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In this paper, we establish exact solutions for some nonlinear fractional differential equa-
tions (FDEs). The first integral method with help of the fractional complex transform
(FCT) is used to obtain exact solutions for the time fractional modified Korteweg–de
Vries (fmKdV) equation and the space–time fractional modified Benjamin–Bona–Mahony
(fmBBM) equation. This method is efficient and powerful in solving kind of other
nonlinear FDEs. [DOI: 10.1115/1.4028065]
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1 Introduction

FDEs have recently proved to be valuable tools to the modeling
of many physical phenomena, and have gained the focus of many
studies due to their frequent appearance in various applications
such as fluid flow, signal processing, control theory, systems iden-
tification, finance, fractional dynamics, and other areas. The FDEs
are also used in modeling of many chemical processes mathemati-
cal biology and many other problems in physics and engineering.
The FDEs have been investigated by many researchers [1–3].

In recent decades, a large amount of literature has been pro-
vided to construct the exact solutions of fractional ordinary differ-
ential equations and fractional partial differential equations of
physical interest. Many powerful and efficient methods have been
proposed to obtain approximate solutions and exact solutions of
FDEs, such as the Adomian decomposition method [4,5], the var-
iational iteration method [6,7], the homotopy analysis method
[8,9], the homotopy perturbation method [10,11], the differential
transformation method [12,13], the fractional subequation method
[14–16], the first integral method [17], the exp-function method
[18,19], the ðG0=GÞ-expansion method [20,21], and so on. Based
on these methods, a variety of FDEs have been investigated.

We note that as long as a different nonlinear fractional complex
transformation form is taken for n, then a certain fractional partial
differential equation can be turned into another ordinary differen-
tial equation of integer order, whose exact solutions are estab-
lished based on Jumarie’s modified Riemann–Liouville derivative.

The first integral method is a very powerful mathematical tech-
nique for finding exact solutions of partial and FDEs. It has been
developed by Feng [22,23] and used successfully by many authors
for finding exact solutions of partial differential equations (PDE)
and FDEs in mathematical physics [24–28]. Using first integral
method (see Ref. [17]), exact solutions of the fractional modified
Korteweg–de Vries (fmKdV) equation and the space–time fmBBM
equation were obtained.

In this article, we will suggest the first integral method, and uti-
lize this method to solve the following two fractional nonlinear
differential equations. This method finds exact solutions that are
functions U of one variable that needs being determined, and this

variable is searched among linear combinations of two powers of
x and t: with its derivatives up to order n� 1, such functions U
form a vector that satisfies a differential system of first order,
whose right hand side is made of polynomials of the unknowns.
Searching for a polynomial that vanishes on system’s trajectories
help solving the problem.

We consider the following time fractional mKdV equation [29]:

Da
t uþ u2ux þ uxxx ¼ 0; t > 0; 0 < a � 1 (1.1)

where a is a parameter describing the order of the fractional time-
derivative.

We introduce the space–time fractional mBBM equation [30]

Da
t uþ Da

xu� vu2Da
xuþ D3a

x u ¼ 0 (1.2)

where v is a nonzero positive constant. This equation was first
derived to describe an approximation for surface long waves in
nonlinear dispersive media. It can also characterize the hydromag-
netic waves in cold plasma, acoustic waves in inharmonic crystals,
and acoustic gravity waves in compressible fluids.

The present paper investigates for the applicability and effec-
tiveness of the first integral method on fractional nonlinear partial
differential equations.

The rest of this letter is organized as follows. In Sec. 2, we are
given the modified Riemann–Liouville derivative and important
properties and Sec. 3 we describe the first integral method and the
FCT. In Secs. 4 and 5, to illustrate the validity and advantages of
the method, we will apply it to the time fractional mKdV equation
and the space–time fractional mBBM equation. In Sec. 6, some
conclusions are given.

2 The Modified Riemann–Liouville Derivative

Jumarie proposed a modified Riemann–Liouville derivative.
With this kind of fractional derivative and some useful formulas,
we can convert FDEs into integer-order differential equations by
variable transformation in Ref. [31].

In this section, we first give some properties and definitions of
the modified Riemann–Liouville derivative which are used further
in this paper.

Assume that f: R ! R, x ! f(x) denote a continuous but not
necessarily differentiable function. The Jumarie’s modified
Riemann–Liouville derivative of order a is defined by the expression
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Da
x f ðxÞ ¼

1

Cð�aÞ

ðx

0

ðx� nÞ�a�1½f ðnÞ � f ð0Þ�dn; a < 0

1

Cð1� aÞ
d

dx

ðx

0

ðx� nÞ�a½f ðnÞ � f ð0Þ�dn; 0 < a < 1

ðf ðnÞðxÞÞða�nÞ; n � a � nþ 1; n � 1

8>>>>>><
>>>>>>:

(2.1)

A few properties of the modified Riemann–Liouville derivative
were summarized and four famous formulas of them are

Da
t xc ¼ Cð1þ cÞ

Cð1þ c� aÞ x
c�a; c > 0 (2.2)

Da
xðuðxÞvðxÞÞ ¼ vðxÞDa

xuðxÞ þ uðxÞDa
xvðxÞ (2.3)

Da
x f ½uðxÞ� ¼ f 0u uð ÞDa

xuðxÞ (2.4)

Da
x f ½uðxÞ� ¼ Da

u f ðuÞðu0ðxÞÞa (2.5)

which are direct consequences of the equality

daxðtÞ ¼ Cð1þ aÞdxðtÞ (2.6)

which holds for nondifferentiable functions. In the above formulas
(2.3)–(2.5), u(x) is nondifferentiable function in Eqs. (2.3) and
(2.4) and differentiable in Eq. (2.5). The function v(x) is nondiffer-
entiable, and f(u) is differentiable in Eq. (2.4) and nondifferentia-
ble in Eq. (2.5). That is why formulas (2.3)–(2.5) should be used
carefully.

3 The First Integral Method and the Fractional

Complex Transform

We consider the following nonlinear FDE of the type:

Pðu; Da
t u; Db

x u; Da
t Da

t u; Da
t Db

x u; Db
x Db

x u; …Þ ¼ 0; 0 < a; b < 1

(3.1)

where u is an unknown function and P is a polynomial of u and its
partial fractional derivatives.

Step 1. The pioneer work of Li and He [32,33] introduced a
FCT to convert FDEs into ordinary differential equations, so all
analytical methods devoted to the advanced calculus can be easily
applied to the fractional calculus. Using the FCT

n ¼ sxb

Cð1þ bÞ þ
kta

Cð1þ aÞ (3.2)

where s and k are nonzero arbitrary constants and determined
later. We can rewrite Eq. (3.1) in the following nonlinear ordinary
differential equation:

Qðf ðnÞ; f 0ðnÞ; f 00 ðnÞ; f 000 ðnÞ;…::Þ ¼ 0 (3.3)

where the prime denotes the derivation with respect to n. If possi-
ble, we should integrate Eq. (3.3) term by term one or more times.

Step 2. Suppose that the solution of ordinary differential equa-
tion (ODE) (3.3) can be written as follows:

uðx; tÞ ¼ f ðnÞ (3.4)

Step 3. Now, we take a new independent variable

XðnÞ ¼ f ðnÞ; YðnÞ ¼ fnðnÞ (3.5)

which leads to a new system of

XnðnÞ ¼ YðnÞ

YnðnÞ ¼ HðXðnÞ; YðnÞÞ
(3.6)

Step 4. By the known theory of ordinary differential equations
[34], if we can find the integrals to (3.6) under the same condi-
tions, then the general solutions to (3.6) can be solved directly.
With the help of the Division Theorem for two variables in com-
plex domain C which is based on the Hilbert–Nullstellensatz The-
orem [35], we obtain one first integral to (3.6) which can reduce
(3.3) to a first order integrable ordinary differential equation.
Then, an exact solution to (3.1) is obtained by solving this equa-
tion directly. Now, let us recall the Division Theorem:

DIVISION THEOREM. “Suppose that P(w, z), Q(w, z) are polyno-
mials in C(w, z) and P(w, z) is irreducible in C(w, z). If Q(w, z)
vanishes at all zero points of P(w, z), then there exists a polyno-
mial G(w, z) in C(w, z) such that

Q½w; z� ¼ P½w; z�G½w; z� (3.7)

The fact that the real field R is a subfield of the complex field C is
well known. The extension of a given equation in R to an equation
in C is always possible. If the extended equation has an algebraic
curve solution in C, then the intersection of the manifold of this
solution and the real plane must be the algebraic curve solution
of the original equation in R. Thus, the Division Theorem stated
in C can also be used in R [36].

Feng and Roger [37], pointed out, that the Division Theorem
follows immediately from the Hilbert–Nullstellensatz Theorem
[35] of commutative algebra.”

HILBERT–NULLSTELLENSATZ THEOREM. Let K be a field and L be
an algebraic closure of K. Then:

(1) Every ideal c of K[X1, X2,…,Xn] not containing 1 admits at
least one zero in Ln.

(2) Let x¼ (x1, x2,…,xn) and y¼ (y1, y2,…,yn) be two elements
of Ln for the set of polynomials of K[X1, X2,…,Xn] zero
at x to be identical with the set of polynomials of
K[X1, X2,…,Xn] zero at y, it is necessary and sufficient that
there exists a K–automorphism S of L such that yi¼ S(xi)
for 1� i� n.

(3) For an ideal a of K[X1, X2,…,Xn] to be maximal, it is neces-
sary and sufficient that there exists an x in Ln such that a is
the set of polynomials of K[X1, X2,…,Xn] zero at x.

(4) For a polynomial Q of K[X1, X2,…,Xn] to be zero on the set
of zeros in Ln of an ideal c of K[X1, X2,…,Xn], it is neces-
sary and sufficient that there exists an integer m> 0 such
that Qm 2 c.

4 The Time Fractional mKdV Equation

For our purpose, we introduce the following transformations:

uðx; tÞ ¼ UðnÞ; n ¼ cx� kta

Cð1þ aÞ (4.1)

where k and c are a constants.
Substituting Eq. (4.1) with Eq. (2.2) into Eq. (1.1), we can

know that (1.1) reduced into an ODE

� kU0 þ cU2U0 þ c3U000 ¼ 0 (4.2)

where “U0”¼ dU=dn. Since

UðnÞ ¼ f ðnÞ (4.3)

then Eq. (4.2) can be written as

� kf 0ðnÞ þ cf 2ðnÞf 0ðnÞ þ c3f 000ðnÞ ¼ 0 (4.4)

Integrating Eq. (4.4) once we obtain

n0 � kf ðnÞ þ c

3
f 3ðnÞ þ c3f 00ðnÞ ¼ 0 (4.5)
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where n0 is a integration constant.
Using Eqs. (3.5) and (3.6) we get

X
:
ðnÞ ¼ YðnÞ (4.6)

Y
:
ðnÞ ¼ 3kXðnÞ � 3n0 � cX3ðnÞ

3c3
(4.7)

According to the first integral method, we suppose that X(n) and
Y(n) are nontrivial solutions of (4.6), (4.7), and qðX; YÞ
¼
Pm

i¼0 aiðXÞYi is an irreducible polynomial in the complex do-
main C[X, Y] such that

q½XðnÞ; YðnÞ� ¼
Xm

i¼0

aiðXÞYi ¼ 0 (4.8)

where ai(X), (i¼ 0, 1,…,m) are polynomials of X and am(X) 6¼ 0.
Equation (4.8) is called the first integral to (4.6)–(4.7), due to the
Division Theorem, there exists a polynomial g(X)þ h(X)Y in the
complex domain C[X, Y] such that

dq

dn
¼ @q

@X

@X

@n
þ @q

@Y

@Y

@n
¼ ½gðXÞ þ hðXÞY�

Xm

i¼0

aiðXÞYi (4.9)

In this example, we take two different cases, assuming that m¼ 1
and m¼ 2 in Eq. (4.8).

Case I. Assume that m¼ 1, by equating the coefficients of Yi

(i¼ 0, 1, 2) on both sides of Eq. (4.9), we get

a1
: ðXÞ ¼ hðXÞa1ðXÞ (4.10)

a0
: ðXÞ ¼ gðXÞa1ðXÞ þ hðXÞa0ðXÞ (4.11)

a1ðXÞY
:
¼ gðXÞa0ðXÞ ¼ a1ðXÞ

3kX � 3n0 � cX3

3c3

� �
(4.12)

Since ai(X) (i¼ 0, 1) are polynomials, then from Eq. (4.10) we
infer that a1(X) is constant and h(X)¼ 0. For simplicity, take
a1(X)¼ 1. Balancing the degrees of g(X) and a0(X), we conclude
that deg(g(X))¼ 1 only. Suppose that g(X)¼A1XþB0, and
A1 6¼ 0, then we find a0(X)

a0ðXÞ ¼
A1

2
X2 þ B0X þ A0 (4.13)

Substituting a0(X), a1(X), and g(X) in Eq. (4.12) and setting all the
coefficients of powers X to be zero, then we obtain a system of
nonlinear algebraic equations and by solving it, we obtain

A0 ¼ �
ik

ffiffiffi
6
p

2c2
; B0 ¼ 0; A1 ¼

i
ffiffiffi
6
p

3c
; n0 ¼ 0 (4.14)

Using Eq. (4.14) into Eq. (4.8), we obtain

YðnÞ ¼ ik
ffiffiffi
6
p

2c2
� iffiffiffi

6
p

c
X2ðnÞ (4.15)

Combining Eq. (4.15) with Eq. (4.6), we obtain the exact solution
to Eq. (4.5) as

XðnÞ ¼ �i

ffiffiffiffiffi
3k
c

r
tan

ffiffiffi
k
p
ðnþ C1Þ
c
ffiffiffiffiffi
2c
p

 !
(4.16)

where C1 is integration constant. Thus the periodic wave solution
to the time fractional fmKdV equation can be written as

uðx; tÞ ¼ �i

ffiffiffiffiffi
3k
c

r
tan

ffiffiffi
k
p

cx� kta

Cð1þ aÞ þ C1

� �
c
ffiffiffiffiffi
2c
p

0
BB@

1
CCA (4.17)

Case II. Assume that m¼ 2, by equating the coefficients of Yi

(i¼ 0, 1, 2, 3) on both sides of Eq. (4.9), we get

a2
: ðXÞ ¼ hðXÞa2ðXÞ (4.18)

a1
: ðXÞ ¼ gðXÞa2ðXÞ þ hðXÞa1ðXÞ (4.19)

a0
: ðXÞ ¼ �2a2ðXÞ

3kX � 3n0 � cX3

3c3

� �
þ gðXÞa1ðXÞ þ hðXÞa0ðXÞ

(4.20)

a1ðXÞY
:
¼ gðXÞa0ðXÞ ¼ a1ðXÞ

3kX � 3n0 � cX3

3c3

� �
(4.21)

Since a2(X) is a polynomial of X, then from Eq. (4.18) we deduce
that a2(X) is constant and h(X)¼ 0. For convenience, take
a2(X)¼ 1. Balancing the degrees of g(X) and a0(X), we conclude
that deg(g(X))¼ 1 only. Suppose that g(X)¼A1XþB0, and
A1 6¼ 0, then we find a1(X) and a0(X) as

a1ðXÞ ¼
A1

2
X2 þ B0X þ A0 (4.22)

a0ðXÞ ¼
A2

1

8
þ 1

6c2

� �
X4 þ A1B0

2

� �
X3 þ � k

c3
þ A1A0

2
þ B2

0

2

� �
X2

þ 2n0

c3
þB0A0

� �
X þ e (4.23)

Substituting a0(X), a1(X), a2(X), and g(X) in Eq. (4.21) and setting
all the coefficients of powers X to be zero, then we obtain a system
of nonlinear algebraic equations and by solving it, we obtain

A0 ¼�
ik

ffiffiffi
6
p

c2
; A1 ¼

2i

c
ffiffiffi
3
p ; B0 ¼ 0; n0 ¼ 0; e¼�3k2

2c4

(4.24)

Using Eq. (4.24) into Eq. (4.8), we obtain

YðnÞ ¼ � ið�3kþ cX2ðnÞÞ
c2

ffiffiffi
6
p (4.25)

Combining Eq. (4.25) with Eq. (4.6), we obtain the exact solution
to Eq. (4.5) as

XðnÞ ¼
ffiffiffiffiffi
3k
c

r
tanh

ffiffiffiffiffiffiffi
�k
p

ðnþ C2Þ
c
ffiffiffiffiffi
2c
p

 !
(4.26)

where C2 is integration constant. Thus the solitary wave solution
to the time fractional fmKdV Eq. (4.2) can be written as

uðx; tÞ ¼
ffiffiffiffiffi
3k
c

r
tanh

ffiffiffiffiffiffiffi
�k
p

cx� kta

Cð1þ aÞ þ C2

� �
c
ffiffiffiffiffi
2c
p

0
BB@

1
CCA (4.27)

The established solutions have been checked with Maple by
putting them back into the original Eq. (1.1). To the best of our
knowledge, they have not obtained in literature.
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5 The Space–Time Fractional mBBM Equation

First, we consider the following transformations:

uðx; tÞ ¼ UðnÞ (5.1)

n ¼ kxa

Cð1þ aÞ þ
cta

Cð1þ aÞ (5.2)

where k and c are a nonzero constant.
Substituting Eq. (5.2) with Eq. (2.2) into Eq. (1.2), we can

know that Eq. (1.2) reduced into an ODE

ðcþ kÞU0 � vkU2U0 þ k3U000 ¼ 0 (5.3)

where “U0”¼ dU=dn. Since U(n)¼ f(n) then Eq. (5.3) once time
integrating and setting the integration constant to zero we find

ðcþ kÞf � vk
f 3

3
þ k3f 00 ¼ 0 (5.4)

Using Eqs. (3.5) and (3.6) we get

X
:
ðnÞ ¼ YðnÞ (5.5)

Y
:
ðnÞ ¼ XðnÞ �3c� 3k þ kvX2ðnÞð Þ

3k3
(5.6)

According to the first integral method, we suppose that X(n) and
Y(n) are nontrivial solutions of (5.5), (5.6), and qðX; YÞ
¼
Pm

i¼0 aiðXÞYi is an irreducible polynomial in the complex do-
main C[X, Y] such that

q½XðnÞ; YðnÞ� ¼
Xm

i¼0

aiðXÞYi ¼ 0 (5.7)

where ai(X), (i¼ 0, 1,…,m) are polynomials of X and am(X) 6¼ 0.
Equation (5.7) is called the first integral to (5.5)–(5.6), due to the
Division Theorem, there exists a polynomial g(X)þ h(X)Y in the
complex domain C[X, Y] such that

dq

dn
¼ @q

@X

@X

@n
þ @q

@Y

@Y

@n
¼ ½gðXÞ þ hðXÞY�

Xm

i¼0

aiðXÞYi (5.8)

In this example, we take two different cases, assuming that m¼ 1
and m¼ 2 in Eq. (5.7).

Case I. Assume that m¼ 1, by equating the coefficients of Yi

(i¼ 0, 1, 2) on both sides of Eq. (5.8), we get

a1
: ðXÞ ¼ hðXÞa1ðXÞ (5.9)

a0
: ðXÞ ¼ gðXÞa1ðXÞ þ hðXÞa0ðXÞ (5.10)

a1ðXÞ Y
:
¼ gðXÞa0ðXÞ ¼ a1ðXÞ

X �3c� 3k þ kvX2ð Þ
3k3

� �
(5.11)

Since ai(X) (i¼ 0, 1) are polynomials, then from Eq. (5.9) we infer
that a1(X) is constant and h(X)¼ 0. For convenience, take
a1(X)¼ 1. Balancing the degrees of g(X) and a0(X), we conclude
that deg(g(X))¼ 1 only. Suppose that g(X)¼A1XþB0, and
A1 6¼ 0, then we find a0(X):

a0ðXÞ ¼
A1

2
X2 þ B0X þ A0 (5.12)

Substituting a0(X), a1(X), and g(X) in Eq. (5.11) and setting all the
coefficients of powers X to be zero, then we obtain a system of
nonlinear algebraic equations and by solving it, we obtain

A0 ¼ �
ðcþ kÞ

ffiffiffi
3
pffiffiffiffiffi

2v
p

k2
; B0 ¼ 0; A1 ¼

ffiffiffiffiffi
2v
p

k
ffiffiffi
3
p (5.13)

Using Eq. (5.13) into Eq. (5.7), we obtain

YðnÞ ¼ ðcþ kÞ
ffiffiffi
3
pffiffiffiffiffi

2v
p

k2
�

ffiffiffi
v
p

k
ffiffiffi
6
p X2ðnÞ (5.14)

Combining Eq. (5.14) with Eq. (5.5), we obtain the exact solution
to (5.4) as

XðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3vkcþ 3vk2
p

vk
tanh

nþ C1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2vkcþ 2vk2
p

2k2
ffiffiffi
v
p

 !
(5.15)

where C1 is integration constant. Thus the solitary wave solution
to the space–time fractional fmBBM equation can be written as

uðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3vkcþ 3vk2
p

vk
tanh

�

kxa

Cð1þ aÞ þ
cta

Cð1þ aÞ þ C1

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2vkcþ 2vk2
p

2k2
ffiffiffi
v
p

0
BB@

1
CCA

(5.16)

Case II. Assume that m¼ 2, by equating the coefficients of Yi

(i¼ 0, 1, 2, 3) on both sides of Eq. (5.8), we get

a2
: ðXÞ ¼ hðXÞa2ðXÞ (5.17)

a1
: ðXÞ ¼ gðXÞa2ðXÞ þ hðXÞa1ðXÞ (5.18)

a0
: ðXÞ ¼ �2a2ðXÞ

X �3c� 3k þ kvX2ð Þ
3k3

� �
þ gðXÞa1ðXÞ

þ hðXÞa0ðXÞ (5.19)

a1ðXÞ Y
:
¼ gðXÞa0ðXÞ ¼ a1ðXÞ

X �3c� 3k þ kvX2ð Þ
3k3

� �
(5.20)

Since a2(X) is a polynomial of X, then from Eq. (5.17) we deduce
that a2(X) is constant and h(X)¼ 0. For convenience, take
a2(X)¼ 1. Balancing the degrees of g(X) and a0(X), we conclude
that deg(g(X))¼ 1 only. Suppose that g(X)¼A1XþB0, and
A1 6¼ 0, then we find a1(X) and a0(X) as

a1ðXÞ ¼
A1

2
X2 þ B0X þ A0 (5.21)

a0ðXÞ ¼
A2

1

8
� v

6k2

� �
X4 þ A1B0X3

2
þ 1

k2
þ c

k3
þ A1A0

2
þ B2

0

2

� �
X2

þ B0A0X þ d (5.22)

Substituting a0(X), a1(X), a2(X), and g(X) in Eq. (5.20) and setting
all the coefficients of powers X to be zero, then we obtain a system
of nonlinear algebraic equations and by solving it, we obtain

A0 ¼ �
cþ kð Þ

ffiffiffi
6
p

k2
ffiffiffi
v
p ; A1 ¼

2
ffiffiffiffiffi
2v
p

k
ffiffiffi
3
p ; B0 ¼ 0;

d ¼ 3ðk2 þ 2ck þ c2Þ
2vk4

(5.23)

Using Eq. (5.23) into Eq. (5.7), we obtain

YðnÞ ¼ � �3k � 3cþ kvX2ðnÞð Þ
k2

ffiffiffiffiffi
6v
p (5.24)
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Combining Eq. (5.24) with Eq. (5.5), we obtain the exact solution
to (5.4) as

XðnÞ ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3vkcþ 3vk2
p

vk
tan

nþ C2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2vkcþ 2vk2
p

2k2
ffiffiffiffiffiffi
�v
p

 !
(5.25)

where C2 is integration constant. Thus the periodic wave solution
to the space–time fractional fmBBM equation can be written as

uðx; tÞ ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3vkcþ 3vk2
p

vk
tan

�

kxa

Cð1þ aÞ þ
cta

Cð1þ aÞ þ C2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2vkcþ 2vk2
p

2k2
ffiffiffiffiffiffi
�v
p

0
BB@

1
CCA

(5.26)

6 Conclusion

We have proposed first integral method for fractional partial
differential equations based on the sense of modified Riemann–
Liouville derivative and fractional complex transformation, and
applied it to the fmKdV equation and the fmBBM equation.

Among the process, the fractional complex transformation is
very important, which ensures that a FDE can be turned into
another differential equation of integer order, and then simplify
the process of establishing exact solutions. From our results
obtained in this paper, we conclude that the first integral method
is powerful, effective, and convenient for nonlinear fractional
PDEs. As one can see, this method has more general applications
than the other methods, and can be applied to other fractional par-
tial differential equations. We hope that the present solutions may
be useful in further numerical analysis and these results are going
to be very useful in further future research.
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