ± 0.038, exhale = 0.637 ± 0.036, 
P = 0.0039, Cohen’s d = −0.69, 95% CI = −1.21 ≤ d ≤ −0.17; aver-
age density = 20, inhale = 0.658 ± 0.033, exhale = 0.679 ± 0.03, 
P = 0.03, Cohen’s d = −0.66, 95% CI = −1.18 ≤ d ≤ −0.14). Yet in 
the beta1 range, we observed that nasal inhalation drove a reduc-
tion in global efficiency (average density = 25, inhale = 0.660 ± 0.02, 
exhale = 0.672 ± 0.01, P = 0.024, Cohen’s d = −0.75, 95% 
CI = −1.27 ≤ d ≤ −0.23; average density = 30, inhale = 0.717 ± 0.017, 
exhale = 0.728 ± 0.012, P = 0.007, Cohen’s d = −0.74, 95% 
CI = −1.26 ≤ d ≤ −0.21) with an increased mean strength (average 
density = 25, inhale = 38.82 ± 3.75, exhale = 37.37 ± 3.19, P = 0.034, 
Cohen’s d = 0.41, 95% CI = −0.10 ≤ d ≤ 0.92; average density = 30, 
inhale = 44.68 ± 4.92, exhale = 42.66 ± 4.14, P = 0.027, Cohen’s 
d = 0.44, 95% CI = −0.07 ≤ d ≤ −0.95). The specific effects are 
detailed in Supplementary Table 1, and the electrodes primarily 
responsible for these shifts are identified in Supplementary Fig. 2. 
Had shifts occurred in low respiratory frequencies, one could per-
haps dismiss them as respiratory artefacts, yet shifts in the theta 
(clearly visualized in the comparison of the top and bottom pan-
els of Fig. 2b) and beta1 ranges are consistent with an effect on 
brain mechanisms related to attention34. This is consistent with 
our notion of inhalation driving a stimulus-processing phase. If 
the brain indeed enters a generalized stimulus acquisition phase on 
inhalation, one would expect that the same stimulus would then be 
processed differently on inhalation versus exhalation, resulting in 
different behaviour and different brain activity. Thus, we continued 
with addressing these questions.

Inhalation at task onset is associated with improved visuo-
spatial performance. We first set out to quantify behaviour dur-
ing the task. To verify that the system automatically triggered 
trials at the intended respiratory phase, we plotted the respira-
tory trace aligned with trial onset. We observed a clear separa-
tion of inhale and exhale trials (mean visuospatial: phase at onset 
inhale = −1.43 ± 0.3 rad, exhale = 1.85 ± 0.71 rad; lexical: phase at 
onset inhale = −1.45 ± 0.27 rad, exhale = 1.87 ± 0.55 rad, Watson–
Williams circular one-factor ANOVA (test for the equality of 
means in circular data), both P < 0.001) (Fig. 3a). We then exam-
ined performance in the tasks as a function of respiratory phase. 
A repeated-measures ANOVA on accuracy with conditions of 
task (visuospatial or lexical) and phase (inhale or exhale) revealed 
a main effect of task (F(1,27) = 67.44, P < 0.001, partial η2 = 0.078, 
90% CI = 0.007 ≤ η ≤ 0.108), reflecting that the lexical task was eas-
ier than the visuospatial task (mean visuospatial: 71.11 ± 10.69%; 
mean lexical: 88.61 ± 7.11%, two-tailed paired t-test t(28) = 8.4, 
P < 0.001, Cohen’s d = −1.93, 95% CI = −2.54 ≤ d ≤ −1.26), a main 
effect of phase (F(1,27) = 7.35, P = 0.012, partial η2 = 0.021, 90% 
CI = 0.029 ≤ η ≤ 0.405), reflecting a better overall performance in 
inhalation over exhalation (mean inhale: 80.52 ± 6.80%, mean exhale: 
78.86 ± 7.42%, two-tailed paired t-test t(28) = 2.54, P = 0.017), and 
a significant interaction between task and phase (F(1,27) = 22.65, 
P < 0.001, partial η2 = 0.456, 90% CI = 0.208 ≤ η ≤ 0.606), reflecting a 
dissociation of a significant advantage in performance during inhale 
over exhale in the visuospatial task (mean visuospatial: inhale: 
73.27 ± 10.91%; exhale: 68.04 ± 11.32%, two-tailed paired t-test 
t(28) = 4.49, P < 0.001, Cohen’s d = 0.47, 95% CI = −0.08 ≤ d ≤ 1) 
(Fig. 3b,c) (this effect also increased as the task progressed; 

Supplementary Fig. 3), yet a trend towards advantage in perfor-
mance during exhale over inhale in the lexical task (lexical: inhale: 
87.8 ± 7.6%; exhale: 89.7 ± 7.8%, Wilcoxon signed-rank, Z = 1.59, 
P = 0.11, Cohen’s d = 0.23, 95% CI = −0.79 ≤ d ≤ 0.3, if tested para-
metrically: two-tailed paired t-test t(27) = 2.18, P = 0.038) (Fig. 3d).

The effect of nasal inhalation on visuospatial task accuracy 
was striking (Fig. 3b) to the extent that we sought to replicate 
it before continuation. In experiment 3, 18 new participants 
(13 women, age = 24.94 ± 3.7 years) conducted the 160-trial ver-
sion of the respiratory-triggered visuospatial task. We again 
observed that trials were correctly triggered in accordance with 
respiratory phase (Supplementary Fig. 4a). Moreover, consistent 
with experiment 2, we observed that performance was again sig-
nificantly better in trials triggered by inhalation than in trials 
triggered by exhalation (mean % accuracy inhale: 72.04 ± 9.80%; 
exhale: 69.24 ± 8.57%, Wilcoxon signed-rank, Z = 2.28, P = 0.022, 
Cohen’s d = 0.30, 95% CI = −0.36 ≤ d ≤ 0.95; if tested para-
metrically: two-tailed paired t-test: t(17) = 2.37, P = 0.03) 
(Supplementary Fig. 4b). In other words, experiment 3 replicated 
the behavioural results of experiment 2.

In experiment 4, we further asked whether this phenomenon 
was restricted to nasal inhalation alone or whether it also persists 
in oral inhalation. We repeated the above task again with a new 
cohort of 18 participants (12 women, age = 25.82 ± 2.61 years), but 
prevented nasal respiration with a nasal clip. We observed a similar 
outcome: significantly better performance following oral inhalation 
versus exhalation (mean % accuracy inhale: 74.00 ± 7.72%; exhale: 
69.74 ± 7.51%, Wilcoxon signed-rank, Z = 1.98, P = 0.047, Cohen’s 
d = 0.55, 95% CI = −0.12 ≤ d ≤ 1.21; if tested parametrically: two-
tailed paired t-test t(17) = 2.37, P = 0.029) (Supplementary Fig. 
4c,d). Whereas the effect of respiratory phase on visuospatial per-
formance was robust and now replicated, the effects on lexical deci-
sion making were not significant, and were in fact trending in the 
opposite direction. To further verify this result, in experiment 5, 
we replicated the lexical decision task in 30 additional participants 
(16 women, age = 25.7 ± 3.3 years) and observed again that respira-
tory phase had no effect on performance in the lexical decision task 
(mean % accuracy inhale: 90.18 ± 10.89%; exhale: 89.91 ± 10.22%, 
Wilcoxon signed-rank, Z = 1.35, P = 0.176, Cohen’s d = 0.12, 95% 
CI = −0.39 ≤ d ≤ 0.62; if tested parametrically: two-tailed paired 
t-test t(29) = 1.74, P = 0.0918). In experiment 5, we also added 
an explicit questionnaire that further verified that participants 
were unaware of our interest in nasal airflow; see Supplementary  
Fig. 5. Taken together, we conclude that the spontaneous tendency 
to inhale at task onset (Fig. 1) probably drove changes in brain 
network organization (Fig. 2), and this was associated with a pro-
nounced improvement in performance in the visuospatial task  
(Fig. 3). We next set out to ask where and how this phase-specific 
performance was reflected in brain activity.

Nasal inhalation drives task-specific increased local brain 
activity in non-limbic regions. We probed for differences in the 
brain-evoked response to the same cognitive task, either visuo-
spatial or lexical, as a function of respiratory phase, either inhale 
or exhale. Consistent with the non-significant behavioural effect 
in the lexical decision task, we failed to observe significant dif-
ferences in brain activity between inhale and exhale in this task 
(Supplementary Figs. 6 and 7). By contrast, in the visuospatial 
task, we observed a significant main effect of respiratory phase 
in a time window of 185–270 ms post-stimulus onset (topo-
graphical ANOVA (tANOVA) maximum–minimum, P = 0.0026, 
Cohen’s d analogue = 3.04) (Fig. 4a). Topographical estimation of 
scalp current densities revealed that the largest increase in posi-
tivity occurred at frontal electrodes (minimum t-value at elec-
trode FC5, t-value = −3.516) (Figs. 4b,c and 5a), and the largest 
increase in negativity occurred at parieto-occipital electrodes 
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(maximum t-value at electrode P4, t-value = 3.058) (Figs. 4b,c 
and 5b). To address this within a full factorial design, we entered 
peak event-related potential (ERP) responses within this time 
window into a repeated-measures ANOVA with conditions of 
task (visuospatial or lexical), electrode (P4 or FC5) and respira-
tory phase (inhale or exhale). We observed a main effect of elec-
trode (which is to be expected given the opposite directions of 
the negative and positive components observed) (F(1,26) = 55.28, 
P < 0.001, partial η2 = 0.680, 90% CI = 0.474 ≤ η ≤ 0.772), a mar-
ginal interaction of electrode × phase (F(1,26) = 3.89, P = 0.059, 
partial η2 = 0.130, 90% CI = 0 ≤ η ≤ 0.323) and, critically, a triple 
interaction of electrode × task × phase (F(1,26) = 5.80, P = 0.023, 
partial η2 = 0.182, 90% CI = 0.014 ≤ η ≤ 0.377), reflecting modula-
tion of both parieto-occipital and frontal ERP amplitudes by res-
piration in the visuospatial task but not in the lexical task (peak 
visuospatial: P4 inhale: −2.42 ± 1.66 µV, P4 exhale: −1.53 ± 1.67 µV, 
FC5 inhale: 1.27 ± 1.01; FC5 exhale: 0.89 ± 1.43 µV; lexical: P4 
inhale: −2.02 ± 1.49 µV, P4 exhale: −2.19 ± 1.82 µV, FC5 inhale: 

1.78 ± 1.09; FC5 exhale: 1.90 ± 1.21 µV,). No other main effects of 
interactions were observed (all P > 0.087).

In addition, the tANOVA revealed a second significant time 
window of 915–975 ms post-stimulus onset (tANOVA maxi-
mum–minimum, P = 0.003, Cohen’s d analogue = 1.41) (Fig. 4a). 
Topographical estimation revealed that the largest increase in nega-
tivity occurred in this later time window at occipital electrodes 
(maximum t-value at electrode O2, t-value = 3.614), and the larg-
est increase in positivity occurred at frontal electrodes (minimum 
t-value at electrode F2, t-value = −3.872) (Supplementary Fig. 9).  
To again address this within a full factorial design, we entered peak 
ERP responses within this time window into an ANOVA with con-
ditions of task (visuospatial or lexical), electrode (O2 or F2) and 
respiratory phase (inhale or exhale). We observed a main effect 
of electrode (F(1,26) = 13.17, P = 0.0012, partial η2 = 0.336, 90% 
CI = 0.10 ≤ η ≤ 0.513), but no other significant main effects or inter-
actions (all P > 0.076). Whereas this later, non-task-specific source 
may be related to various late-phase aspects of the task, such as 
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the motor response or ensuing self-appraisal, the early sources fall 
squarely within stimulus-processing time frames, with the nega-
tive and positive deflections corresponding to the well-character-
ized N200 (ref. 35) and P200 (ref. 36) ERP components, respectively. 
Importantly, a contrast of inhalation versus exhalation without 
concurrent task trials showed no difference in these electrodes or 
ERP components (the critical time-window duration was 42.9 ms, 
and the maximal observed time window was 279–283 ms post-
phase onset; Supplementary Fig. 10). Moreover, a separate analysis 
implied that the N200 and P200 results were not merely reflections 
of performance accuracy (Supplementary Fig. 11). Thus, we con-
clude that the exact same cognitive task and stimuli are associated 
with increased brain response within localized regions (in non-
olfactory cortical substrates) if they are encountered in inhalation 
versus exhalation.

To further probe the link between the behavioural pattern and 
the brain activity pattern that we observed, we asked whether 
greater differences in performance between inhale and exhale 
were associated with greater differences in activity across condi-
tions within the time window uncovered by the tANOVA (185–
270 ms). We hypothesized that such a relation, if evident, should 
be in the vicinity of P4 and/or FC5. To reduce the possibility of 
reporting spurious correlations, we probed for locations with two 
or more contiguous electrodes significantly correlated with behav-
iour. We observed only one such location where two contiguous 
electrodes were significantly negatively correlated with behaviour, 
and these two electrodes were indeed immediate neighbours of 
FC5 (FT7: r = −0.468 P = 0.018, 95% CI = −0.728 ≤ r ≤ −0.09; T7: 
r = −0.477, P = 0.016, 95% CI = −0.733 ≤ r ≤ −0.101) (Fig. 5c,d and 
Supplementary Fig. 12). To further verify that this was indeed not 
a spurious result, we first pooled the signal from these two elec-
trodes and observed that the negative correlation was preserved 
(FT7 + T7: r = −0.524, P = 0.007, 95% CI = −0.761 ≤ r ≤ −0.163). 
Next, using the spatial location of the electrodes in the head cap, 
we estimated the distance between the adjacent FT7 and T7 at 
27.29 mm. We then reiterated the correlation analysis for every pos-
sible pair of adjacent electrodes located 25–30 mm apart, totalling  

at 48 pairs (Fig. 5e). The absolute correlation between the joint 
signal recorded over FT7 and T7 ranked highest among the 48 
comparisons (Fig. 5f). We also calculated the correlation between 
behavioural results and every possible pair of electrodes on the 
head cap (Fig. 5g). Out of 2,016 such pairs, FT7 and T7 ranked 
second (Fig. 5h). The electrode pair that ranked first (r = −0.598, 
P = 0.002, 95% CI = 0.105 ≤ r ≤ 0.735) was non-adjacent FCz and 
C5—an electrode juxtaposed with T7. In other words, these analy-
ses imply that the correlation between the respiratory-coupled ERP 
signal and task performance is genuine. Finally, we also observed 
a single electrode at a different location with a significant positive 
correlation (C1: r = 0.48, P = 0.015, 95% CI = −0.803 ≤ r ≤ −0.266), 
but we cannot determine with confidence that this lone electrode 
was not spurious.

To further probe for respiratory-phase-dependent alterations in 
brain response during task performance, we used standardized low-
resolution brain electromagnetic tomography (sLORETA), which 
provides three-dimensional tomography maps37. We observed that 
trials presented during nasal inhalation versus exhalation were 
associated with significant localized decreases in EEG alpha and 
beta1 power. More specifically, during trials in inhalation, EEG 
alpha power was significantly reduced in the right postcentral gyrus 
(peak value t = −4.90, P = 0.017, MNI (Montreal Neurological 
Institute) coordinates x = 60, y = −30, z = 45, Brodmann area 2 
(BA2)) and the right parahippocampal gyrus (peak value t = −4.76, 
P = 0.017, MNI coordinates x = 20, y = −25, z = −20, BA35)  
(Fig. 6a). In addition, during trials in inhalation, EEG beta1 power 
was significantly reduced in the left precuneus (peak value t = −5.46, 
P = 0.0025, MNI coordinates x = −10, y = −60, z = 20, BA31)  
(Fig. 6b). In turn, we saw no evidence for respiratory-phase differ-
ences in these regions and frequencies in equivalent time epochs 
without concurrent task trials (t-value at the postcentral gyrus peak 
coordinate: t = 0.26, t-value at the parahippocampal gyrus peak coor-
dinate: t = 0.21, t-value at the left precuneus peak coordinate: t = 1.58, 
all P > 0.38; Supplementary Fig. 13). As to the source localization of 
these effects, one must always keep in mind the limitations of EEG 
in this respect38,39. That said, these results in the parahippocampal  
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gyrus and precuneus are precisely overlapping with the PET imag-
ing results obtained using the same paradigm32, lending credibility 
to the patterns that we observed. Thus, using an additional measure, 

a b

–200 0 200 400 600 800 1,000

–4

–3

–2

–1

0

1

2

3

4

E
R

P
 a

m
pl

itu
de

 (
µV

)

–4

–3

–2

–1

0

1

2

3

4

E
R

P
 a

m
pl

itu
de

 (
µV

)

Time (ms)

–200 0 200 400 600 800 1,000

Time (ms)

IN

EX

IN

EX

–1 0 1 2

–0.1

0

0.1

0.2

r = –0.468  
P = 0.018

–3 –2 –1 0 1 2 3 4

ERP amplitude  IN – EX (∆µV) ERP amplitude  IN – EX (∆µV)

r = –0.477
P = 0.016

c d e

FT8 27.227.226.826.8F8

37.237.2

T8 27.227.2

30.530.5

FC6 30.530.5

28.228.2

28.928.9

27.227.2

AF8

33.133.1

F6

34.334.3

TP8

30.530.5

26.826.826.826.8

31.231.229.329.3

35.035.0

26.726.7

34.634.6

C6
30.530.5

35.535.5

P10

34.934.9

Fp2

CP6

37.237.2

28.928.9

34.634.6

P8

27.227.2

28.228.2

AF4

28.828.8
36.636.6

37.137.1

27.227.2

F4
32.332.3

FC4 31.631.6

26.126.1

31.631.6 C4
31.631.6

P6
35.035.0

33.133.1

Fpz

34.334.3

27.227.2 PO8

CP4

32.332.3

F2

35.035.0

26.726.7

35.235.2

AFz

35.535.5

FC2 33.733.7

31.231.2

25.525.5

P4

31.631.6

Fp1

29.329.3

C2

O2

PO4

26.126.1

Fz

33.733.7
CP2

Iz

34.934.9

27.227.2

AF3
35.035.0

28.828.8

34.734.7

P2

37.137.1

FCz

AF7

33.133.1

28.228.2

F1
35.035.0

33.733.7

Oz

25.525.5

26.126.1

34.334.3

33.733.7

Cz
34.734.7

27.227.2

POz

F3
32.332.3 35.535.5

CPz

35.235.2

Pz

26.726.7

F726.826.8

37.237.227.227.2

FC1 33.733.7

34.734.7

F528.928.9

O1

37.137.1

25.525.5

33.733.7

31.631.6

29.329.3

P9

34.934.9

26.826.8

C1
33.733.7

P1

36.636.6

27.227.2

FC3 31.631.6

PO3

35.035.0

31.231.2

PO7

30.530.5

34.634.6

CP1

FC5 30.530.5

35.235.2

26.126.1

28.828.8

28.228.2

35.035.0

33.133.1
34.334.3

27.227.2

31.631.6

P7

27.227.2

P3

C3
31.631.6

26.826.8

26.726.7

TP7

30.530.5

32.332.3
35.535.5

P5

37.237.2

CP3

C5 30.530.5
28.928.9

34.634.6

CP5

FT7 T7

Fp1
AF3

F3
F7

FC5
FC1

C3
T7

CP5
CP1

P3
P7

PO7
O1
Oz
Pz

Fpz
AF8
AFz

F2
F6

FT8
FC4
FCz
C2
C6

TP8
CP4

P2
P6

P10
PO4

0.6–0.6

f

r

–0.8 –0.4 0 0.4
0

20

40

60

–0.5 0 0.5
0

4

8

12

g h

r

n n

r

∆
P

er
fo

rm
an

ce
 IN

 –
 E

X

–0.1

0

0.1

0.2

∆
P

er
fo

rm
an

ce
 IN

 –
 E

X

we again observe that the exact same cognitive task and stimuli are 
associated with altered brain response within localized regions if 
they are encountered in inhalation versus exhalation.

Fig. 5 | Respiratory-phase-locked shifts in neural activity are correlated with phase-locked shifts in behavioural performance. a,b, Grand mean ± s.e. of 
respiratory-phase-coupled ERP traces evoked by visuospatial trials presented during inhalation and exhalation recorded from FC5 (a) and P4 (b) (n = 25). 
The dashed black line at time zero denotes task onset. Negative values are plotted upwards. The grey rectangle is the tANOVA main effect. c–e, Scatter 
plots of correlation between phase dependence in ERPs and phase dependence in behavioural performance in electrodes FT7 (c) and T7 (d). Each point is a 
participant (n = 25). The orange line is the linear fit. Pairwise distances of all electrode pairs sharing similar distance with that of FT7 and T7 (highlighted in 
light blue) are also shown (e). f, Histogram of r values of all two-electrode pairs sharing similar distance with FT7 and T7. The dashed orange line represents 
the value of the actual data. g, Correlation (r values) of the differential ERP signals pooled from every electrode pair combination and the delta of behavioural 
performance. The white and black hues represent the magnitude of positive and negative correlations, respectively. Note the dark shades joining FT7 and T7 
(orange boxes). h, Histogram of r values of all possible two-electrode pairs. The dashed orange line represents the value of the actual data.

NATuRE HuMAN BEHAviOuR | www.nature.com/nathumbehav

http://www.nature.com/nathumbehav


Articles NaTure HumaN BeHaviOur

Inhale–exhale differences in resting brain connectivity reflected 
later inhale–exhale differences in performance accuracy. Nasal 
respiration at rest drove changes in the functional connectivity-
derived network architecture, with different patterns associated 
with inhalation and exhalation. This change in network architec-
ture may underlie respiratory-phase-specific differences in behav-
iour and neural activity that we observed during the task. To probe 
the link between these observations, we asked whether the baseline 
network shifts were related to later shifts in performance at the indi-
vidual participant level. We generated a simple linear model (see 
the ‘Classifier modelling’ section in Methods) that related the differ-
ence in network connectivity between inhalation and exhalation at 
rest to the later performance differences in inhalation versus exha-
lation. We built the model on 18 participants and tested it on the 
remaining 10 participants, and repeated this process 10,000 times. 
We observed that the average correlation between predicted and 
actual performance differences was r = 0.32 ± 0.3. To estimate the 
significance of this outcome, we repeated the analysis 5,000 times, 
each time randomly reassigning performance scores, and observed 
an average r = −0.01 and, moreover, that the real data fell within the 
top 3% of random permutations (Fig. 7a–c). As a further test of this 
result, we applied the same modelling scheme in an effort to pre-
dict performance in the lexical decision task, and failed (r = −0.12, 
ranked 76th out of 100 random permutations). In other words, the 
predictive power for the visuospatial task seems modest but genuine. 
We note that the model relied primarily on features extracted in the 
theta frequency domain (Fig. 7d). Finally, to verify that our model 
did not merely capture inter-subject variability in baseline cognitive 
abilities, we re-ran an identical predictive pipeline, but now tried to 
predict absolute performance rather than performance differences 
between inhale and exhale. We observed an average correlation of 
r = −0.03, suggesting no link between baseline respiratory-phase-
dependent network properties in EEG and absolute performance 
level. Thus, we conclude a genuine link between inhale–exhale dif-
ferences in neural activity at rest and later inhale–exhale differences 
in behavioural performance at a visuospatial task.

Discussion
The Oxford Dictionary tells us that inspiration is both ‘the draw-
ing in of breath’ and ‘the process of being mentally stimulated’ or 

‘a sudden brilliant, creative, or timely idea’. Our data indicate that 
this implied link between respiratory phase and mentation is no 
coincidence. A substantial body of evidence implied that respira-
tion affects rodent15–18,21–23,26 and human6,14,19,27,28 brain activity pat-
terns. However, the reported effect of this on human behaviour 
consisted of mostly static effects following continuous alterations 
in the dynamic respiratory cycle. For example, people can adapt 
more regular and deliberate breathing patterns to modify cognitive 
state and reduce stress40. In turn, more transient respiratory-phase-
dependent effects were restricted to behaviours that depend on 
ventral temporal rhinencephalic substrates27–30. Here, rather than an 
overall change in breathing pattern that leads to an overall change in 
cognition, we identified a respiratory-phase-specific effect on non-
limbic cognition that changes breath-by-breath. Performance at a 
visuospatial task was enhanced during inhale, reduced during ensu-
ing exhale and enhanced again during ensuing inhale. Moreover, 
although participants were unaware of this link, it nevertheless 
subliminally affected their behaviour, as evidenced by their implicit 
tendency to opt for trial onset upon inhale. Finally, the EEG data 
implied that the brain indeed processes the same stimulus differ-
ently when encountered during inhale or exhale, and that this dif-
ference was evident in non-limbic task-specific areas of processing.

Can the EEG data provide for a more mechanistic interpre-
tation? We observe that the resting-state analysis implied shifts 
in connectivity between inhale and exhale. Given the role attrib-
uted to shifts in connectivity in the repertoire of functional brain 
response patterns41, this respiratory-phase-dependent shift in topol-
ogy is meaningful by itself. But what are the specific implications of 
these specific shifts in topology? In beta1, we observed increased 
mean strength, an effect stemming primarily from electrode CP4 
(Supplementary Fig. 2). Increased mean strength in beta1 in pari-
etal regions is consistent with increased attention42, hence this result 
is consistent with our overall view of an information-gathering state 
at inhale. In turn, the combination of reduced global efficiency in 
beta1 and reduced mean local efficiency and clustering coefficient 
in theta together point to a state of brain connectivity with reduced 
small-worldness43. In the EEG of cognition, the extent of small-
worldness is typically compared between populations (for example, 
impaired versus unimpaired) or between semi-static states (on ver-
sus off a drug), and in such instances, reductions in small-worldness 
are typically associated with negative outcome44,45. Here, however, 
we estimate small-worldness not across individuals in static states, 
but rather within individuals in a dynamic process (respiration), 
and observe reductions in small-worldness associated with what we 
consider the higher attentive state. In this respect, we note that, in 
the context of a dynamic task, small-worldness is indeed reduced 
with attentional task (go–no go) onset46.

Next, when we then look at the EEG evoked response during the 
task (rather than connectivity at rest), we observed that trial-related 
parieto-occipital N200 and frontal P200 were significantly larger 
during inhale versus exhale. A parieto-occipital N200 is consis-
tent with processing visuospatial information35, and a frontal P200 
is consistent with hierarchical selection of task-relevant features 
inherent to this particular task36. Moreover, when using a global fre-
quency-dependent approach rather than a local amplitude-related 
measure, we observed task-specific reductions in alpha and beta1 
power, the former in the right postcentral and parahippocampal 
gyri, and the latter in the left precuneus. Reductions in alpha power 
are associated with desynchronization and high excitability during 
task performance47. In this sense, the task-related reductions that 
we observed are consistent with the literature and probably reflect 
aspects related to the button pressing associated with the task (post-
central gyrus)48 and the need to distinguish between relevant and 
irrelevant landmarks within a visuospatial effort49.

Thus, taken together, the EEG data imply a model in which 
inhalation prepares the brain for incoming sensory information 
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Fig. 6 | Nasal inhalation drives localized task-specific reductions in EEG 
power. a, sLORETA source localization t-maps of ERPs in the visuospatial 
task phase-locked to inhalation and exhalation onset within the alpha 
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(as implied in the beta1 mean strength), and once this is acquired, 
inhalation further optimizes neural processing in task-specific 
neural substrates (as evidenced in the ERP). A remaining critical 
question is of course what is driving all of this? The most likely 
answer is a common internal driver for inhalation and orchestrated 
patterns of brain activity. We can speculate that such a driver may 
be located in the pre-Bötzinger complex22,50 and may involve amyg-
daloidal connectivity51,52. In turn, and despite the results of our oral 
control (Supplementary Fig. 4d), the possibility of external modu-
lation from sensation of actual respiratory airflow should not yet 
be abandoned20.

This study was inspired by an evolutionary hypothesis. 
Evolutionary hypotheses cannot be directly tested and data can only 
be consistent or inconsistent with their gist. Beyond data consistent 
with an evolutionary hypothesis, we uncovered a mechanism reflect-
ing a potentially primary feature of interplay between bodily physi-
ology, the brain and cognition: inhalation-phase mentation. We 
propose that inhalation drives patterns of neural activity consistent 
with heightened attention, thus optimizing processing of incom-
ing information of all kinds. Beyond theoretical impact alone, our 
results may provide implications on several fronts. One such front 
is learning. Our results suggest a respiratory phase that is optimal 
for stimulus acquisition. This may imply novel learning strategies in 
which acquisition is phase-locked with respiration. A second area of 
immediate implication is in the design and analysis of human brain 
imaging studies, particularly using fMRI. Because the fMRI signal is 
dependent on oxygenation and levels of CO2, respiration is treated 
in fMRI primarily as a source of physiological noise, and there are 
extensive measures applied to removing this noise from the signal53. 
Our results imply that participants may modulate their respiration 
to match the task and that respiration then optimizes task-specific 
neural activity. Thus, by ‘cleaning out’ respiration, fMRI studies 
may be cleaning out a very important source of genuine variance in 
brain function. This may have had a significant effect on the inter-
pretation of cognitive function using fMRI. Alas, we see no easy way 
around this. Respiration is undeniably a potential source of physi-
ological noise in fMRI, yet it is also likely a genuine orchestrator and 
driver of neural activity in cognitive tasks.

Finally, we would like to acknowledge several limitations of this 
study. First, owing to technical limitations, our EEG did not include 
the gamma or high gamma frequency domains. Given that these 
frequencies have been associated with attentional mechanisms and 
their possible relation to respiration27, this implies that there may 
be effects that we are missing in our analyses. Second, the effect 
that we predicted did not materialize in the behaviour or ERP of 
the lexical task. We can see two alternative methodological explana-
tions for this lack: first, there may be interference between respira-
tion and silent mouthing or subvocalization in the lexical decision 
task, and second, the lexical task was significantly easier than the 
visuospatial task, introducing a possible ceiling effect, potentially 
obscuring the impact of inhalation. In turn, the difference between 
the lexical and visuospatial tasks may be genuine. Indeed, modality 
specificity was previously observed in the effect of nasal inhalation 
on mental imagery28. All of this suggests that we cannot conclude 
that our hypothesis of an overall stimulus acquisition phase of brain 
processing equally applies to all modalities and tasks. Indeed, if one 
considers the variance in the data, it may also not equally apply to 
all individuals. In other words, we can foresee an ultimately more 
complex picture emerging in which some tasks are ‘inhale tasks’ 
and others are ‘exhale tasks’, and, moreover, that some individuals 
are ‘inhalers’ and others ‘exhalers’. Although these possible sources 
of variance implicate various directions for future research, the flip 
side of this is that the lexical task provided an extensive EEG control 
condition in this study. Most EEG concerns that we could think of 
were mitigated by the fact that a different task with the same num-
ber of trials, the same temporal design and in the same participants 
did not yield effects. In this respect, the lack of effects in the lexical 
task was a bug-turned-feature in this effort. A third limitation of our 
results was that, in contrast to our prediction, the effect of respira-
tory phase on performance was similar for oral and nasal inhalation. 
A ‘picture perfect’ result consistent with our overarching hypothesis 
would have been an effect in nasal but not oral inhalation. Although 
we did not observe such a ‘picture perfect’ pattern, the pattern that 
we did observe does not negate our hypothesis. Under natural cir-
cumstances, oral and nasal inhalations occur either in concert, or 
nasal inhalation alone (inhaling with a closed mouth). The condition  
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Fig. 7 | inhale–exhale differences in resting brain connectivity reflected later inhale–exhale differences in performance accuracy. a, Correlations between 
neural activity and behavioural performance in the model (orange) and 5,000 control shuffles (blue) (see Methods). b, Statistical comparison (t-test) 
between the real data (orange in a) and all of the possible shuffles (blue in a). Inlays are the best, intermediate and worst cases of difference between 
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of oral inhalation alone is unnatural and is largely restricted to the 
disease state of a completely stuffed or blocked nose, or the artificial 
experimental state of a clipped nose, as was the case here. It is unsur-
prising that the brain did not evolve to account for these two condi-
tions. Thus, given that inhalation, whether nasal or oral, is driven by 
common brain substrates22,50–52, it is not unreasonable that a stimulus-
processing mode triggered by inhalation would remain triggered by 
oral inhalation alone. Finally, this paper contains many experiments 
and analyses. The advantage of this is that we tested our hypothesis 
from many angles, and this converged towards a common answer. 
The flip side of this is that the large number of tests increases the 
chances of noise from random sampling. To address this, we took a 
meta-analysis approach using P-curve analysis54, and this indicated 
an overall evidential value of our results (Supplementary Fig. 15). 
Nevertheless, this issue should remain in mind.

Although the above limitations deserve attention, we think that 
they do not take away from our main conclusions. The combina-
tion of the spontaneous tendency to nasally inhale at task onset, the 
better performance at inhale and the altered brain response during 
inhale that is correlated with performance, all point to a respiratory-
phase-dependent mode of processing, or in other words, a sniffing 
brain55. This finding of mental processes with no link to olfaction 
that are nevertheless phase-locked with nasal inhalation is consis-
tent with our hypothesis of a functional olfaction-based template in 
human brain evolution.

Methods
Participants. Written informed consent to procedures approved by the 
Weizmann Institute International Review Board Committee was obtained 
from all participants. Participants were all native Hebrew speakers, in general 
good health, with normal or corrected-to-normal vision, and reported no 
history of neurological or mental illness, attention deficit disorders or dyslexia. 
Participants were instructed not to ingest caffeinated beverages up to 2 h before 
experimentation. Additional exclusion criteria were any chronic or acute 
conditions that involved the respiratory tracts. All participants were paid for their 
participation. Participants were blind to the experimental goals and interests, 
experimenters were not. As to the number of participants, we could not start 
with a formal power analysis, as previous similar studies did not include the raw 
data necessary for estimating correlation across conditions. Thus, we recruited 30 
participants per condition, that is, a cohort similar in size to previous studies of this 
type27. For the internal replication experiment, we conducted power analysis using 
G*Power software56, which indicated that for power = 0.8, we need to recruit n = 18.

Experiment 1: measuring nasal airflow concurrent with cognitive tasks. 
Thirty-one individuals participated in this experiment (15 women, mean 
age = 25.67 ± 2.27 years) in which we measured nasal airflow during performance 
of cognitive tasks. In this and all ensuing experiments, we relied on methods 
that we have used extensively in the measurement and characterization of nasal 
airflow57. Nasal respiration was sampled at 100 Hz using a nasal cannula linked to 
a spirometer (ML141, ADInstruments) and Power-Lab 16SP Monitoring System 
(ADInstruments). To draw attention away from respiratory monitoring, we used 
the same recording setup to also acquire heart rate via a finger pulse sensor, which 
was fitted to the first phalanx of the index finger of the left hand. Technical faults 
corrupted some data, retaining 24, 29 and 26 participants for analysis in the 
mathematical, visuospatial and lexical decision tasks, respectively. For analysis, 
the normalized respiratory signal was collapsed across trials, resulting in a mean 
respiratory trace per participant, time-locked to the time of trial onset. To assess 
the salience of the respiratory response to task onset, as well as its deviation from 
baseline signal fluctuations, we applied the following statistical pipeline: sign 
proportion per trial, defined as the sum of the positive sign values (regardless of 
magnitude) of the respiratory signal within a time window was calculated and 
averaged across trials per participant. We then applied circular permutation to 
the entire respiratory trace to extract the same parameter of sign proportion from 
random points during the session (trial onsets were fixed). As with the task data, 
values were averaged across trials per participant. Finally, the mean respiratory 
sign proportion at task onset was compared with the mean surrogate data per 
participant in a paired t-test. In other words, surrogate time points were randomly 
selected and their duration was set to match the actual task data. We reiterated 
this process for time windows of incremental duration from the time of task onset 
onwards. The MATLAB code for this analysis can be found in the Code availability.

Experiment 2: EEG. Thirty individuals participated in this experiment (8 women, 
mean age = 25.8 ± 2.8 years) in which trials were triggered by nasal respiration, here 
concurrent with EEG recordings. We used standard methods typically applied in 

EEG: continuous EEG was recorded from 64 electrodes embedded in an elastic 
head cap (BioSemi) arranged according to the extended 10–20 system58. Skin was 
abraded at each electrode site and conductive gel (Signa Gel, Parker) was applied. 
Vertical eye movement and blinks were monitored with two electrodes placed 
above and below the right eye, and horizontal eye movements were monitored by 
an electrode placed at the outer canthi or the left eye (eye data were unavailable for 
one participant). EEG was also recorded from bilateral mastoid locations, which 
later served as a linked reference. Impedances were maintained below 25 kOhm. 
The EEG signal was amplified and digitized at 2,048 Hz by ActiveTwo AD-box 
(BioSemi), controlled by ActiView 7.02 (BioSemi) data acquisition software.

Following application of the recording electrodes, participants were left alone 
in the dimly lit room to be monitored from an adjacent control room. Lexical 
decision and visuospatial tasks were counterbalanced for order across participants, 
and triggering from inhale or exhale was randomly ordered within participants. 
The total duration of the experimental session was approximately 80 min (~20 min 
per movie clip and ~15 min per cognitive task, including breaks).

ERPs. EEG data were analysed using Brain Vision Analyzer 2.0 (Brain Products) 
with standard methods for EEG ERP derivation: following recording, data were 
referenced to a mean bilateral mastoid signal post-hoc. Next, data were filtered 
with a bandpass of 0.5–30 Hz, bandwidth of 0.3 s, 8th order. This low cut-off of 
0.5 Hz was selected to remove ongoing respiratory-related artefacts (the respiratory 
frequency of this data was 0.31 ± 0.08 Hz). In 4 cases, 1 out of 64 electrodes 
detached mid-experiment. In these cases, it was topographically interpolated 
from its neighbours using spherical spline interpolation, 4th order. Next, an 
ocular correction regression algorithm was applied to remove blinks and eye 
movement-induced artefacts59. Following filtration and artefact correction, data 
were downsampled to 256 Hz. To generate event-related epochs, data underwent 
segmentation around task-onset markers (time window: −500 to 1,000 ms post-
stimulus) according to condition (inhale or exhale). Epochs that contained artefacts 
were rejected according to the following standard automatic exclusion criteria: 
maximal voltage step exceeded 50 μV ms–1, maximal absolute difference exceeded 
200 μV within 200 ms, activity lower than maximum – minimum of 0.5 μV within 
100 ms. This amounted to excluding 9 ± 6.6 or 3% of trials in the visuospatial task 
and 4.5 ± 5.9 or 5% of trials in the lexical decision task. Next, epoch data were 
linearly detrended and a mean signal of −500 to 0 ms served as baseline. Finally, 
epochs were collapsed over trials to generate the mean ERP over each electrode site 
per participant. In all cases, the first trial was discarded to account for an element 
of surprise that may accompany session onset.

Statistical analysis. In all experiments, we first tested the normality of data 
distribution. In cases in which the data were abnormally distributed, we applied 
non-parametric statistical tests. However, we also reported the results of a 
parametric test in parenthesis to retain reporting consistency across the paper.

For tANOVA and post-hoc ERP statistical analyses, we used RAGU 
software60. RAGU is a MATLAB-based assumption-free bootstrap randomization 
statistics suite. Its strength is chiefly in the maximization of statistical power 
while minimizing the need for a priori choices of model (for example, areas of 
interest, time window or frequency band). As a preliminary step, we validated 
the consistency of ERP topographies across the participant cohort. To test this, 
we subjected the data to a topographical consistency test of 5,000 permutations 
provided within RAGU. The topographical consistency test confirmed that under 
both conditions, common activations were found across participants throughout 
the entire epoch following trial onset (−200 to 1,000 ms, P < 0.001). Prior to 
permutations, data were re-referenced to average and underwent multidimensional 
scaling to remove outliers within the RAGU package, with the exclusion threshold 
set at P < 0.05. Randomization parameters were set to 5,000 permutations on the 
L2 norm (scale to unity variance) of the raw data. In the within-subjects statistical 
design, ‘inhalation’ and ‘exhalation’ were reflected in positive and negative t-values, 
respectively, regardless of subsequent EEG current distributions observed on the 
scalp. The critical P value was set at P < 0.05. tANOVA was conducted in a within-
participant design with a single condition of respiratory phase (inhale or exhale). 
tANOVA compares differences between groups versus random permutations, 
precluding traditional effect-size calculations (in which per-participant 
measurements are used). Thus, effect sizes were calculated using an analogue of 
Cohen’s d from Z-scores of scalp topography differences between conditions61.

sLORETA and EEG source localization. We used the distributed source 
localization algorithm in sLORETA to generate three-dimensional tomography 
maps in which the localization of brain signals is preserved with low levels of 
dispersion37. We used the ERP data obtained during the visuospatial task (within 
a time of 0–1,000 ms post-stimulus onset) as input. We then used the ‘EEG to 
cross-spectrum’ function in sLORETA to translate these time series into the 
frequency domain by means of cross-spectral analysis. We investigated network 
properties within five discrete frequency bins: delta: 0.5–4 Hz, theta: 4–8 Hz, 
alpha: 8–12 Hz, beta1: 12–16.5 Hz and beta2: 16.5–24 Hz. The current density 
within each frequency band was calculated separately using the ‘cross-spectrum to 
sLORETA’ function. Following participant-wise normalization, we used a paired-
group design to compare epochs that took place during inhalation or exhalation. 
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Statistical testing was conducted on the log-transformed t-statistic values of the 
data within the sLORETA environment. Statistical non-parametric mapping was 
used to estimate current density distributions of EEG activity generators. Statistical 
significance was assessed by defining a critical threshold of P < 0.05 (two-tailed, 
whole-brain corrected), corrected for multiple comparisons by a randomization 
test with 5,000 permutations. For visualization purposes, t-values were projected 
into MNI space coordinates with a colour palette corresponding to t-values. 
Figures are focused around the coordinates of local maxima.

Network connectivity analysis. We used a graph theory approach33 to investigate 
the influence of the respiratory cycle on cortical network connectivity. Briefly, 
signals acquired from the brain can be represented as a graph—nodes denoting 
different brain areas (in this case, electrode recording sites) and edges representing 
functional connectivity. To ask how functional connectivity is modulated by the 
respiratory cycle, inhalation and exhalation markers were used to segment the 
continuous 64-electrode EEG obtained during the 20-min baseline movie clip 
into 1-s epochs that occurred exclusively either during inhalation or exhalation. 
Given that all inhalations versus all exhalations in this study would amount to 
an extraordinary amount of data, we initially restricted the data to the best-
manageable subset as follows: we rank-ordered individual respiratory cycle 
durations and removed events under the 25th or above the 75th percentile within 
each participant. Following these exclusions, we still had in hand about 600 epochs 
per participant. We then further limited the number of epochs per condition per 
participant, randomly selecting 200 epochs per condition from across the session 
(except one very slow breather who ended with 156 epochs). We should stress 
that this connectivity analysis of the resting-state EEG data is the only place where 
we applied such data reduction, which was not applied in any of the task-related 
analyses. EEG time series were sampled at 256 Hz. Network measurements of one 
subject were extremely skewed, suggesting possible corruption of the data during 
acquisition and were therefore discarded. We investigated network properties 
within five discrete frequency bins: delta: 0.5–4 Hz, theta: 4–8 Hz, alpha: 8–12 Hz, 
beta1: 12–16.5 Hz and beta2: 16.5–24 Hz. On the basis of these data sets, we next 
constructed graphs as follows: edges were defined using the absolute values of 
pairwise Pearson correlations applied to all electrode data with no time delay. 
Next, the correlation matrix was thresholded and all of the edges that did not 
survive were removed, leaving an undirected binary graph (with the exception of 
the strength measurement, which relied on the weighted version of the graphs). 
We used six incremental threshold values of average degree (see below), ranging 
between 5 and 30 as cut-offs (the distribution of r values associated with each cut-
off is in Supplementary Fig. 16). The following network matrices were calculated 
on graphs reiteratively per average density and frequency band:

(1) Strength: nodal strength is defined per node as the sum of all its edges, 
derived from each node’s connectivity matrix. This is the only measurement for 
which the edges’ weights were taken into account. Mean strength is defined as the 
average over all nodal strengths.

(2) Betweenness centrality: path length is defined as the minimum number of 
edges that are needed to cross on the way from one node to another. Betweenness 
centrality is therefore defined per node as the number of shortest paths that pass 
through it. This represents the degree of which nodes stand between each other 
and, as a result, its importance as a hub in the network.

(3) Global efficiency: defined as the average inverse path length.
(4) Local efficiency: defined per node as the global efficiency in the subgraph 

that includes only this node’s neighbours. Mean local efficiency is the average over 
all of the nodes’ local efficiencies.

(5) Clustering coefficient: quantifies per node how likely it is for two of its 
neighbours to be connected to one another. Mean clustering coefficient is defined 
as the average over all the nodes’ clustering coefficients.

This set of network measurements was selected because it was used before33, 
as a set that provides concise information regarding the topology and structure of 
graph theory-derived networks33. The MATLAB code for this analysis can be found 
in the Code availability.

The effect of respiratory phase on network connectivity measurements was 
assessed using a nested repeated-measures ANOVA with conditions of frequency 
band (delta, theta, alpha, beta1 or beta2), respiratory phase (inhale or exhale), 
network measurement (strength, betweenness, local efficiency, global efficiency 
or clustering coefficient) and average density bin (5, 10, 15, 20, 25 or 30). Planned 
post-hoc comparisons were carried out using targeted two-tailed paired t-tests. 
Finally, to visualize connectivity, we used the BrainNet Viewer suite62.

Relating phase-specific resting EEG to later phase-specific behavioural 
performance. To test whether the connectivity measurements are predictive 
of ensuing task performance, we trained linear classifiers. The classifiers’ input 
was the differences in functional connectivity networks derived during inhale 
and exhale epochs. The predicted output was the difference in task performance 
(accuracy) between the inhale and exhale conditions. Both measurements were 
taken in Z-score, and we predicted the Z-score of the differences. To estimate our 
predictions, we performed 10,000 splits of the data into sets of 18 training examples 
and 10 test examples. Our model was trained on the training set using the lasso 
method63. This resulted in a linear classifier and a list of features selected out of the 

network measurements pool. Each model was then tested to obtain an r value on 
the 10-participant testing sample. We next performed Fisher Z-transformation and 
averaged the transformed r values and inverse-transformed this average, so that we 
have an estimation on the expected r value.

Random permutation test (cross-validation of the linear classifier).  
To determine whether the correlation values obtained by the linear classifier 
were statistically significant, we used a randomization approach64: we shuffled 
the performance in the task between subjects randomly, and for each such 
randomization, we trained a linear classifier and obtained the r value of its 
prediction. Specifically, we took a random permutation of the performance vector 
and attributed it to the 29 participants. For each randomization, we recomputed 
the correlation between predicted and actual performance as reported above.  
The process was reiterated 5,000 times.

Experiments 3–5: triggering tasks from nasal and oral airflow. Sixty-
six individuals participated in this series of experiments (41 women, mean 
age = 25.52 ± 3.2 years) in which trials were triggered by respiration, either 
inhalation or exhalation. Participants were unaware of this triggering mechanism. 
In experiments 3 and 4, 18 participants were tested with nasal respiratory 
triggering, and 18 participants with oral respiratory triggering, respectively.  
Nasal airflow recording was as in experiment 1, and oral recording used the 
same devices but linked to a custom silicone mouthpiece. During oral sessions, 
nasal respiration was prevented using a soft nose-clip. Here, the respiratory 
recordings were used to trigger trial onset at inhalation or exhalation onset. Trials 
that were ‘misfired’, that is, triggered not at inhalation or exhalation onset, were 
discarded from further analysis. This amounted to an average of 16.7 ± 7.9 trials 
or approximately 10% of trials. The effect of respiratory phase on performance 
accuracy and reaction time was analysed using repeated-measures ANOVA 
followed by two-tailed paired Student’s t-tests. The MATLAB code for this analysis 
can be found in the Code availability.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability
The custom MATLAB scripts used to process and visualize the data collected in 
this study are available at: https://github.com/WORGOlfaction/perl-2019.

Data availability
The data that support the findings in this study are available from the 
corresponding authors on request and are also posted at https://www.weizmann.
ac.il/neurobiology/worg/materials.html.
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Study description All data in this manuscript are quantitative, based on discrete behavioral responses or acquired continuous signals 

Research sample Research sample in this study comprised of students of the Weizmann Institute of Science and the Hebrew University of Jerusalem 
(Rehovot campus), ranging in age between 20-36 years (Mean age across all cohorts 25.6 Y.O, 47% Female). 

Sampling strategy We  recruited 30 participants per condition, i.e., a cohort similar in size to previous studies of this type (e.g., reference 26). For the 
internal replication experiment, we conducted Power Analysis using G*Power software (reference 42) which indicated that for power = 
0.8 we need to recruit n = 18. 

Data collection Participants' data were collected using signal acquisition software (for physiology and EEG) and input via computer keyboard. Participants 
were alone in the experimental room during the session. This was a within-subject design, both experimental conditions (e.g., Inhale and 
Exhale) were present within each session, therefore the experimenters could not affect the results.  

Timing Data were collected over the course of the leading author's PhD studies, between 2013-2018. 

Data exclusions In experiments involving phase-locking of stimulus to respiratory phase, trials that were presented erroneously not locked to inhalation 
or exhalation onset (confirmed by instantaneous phase value) were discarded prior to analysis (on average, ~10% of trials). The first trial 
of session was discarded to account for lack of attention or surprise brought about by session start (one out of 160).  
In ERP-EEG analysis, epochs containing artifacts were discarded using semiautomatic exclusion criteria set to default by the software 
(3-5% of the epochs). In topographical ANOVA, data underwent multi-dimensional scaling to remove outlier ERP data using Mahalanobis 
distance, thresholded at p<0.05 (default setting of RAGU). This led to the exclusion of 3 participants' data.  In the EEG  at rest sessions, 
the dataset of about 600 epochs was randomly down-sampled (random selection of trials) to 200 to reduce computational load.

Non-participation The expereimental procedure was describecd in detail before participants arrived at the lab. On experiment day no participants refused 
to participate or dropped out mid-experiment.

Randomization The experimental designs used were within-participant, therefore no randomization into groups was needed.
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Methods
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Human research participants
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Population characteristics See above

Recruitment Participants were recruited via online ads regularily published by our group in specialized "human experimentation" groups in 
the social media.
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