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Abstract 

  

The canonical partition function, which represents exponential energy decay between 

the canonical ensemble states, is a cornerstone of the mechanical statistics. All the 

thermodynamic state-functions derived from it. The canonical partition function yields 

correctly many statistical phenomena but it fails to explain the long-tail distribution. 

The canonical ensemble conserves material and volume, and it has a constant 

temperature – but it does exchange energy with an external bath. Hereafter it is claimed 

that this model is incorrect. Here we claim that the canonical ensemble is the quantum 

limit approximation of a microcanonical ensemble that conserves material, volume, and 

energy. Since it conserves energy, its temperature is constant. In addition, according to 

the second law, in equilibrium, all its states and all its microstates have equal energy. 

The partition function of this microcanonical ensemble converges to the canonical 

partition function in the quantum limit, and to the power-law energy distribution in the 

classical limit. Therefore, the canonical ensemble is a private case of the 

microcanonical ensemble.  
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Introduction 

Traditionally, statistical mechanics distinguishes between three kinds of systems: the 

microcanonical ensemble, the canonical ensemble, and the grand-canonical ensemble. 

The differences between them are described as follows [1]: 

“The microcanonical ensemble does not transact energy with the surroundings; nor does 

it transact matter. Hence, its energy remains constant. The canonical ensemble is a 

system that does not exchange material with the surroundings. However, it does 

exchange energy. It is in thermal contact with the surroundings (heat bath). Thus, a 

closed system in thermal equilibrium is characterized by temperature, volume and the 

number of particles. The system is not isolated; hence, its microstates are not all 

equiprobable. Thus, 𝑆 = − ∑ 𝑝𝑖
𝑁
𝑖=1 ln 𝑝𝑖 provides a natural formula for the entropy of a 

system whose microstates are not equiprobable. The third is the macro-canonical 

ensembles that can exchange both energy and particles.” 

This quotation, with minor changes, from the textbook of Murthy [1], is widely 

accepted by the community and appears in many textbooks [i.e.2] as well as in 

Wikipedia. The unequal probabilities of the microstates are the reason why many 

authors start their analysis with the unequal energy distribution between the 

microstates, represented by the canonical partition function 𝑍𝐶 , namely, 

𝑍𝐶 = ∑ exp (−
𝜀𝑖

𝑘𝐵𝑇
)𝑖  .                                                                                                                             (1)         

Where 𝜀𝑖  is the energy of the microstate 𝑖 , and 𝑘𝐵𝑇  is the average energy of the 

microstates. The summation is over all the microstates of the ensemble. 

A common use of 𝑍𝐶  is the calculation of the probability 𝑝𝑖 to find a particle having 

energy 𝜀𝑖, namely, 

𝑝𝑖 =
1

𝑍𝐶
exp (−

𝜀𝑖

𝑘𝐵𝑇
)  .                                                                                                           (2) 

Here 𝑇 is the temperature of the canonical ensemble (the bath temperature) and 𝑘𝐵 is 

Boltzmann constant. Similarly, the energy of the ensemble 〈𝐸〉 is given by, 

〈𝐸〉 = 𝑘𝐵𝑇2 𝜕 ln 𝑍𝐶

𝜕𝑇
=

1

𝑍𝐶
∑ 𝜀𝑖 exp (−

𝜀𝑖

𝑘𝐵𝑇
)𝑖 .                                                                           (3)                 

Since it was shown that every thermodynamic state function could be derived from the 

canonical partition function, it is considered a starting point in statistical mechanics. 

However, the canonical statistical mechanics based on the canonical partition function 

fails to explain the power-law distributions [2]. In order to overcome this problem, some 

authors suggested “entropies” that violate the second law of thermodynamics. A notable 

one is the Tsallis “nonextensive” entropy [3]. Nonextensive entropy means a system, 

not in equilibrium, which means that temperature cannot be defined and MaxEnt 

formalism is not applicable [4].  

There are some more problems with the canonical ensemble:  
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Ideal gas that can be confined in an isolated vessel, and therefore according to the 

definition above is a microcanonical ensemble, is a typical example of a canonical 

ensemble. 

In contradistinction, a constant temperature blackbody which must absorb energy from 

an external bath in order to keep its temperature constant suppose to be canonical. 

Nevertheless in the Rayleigh-Jeans regime, it cannot be described by the canonical 

partition function.  

Moreover, what is the meaning of unequal energy distribution in the microstates? A 

microstate is a distinguishable distribution of the energy of a system among its states. 

Every instance the system exists only in one microstate, however, the system constantly 

moves from one microstate to another. Our lake of knowledge in what microstate the 

system exists is the meaning of its entropy. Therefore, in equilibrium, all the microstates 

have, per definition, an identical number of states and an identical amount of energy.  

The origin of the common misconception that there is “unequal energy distribution of 

the microstates” is the confusion between microstates and states. A microstate is a 

“state” of the whole ensemble that comprises all its states and their energies. Since the 

entropy is a measure of our lake of knowledge in what microstate the ensemble is, only 

their number contributes to entropy or, in the words of Gibbs, “the whole is simpler 

than its parts”. The origin of the exponential decay of the probability 𝑝𝑖 to find a particle 

or a radiation mode with energy 𝜀𝑖 as in Eq.(1) is the second law of thermodynamics, 

namely, the propensity of entropy to grow to its maximum. The equilibrium distribution 

of energy between its particles is the distribution that maximizes the number of 

microstates. The maximum entropy is reached where no change can increase the 

number of microstates of a system, and therefore it is stable, namely, in equilibrium. 

The equilibrium is the point where the entropy’s expression reaches its maximum value 

under the system’s constraints. 

Statistical entropy is defined in two ways: the Boltzmann entropy, 

𝑆 = 𝑘𝐵 ln 𝑊, 

where 𝑊 is the number of microstates and the Gibbs entropy, 

𝑆 = −𝑘𝐵 ∑ 𝑝𝑗
𝑊
𝑗=1 ln 𝑝𝑗, 

Here  𝑝𝑗 is the probability of the microstate 𝑗, and the summation is over their number. 

If all the microstates have the same probability, namely, 𝑝𝑗  = 1/𝑊 , then 𝑆 =

−𝑘𝐵 ∑ 𝑝𝑗
𝑊
𝑗=1 ln 𝑝𝑗 = 𝑘𝐵𝑊 (

1

𝑊
) ln 𝑊 = 𝑘𝐵ln 𝑊. Therefore, the equal probability of all 

the microstates is the maximum entropy solution which is the Boltzmann entropy. 

Gibbs entropy should not be confused with the canonical “entropy” 𝑆 =

−𝑘𝐵 ∑ 𝑝𝑖
𝑁
𝑖=1 ln 𝑝𝑖 in which the summation is over the states, and as we will see usually 

𝑊 > 𝑁.  
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Definitions 

To demonstrate this point, we consider a theoretical ensemble of 𝐵 distinguishable 

boxes and 𝑃 indistinguishable balls and calculate for it the equivalents of the energy 

distribution, entropy, and temperature. We consider each ball as a quant of energy and 

a box as a particle. We follow Planck’s microcanonical derivation to calculate the 

equilibrium distribution of the balls in the boxes of our ensemble [5]. The probabilities 

are calculated by maximizing the dimensionless entropy, subject to the constraint of 

conservation of the number of balls 𝑃. We show that this ensemble is analogous to the 

distribution of energy in the particles of an ideal gas and to the distribution of photons 

in the radiation modes of a blackbody.  

Hereafter, it is shown that the canonical partition function yields erroneous results 

where the number of balls is greater than the number of boxes, namely the energy of 

the quanta is smaller than the average energy as in the classical limit. Therefore, the 

canonical ensemble formalism is correct only for systems in which the energy of the 

quanta is greater than 𝑘𝐵𝑇, which is the quantum limit.  

We propose a microcanonical partition function that yields identical results to the 

canonical partition function in the quantum limit and the power-law energy distribution 

in the classical limit. This partition function is also applicable to the intermediate zone 

in which the energy of the quanta is similar to the average energy.  

First, we define for this ensemble the basic statistical mechanics' quantities, namely, a 

microstate, a state, and equilibrium.  

A microstate is a distinguishable configuration of the balls in the boxes. I.e. if we have 

2 balls and 2 boxes there are 𝑊 = 3 microstates (2,0) (1,1) (0,2). However, we should 

remember the balls constantly change places between the boxes and we do not know in 

what microstate the system is. Nevertheless, for the entropy, we need to know only their 

number, namely, the entropy of this ensemble is ln 3.  

A state is the group of all the boxes with the same amount of balls.  In the example 

above, there are 2 states (we do not count the empty boxes as will be explained later) 

State 1 which comprises of 2 boxes of 1 ball and state 2  of 1 box with 2 balls. This 

definition is analogous to a blackbody, in which all its particles that emit their photons 

in the same frequency at the same time in the same direction are coherent namely they 

are in a single mode. Please note that each state has the same amount of balls. As we 

will see later not only all the microstates have the same energy but all the states have 

equal energy.  

Equilibrium is achieved when the probability of all the microstates is equal and the 

number of balls in all the states is also equal.  

In order to calculate the entropy of a system of 𝑃 balls in 𝑁 states, we calculate the 

number of its microstates [5], namely, 

𝑊 =
(𝑁+𝑃−1)!

(𝑁−1)!𝑃!
 .                                                                                                                      (4) 
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Designating 𝑛 = 𝑃/𝑁  and applying Stirling formula ln 𝑛! ≅ 𝑛 ln 𝑛 − 𝑛, we obtain for 

𝑆 = ln 𝑊, 

𝑆 ≅ 𝑁[(𝑛 + 1) ln(𝑛 + 1) − 𝑛 ln 𝑛]  or, 

𝑆 ≅ ∑ [(𝑛𝑖 + 1) ln(𝑛𝑖 + 1) − 𝑛𝑖 ln 𝑛𝑖]𝑁
𝑖=1  .                                                                           (5) 

𝑛𝑖 is the number of balls in a box in the state 𝑖, and  𝑖 = 1, 2, … . . , (𝑁 − 1), 𝑁 boxes.  If 

all the states have the same number of balls 〈𝑛〉 =
𝑃

𝑁
= 𝑖𝑛𝑖 where 𝑖 is the number of 

boxes in the state, a high 𝑛𝑖 means that there are many balls in a state, thus we can add 

or remove energy in small amounts as compared to the average energy – this is the 

classical limit.  

The canonical approximation 

In the quantum limit 𝑛𝑖 ≪ 1. The number of balls in a state is negligible, therefore,    

1 + 𝑛𝑖 ≅ 1, and the first term of Eq. (5) vanishes and the entropy expression become 

canonical, namely, 

𝑆 = ln 𝑊 ≅ − ∑ 𝑛𝑖 ln 𝑛𝑖
𝑁
𝑖=1 .                                                                                                    (6)                     

To find 𝑛𝑖 , namely, the number of balls in a box of the state 𝑖 , that maximizes the 

entropy of Eq.(6), we derive 𝑆 by 𝑛𝑖, subject  to the constraint of conservation of the 

number of balls 𝑃 = ∑ 𝑛𝑖𝑖𝑖 . Using the Lagrange multiplier technique, we solve, 

𝜕

𝜕𝑛𝑖
∑ [− 𝑛𝑖ln𝑛𝑖 + 𝛽(𝑃/𝑁 − 𝑛𝑖𝑖)]𝑁

𝑖=1 = 0, where 𝛽 is a Lagrange multiplier. 

We obtain that, ln𝑛𝑖 + 1 + 𝛽𝑖 = 0, or, 

𝑛𝑖 = 𝑒−𝛽𝑖−1 .                                                                                                                          (7) 

Since all the states are equiprobable, all  𝑛𝑖𝑖  are equal and,  

𝛽−1 = 𝑃/𝑁  or 𝛽 = 1/〈𝑛〉. 

To obtain the probability 𝑝𝑖,  𝑛𝑖 of  Eq. (7) is normalized with respect to the sum of all 

the 𝑛𝑖′𝑠.  Since the total number of the 𝑛𝑖’s in the canonical approximation is  ∑ 𝑛𝑖
𝑁
𝑖=1 =

∑ 𝑒−𝛽𝑖−1 =𝑁
𝑖=1 𝑍𝐶/𝑒 , where, 

𝑍𝐶 = ∑ 𝑒−𝛽𝑖𝑁
𝑖=1 , is the canonical partition function. The probability to find a box with 

𝑛𝑖 balls is,  

𝑝𝑖 =
𝑛𝑖

∑ 𝑛𝑖
𝑁
𝑖=1

=
𝑒− 𝛽𝑖

𝑍𝑐
 .                                                                                                              (8)                                                                                                                

Eq. (8) is the basis of the probability theory. Example: suppose that 𝛽 = 104, which 

means that we have one ball for 104 boxes. The probability to find two balls in a box 

is negligible (about 10−8); therefore, we expect that all the boxes will have the same 

small probability 𝑝𝑖 = 10−4 to find a ball. This result is obtained from Eq. (8), namely, 

∫ 𝑒−𝛽𝑖∞

0
𝑑𝑖 =

1

𝛽
. The assumption that each state has the same probability to have a ball 

as the other states is the default assumption in probability calculation (in the canonical 
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approximation a state is a single box). In the case of 𝛽𝑖 ≪ 1, which means more balls 

than boxes, the probabilities of Eq.(8) are meaningless, as 𝑍𝐶  does not converge.   

The general solution 

Now we calculate 𝑛𝑖  more accurately from the general microcanonical entropy of 

Eq.(5). The analogous derivation of Eq.(7) yields, 

𝜕

𝜕𝑛𝑖
∑ [(𝑛𝑖 + 1) ln(𝑛𝑖 + 1) − 𝑛𝑖 ln 𝑛𝑖 + 𝛽(𝑃/𝑁 − 𝑛𝑖𝑖)]𝑖 = 0 , and obtain that,  

 ln( 𝑛𝑖 + 1) − ln 𝑛𝑖 − 𝛽𝑖 = 0 , namely, 

𝑛𝑖 =
1

exp(𝛽𝑖)−1
 .                                                                                                                        (9) 

We see that the expression for 𝑛𝑖  =  
1

exp(𝛽𝑖+1)
   of Eq. (7) was replaced by 𝑛𝑖  =

 
1

exp(𝛽𝑖)−1
 , and the partition function 𝑍𝐶  is changed accordantly to, 

𝑍𝑀𝐶 = ∑ (exp(𝛽𝑖) − 1)−1
𝑖  .                                                                                                  (10)   

Where 𝑍𝑀𝐶  is the microcanonical partition function. The probability of Eq. (8) is 

replaced by, 

𝑝𝑖 =
𝑛𝑖

∑ 𝑛𝑖
𝑁
𝑖=1

=
𝑛𝑖

𝑍𝑀𝐶
=

(exp(𝛽𝑖)−1)−1

∑ (exp(𝛽𝑖)−1)−1𝑁
𝑖=1

                                                                                   (11)                                         

In the quantum limit in which  𝛽𝑖 ≫ 1 , exp(𝛽𝑖) − 1 ≅ exp(𝛽𝑖), and we obtain that the 

partition function of Eq.(10) and the probability of Eq.(11) becomes canonical. 

In the classical limit, when 𝛽𝑖 ≪ 1, then exp(𝛽𝑖) − 1 ≅ 𝛽𝑖, thus 𝑛𝑖 = 1/𝛽𝑖  and the 

new partition function is, 

 𝑍𝑀𝐶 =
1

𝛽
∑

1

𝑖
=

1

𝛽
𝐻𝑁

𝑁
𝑖=1 ,  

where 𝐻𝑁 = ∑
1

𝑖

𝑁
𝑖=1  is the harmonic number and the probability to find a box with 𝑛𝑖 

balls become, 

 𝑝𝑖 = 1 𝛽𝑖𝑍𝑀𝐶 =
1

𝑖

∑
1

𝑖
𝑁
𝑖=1

=⁄
1

𝑖𝐻𝑁
 ,                                                                                             (12) 

which is the empirical Zipf law (Usually Zipf law is written as 𝑝𝑖 = 1/𝑖𝑠𝐻𝑁 where 𝑠 is 

an empirical slope parameter. Here we obtain that 𝑠 = 1). Please note that in the 

classical limit the general expression of the probability 𝑝𝑖 =
𝑛𝑖

∑ 𝑛𝑖
𝑁
𝑖=1

 is replaced by 𝑝𝑖 =

1

𝑖

∑
1

𝑖
𝑁
𝑖=1

 . This is a direct outcome of the fact 𝑛𝑖𝑖 = 1/𝛽.  

The empirical Zipf law appears in several different ways and hereafter we derive a few 

of them, 

Using Riemann sum, namely treating 
1

𝑖
 as a continuous function and replacing the box 

by the area below its curve, we can write, ∫
𝑑𝑖′

𝑖′

𝑖+∆

𝑖
= ln(𝑖 + ∆) − ln(𝑖) = ln (1 +

∆

𝑖
) 



 

7 
 

where ∆ is the integration increment that is, in our case, ∆=1. The harmonic number 

will become, 

𝐻𝑁 = ∫
𝑑𝑖′

𝑖′

𝑁+1

1
= ln(𝑁 + 1) and we obtain that, 

𝑝𝑖 =
1

𝑖𝐻𝑁
≅

ln(1+
1

𝑖
)

ln(𝑁+1)
= log𝑁+1(1 +

1

𝑖
).                                                                               (13) 

Eq. (13) is called Planck-Benford law [8, 11] and is a different expression of Zipf law.  

Example: For 𝑁 = 9, Eq.(13) yields the Benford law of the unequal distribution of 

digits in random files, namely, 𝑝𝑖 = log10(1 +
1

𝑖
) . Here 𝑝𝑖 is the probability to find a 

box with 𝑛𝑖  balls. Newcomb found this law empirically in the 19th century in 

logarithmic tables [6]. It is worth noting that that Eq. (9) can be written as,                         

𝑖 =
1

𝛽
ln (1 +

1

𝑛
) . When this equation is normalized, we obtain that                                    

𝑝𝑛 = log𝑁+1 (1 +
1

𝑛
) =

1

𝑛𝐻𝑁
 where  𝑝𝑛 is the relative number of boxes with 𝑛 balls. We 

see that Zipf law is applicable both to 𝑖 and to 𝑛. The reason for this phenomenon is 

that 𝑛𝑖 = 〈𝑛〉/𝑖  and 𝑖 = 〈𝑛〉/𝑛𝑖 this symmetry is responsible for this effect. In fact, Zipf 

law is valid for any pair  𝑥𝑦 = constant, in the classical limit.  

To demonstrate the application of Zipf law consider 𝐵 = 3 distinguishable boxes and 

𝑃 = 3  identical balls: Therefore, 𝑁 = 3. From Eq.(13), we obtain: 

 𝑝1 = ln 2/ ln 4 = 0.5;  𝑝2 = ln(3 2⁄ ) ln 4⁄ = 0.29;  𝑝3 = ln(4 3⁄ )/ ln 4 = 0.21.  

Namely, there is a probability of 50% to find a box with a single ball, 29% to find a box 

with 2 balls, and 21% to find a box with 3 balls. Empty boxes do not have balls (or 

energy) and therefore do not have entropy and cannot be calculated by entropy 

maximization. This is the reason why Benford law is sometimes called “the first digit 

law” since the first digit of a number is never zero.  

Now we compare the result of Eq. (13) to the results obtained by actual counting of the 

boxes with the balls. From Eq.(4) we obtain 𝑊 = 10 microstates. Each microstate has 

an equal number of balls 𝑃 = 3. The microstates are (3,0,0) (0,3,0) (0,0,3) (2,1,0) 

(2,0,1) (0,2,1) (0,1,2) (1,2,0) (1,0,2) (1,1,1). The total “number” of boxes in all the 

microstates is 𝐵𝑊 = 30. From them 12 are empty, 9 have 1 ball, 6 have 2 balls and 3 

have 3 balls. The normalized ratios of the occupied boxes  𝑝1: 𝑝2: 𝑝3 are about 50: 33: 

17. From Eq.(13) we obtained that the ratios are 50: 29: 21. These differences are 

originated at the inaccuracy of Stirling approximation for small numbers. 

We saw that for this system in which 𝑊 = 10  there are 𝑁 = 3 states:  𝑛 = 1 with 𝑖 =

9 boxes:  𝑛 = 2 with 𝑖 = 6 boxes: 𝑛 = 3 with 𝑖 =3 boxes.  We expect that each state 

will have in equilibrium equal amount of balls (10 balls per state). Here we obtained 9: 

12: 9 this ratio is with a good agreement for such a small ensemble in a regime that is 

neither quantal nor classical.  

To summarize, we consider an ensemble of balls and boxes and derive its statistical 

mechanic's quantities by maximizing Boltzmann entropy subject to a constraint of 
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conservation of the number of balls.  We suggest a microcanonical partition function 

𝑍𝑀𝐶 = ∑ (exp(𝛽𝑖) − 1)−1
𝑖 , which yields in the quantum limit  𝛽𝑖 → ∞ the canonic 

partition function, and in the classical limit 𝛽𝑖 → 0  yields the harmonic number. 

𝑍quantum = lim
𝛽𝑖→∞

∑(exp(𝛽𝑖) − 1)−1

𝑖

= ∑ exp(−𝛽𝑖)

∞

𝑖=1

 

𝑍classical = lim
𝛽𝑖→0

∑(exp(𝛽𝑖) − 1)−1

𝑖

= ∑
1

𝛽𝑖

𝑁

𝑖=1

 

 

Similarly, the probability to find 𝑛𝑖 balls yield Maxwell-Boltzmann’s distribution in the 

quantum limit and Zipfian power-law distribution in the classical limit. 

Application to physics 

 Zipf law and Benford law are considered as a branch of probability. It has been applied 

in the economy, sociology, and finance [6, 9, 10, 11]. However, the probability 𝑝𝑖 to 

find a box as a function 𝛽𝑖 =
1

𝑛𝑖
  is a cornerstone of physics. Zipf law is applied for the 

population of cities (where the cities are the boxes and the citizens are the balls). 

Benford law is applied to the distribution of digits in financial reports (where the digits 

are the boxes and their values are the numbers of balls). In Economy, the boxes may be 

the deciles or percentile and the income is the number of balls. The quantity 𝑖 = 〈𝑛〉/𝑛𝑖, 

which is of interest to physicists, is not so intuitive. Assuming that a radiation mode is 

in a thermal bath (a blackbody) of a temperature 𝑇; the average number  〈𝑛〉 of balls-

photons in a radiation mode (a state) have energy 𝑘𝐵𝑇. The energy of a photon is  
𝑘𝐵𝑇

𝑛𝑖
=

𝑖 = ℎ𝑣𝑖 = 𝜀𝑖 . Therefore 𝑖 is the energy of a quant ℎ𝑣𝑖 and  𝛽𝑖 =
ℎ𝑣𝑖

𝑘𝐵𝑇
 . Please note that 

in the partition function 𝜀𝑖 is the energy of a quant and not the energy of a state. In the 

quantum limit, all the energy is in one quant and there are many empty boxes therefore 

𝜀𝑖 is also the detected energy of a state but this is not the case in the classical limit. In 

Planck distribution, it is written explicitly 
ℎ𝑣𝑖

𝑘𝐵𝑇
. 

In brief, there is an analogy between the thermodynamic physical quantities like 

temperature and energy and the statistical quantities of the “balls and boxes” ensemble, 

namely, 

1. The number of boxes having 𝑛𝑖 balls – 𝑖 is equivalent to 𝜀𝑖 or ℎ𝑣𝑖, namely, the 

energy of a quant. 

2. The average number of balls in a box 〈𝑛〉 = 𝛽−1 is equivalent to 𝑘𝐵𝑇. (or the 

average energy of a degree of freedom). 

3. 𝛽𝑖 is equivalent to 𝜀𝑖/𝑘𝐵𝑇. This term that is so familiar to any physicist is 

treated as the energy of a particle with respect to the average. However, this is 

true only in the quantum approximation when the whole energy of a particle is 
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in one photon.  Actually, the term  
𝜀𝑖

𝑘𝐵𝑇
=

1

𝑛𝑖
 is the reciprocal of the number of 

quanta in a state. Indeed in Plack law where 𝑛𝑖 can be bigger than 1 the energy 

𝜀𝑖 is the quant energy namely, 𝑛𝑖 = (exp (
ℎ𝑣

𝑘𝐵𝑇
) − 1)−1. 

The new partition function 𝑍𝑀𝐶   complies with the average energy of the ensemble of 

Eq.(3) namely, 

〈𝐸〉 = 𝑘𝐵𝑇2 𝜕 ln 𝑍𝑀𝐶

𝜕𝑇
.  Since 𝑍𝑀𝐶 = ∑ (exp(𝜀𝑖/𝑘𝐵𝑇) − 1)−1

𝑖 then, 

〈𝐸〉 =
1

𝑍𝑀𝐶
∑

𝜀𝑖 exp(𝜀𝑖/𝑘𝐵𝑇)

(exp(𝜀𝑖/𝑘𝐵𝑇)−1)2𝑖 .                                                                                            (13) 

In the quantum limit when 𝜀𝑖/𝑘𝐵𝑇 ≫ 1,  then we obtain the canonical expression, 

namely, 

 〈𝐸〉 =
1

𝑍𝐶
∑ 𝜀𝑖 exp(−𝜀𝑖/𝑘𝐵𝑇)𝑖 .  

In the classical limit when 𝜀𝑖/𝑘𝐵𝑇 ≪ 1, then Eq.(13) becomes, 

 〈𝐸〉 =
1

𝑍𝑀𝐶
∑

(𝑘𝐵𝑇)2 exp(𝜀𝑖/𝑘𝐵𝑇)

𝜀𝑖

𝑁
𝑖=1 ≅

1

𝑍𝑀𝐶
∑

(𝑘𝐵𝑇)2

𝜀𝑖

𝑁
𝑖=1 . Since in this limit, 

𝑍𝑀𝐶 = ∑
1

𝛽𝑖

𝑁
𝑖=1 = ∑

𝑘𝐵𝑇

𝜀𝑖

𝑁
𝑖=1  , we obtain that, 

 〈𝐸〉 = 𝑘𝐵𝑇. 

This is the Rayleigh-Jeans approximation. This result cannot be obtained from the 

canonical partition function. 

This formalism can yield the Bose-Einstein distribution, namely the macro-canonical 

ensemble [8]. In the canonical and microcanonical derivations, the constraint was on 

the total number of balls, namely, ∑ 𝑛𝑖𝑖.  However, if we add a constraint on 𝑛𝑖 , it 

means that we reduce the number of possibilities to distribute the balls in the boxes. 

The Lagrange equation will become 

∑ [(𝑛𝑖 + 1) ln(𝑛𝑖 + 1) − 𝑛𝑖 ln 𝑛𝑖 + 𝛽𝑛𝑖𝑖 − 𝜇𝑛𝑖]𝑖 = 0.  The derivation of this equation 

yields Bose-Einstein distribution [8], namely, 𝑛𝑖  =  
1

exp(𝛽𝑖−𝜇)−1
. 

It should be noted that the derivation of Planck distribution in several textbooks is 

presented as a part of the canonical ensemble. It means that there is a claim that Planck 

law can be derived from the canonical partition function. This is done by an erroneous 

derivation, namely, 𝑍𝐶 = ∑ exp (−
ℎ𝑣𝑖

𝑘𝐵𝑇
)∞

𝑖=1 =
exp(−

ℎ𝑣𝑖
𝑘𝐵𝑇

)

1−exp(−
ℎ𝑣𝑖

𝑘𝐵𝑇
)

=
1

exp(
ℎ𝑣𝑖

𝑘𝐵𝑇
)−1

. Therefore the 

conclusion is that the canonical partition function yields the correct occupation number 

as obtained by the microcanonical ensemble of Planck. However, the canonical 

partition function converges only for ℎ𝑣𝑖 > 𝑘𝐵𝑇,  and therefore beyond the canonical 

approximation, namely, ℎ𝑣𝑖 < 𝑘𝐵𝑇 ,  this derivation is not valid. Moreover, the 

summation on the infinite number of states is only correct for ℎ𝑣𝑖 ≫ 𝑘𝐵𝑇 where the 

probabilities of the high-energy states are negligible. 
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Summary and discussion 

It is argued that both the canonical ensemble and the microcanonical ensemble have 

identical statistical properties: both conserve energy, their microstates are equiprobable 

and their states are equiprobable. While the microcanonical energy distribution is 

general, the canonical energy distribution is applicable only in the quantum limit when 

the quant’s energy is greater than the average energy namely 𝜀𝑖 ≫ 𝑘𝐵𝑇. Therefore, the 

assumption that the canonical ensemble exchange energy with a bath is not necessary 

and is not the reason for the exponential energy decay.  

From the maximum entropy principle, we derive a microcanonical partition function 

that replaces the canonical partition function. The new partition function yields in the 

quantum limit the canonical expressions, and in the classical limit, in which 𝜀𝑖 ≪ 𝑘𝐵𝑇, 

it yields the Zipfian long-tail distribution. 

To derive the partition function, we define an ensemble of 𝑃 balls and 𝑁 states. Each 

state is a group of 𝑖 boxes in which each box has 𝑛𝑖 balls, such that  𝑛𝑖𝑖 = 〈𝑛〉 = 𝑃 𝑁⁄  

balls.  The total number of balls 𝑃 =∑ 𝑛𝑖𝑖𝑁
𝑖=1  is conserved. We calculate the number of 

microstates, namely, the number of the distinguishable configurations of the balls in the 

boxes, 𝑊 =
(𝑁+𝑃−1)!

(𝑁−1)!𝑃!
,  and by using Stirling formula we calculate the Boltzmann 

entropy in which all microstates are equiprobable, to be  𝑆 = ∑ [(𝑛𝑖 + 1) ln(𝑛𝑖 +𝑁
𝑖=1

1) − 𝑛𝑖 ln 𝑛𝑖]. We maximize the entropy 𝑆 subject to the constraint on conservation of 

balls and we obtain that 𝑛𝑖 = (exp(
𝑖

〈𝑛〉
) − 1)−1. When we consider a ball as a quant of 

energy 𝜀𝑖 = 𝑖, we obtain that 〈𝑛〉 = 𝑘𝐵𝑇 and 𝑛𝑖 is the number of quanta with energy  𝜀𝑖. 

The obtained microcanonical partition function is,  

𝑍𝑀𝐶 = ∑ (exp (
𝜀𝑖

𝑘𝐵𝑇
) − 1)−1

𝑖  instead of the canonical partition function 𝑍𝐶 =

∑ exp (−
𝜀𝑖

𝑘𝐵𝑇
)𝑖 . 

In the quantum limit both 𝑍𝑀𝐶  and 𝑍𝐶  yield the same probability 𝑝𝑖 to find a particle 

with energy 𝜀𝑖  and the same average energy 〈𝐸〉, namely: 

 𝑝𝑖 =
1

𝑍𝐶
exp (−

𝜀𝑖

𝑘𝐵𝑇
)  and  〈𝐸〉 =

1

𝑍𝐶
∑ 𝜀𝑖 exp(−𝜀𝑖/𝑘𝐵𝑇) .𝑖  

In the classical limit, where 𝜀𝑖 ≪ 𝑘𝐵𝑇, which means that we can remove or add energy 

from a state in any amount (continuous energy), the canonical partition function does 

not converge and 𝑍𝑀𝐶  yields, 

𝑝𝑖 =
𝜀𝑖

−1

∑ 𝜀𝑖
−1𝑁

𝑖=1

     and  〈𝐸〉 = 𝑘𝐵𝑇.   

Namely, the probability to find a particle with energy 𝜀𝑖 obeys Zipf law. Both Zipf law 

and the canonical distribution predict that the probabilities to find high-energy particles 

are smaller than the probability to find low energy particles. However, in the quantum 

limit, the probability reduces exponentially, and in the classical limit, it reduces as a 
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power law. In the classical limit, the average energy is just the average energy of a 

classical harmonic oscillator. This result is the Rayleigh-Jeans approximation and was 

proved to be correct in the classical regime of blackbody radiation. What is the physical 

reason for the change in the probability between the quantum limit and the classical 

limit? In the quantum limit, the whole energy of a box is in one quant. Therefore, the 

energy of the excitation is the energy of the quant. In the classical regime, the energy 

of the quant has no straightforward connection to the energy of the particles. This is 

expressed in the microcanonical ensemble but cannot be expressed in the canonical one. 

Therefore, the canonical ensemble is a private case of the general microcanonical 

ensemble.    
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List of symbols 

𝐵 number of boxes. 

𝑃 number of balls. 

𝑁 number od states.  

𝑊 number of microstates. 

𝑛𝑖 the number of balls in a box: equivalent to the number of quants. 

𝑖  number of boxes with 𝑛𝑖 boxes: equivalent to 𝜀𝑖 the energy of a quant. 

𝑝𝑖 the probability of a box that appears 𝑖 times. 

𝑝𝑛 the probability of a box with 𝑛 balls. 

〈𝑛〉 The average number of balls in a state. 

𝛽−1 = 〈𝑛〉 = 𝑘𝐵𝑇 Lagrange multiplier. 

 

 

 


