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We formulate a p-median facility location model with a queuing approximation to determine the optimal locations of a given number
of dispensing sites (Point of Dispensing-PODs) from a predetermined set of possible locations and the optimal allocation of staff
to the selected locations. Specific to an anthrax attack, dispensing operations should be completed in 48 hours to cover all exposed
and possibly exposed people. A nonlinear integer programming model is developed and it formulates the problem of determining the
optimal locations of facilities with appropriate facility deployment strategies, including the amount of servers with different skills to
be allocated to each open facility. The objective of the mathematical model is to minimize the average transportation and waiting times
of individuals to receive the required service. The mathematical model has waiting time performance measures approximated with a
queuing formula and these waiting times at PODs are incorporated into the p-median facility location model. A genetic algorithm
is developed to solve this problem. Our computational results show that appropriate locations of these facilities can significantly
decrease the average time for individuals to receive services. Consideration of demographics and allocation of the staff decreases
waiting times in PODs and increases the throughput of PODs. When the number of PODs to open is high, the right staffing at each
facility decreases the average waiting times significantly. The results presented in this paper can help public health decision makers
make better planning and resource allocation decisions based on the demographic needs of the affected population.

Keywords: Location-allocation, genetic algorithms, queuing, public health, mass dispensing

1. Introduction

For responding to a major disease outbreak or to a bioter-
rorist attack, county health departments plan mass dispens-
ing and vaccination operations using Point of Dispensing
sites (PODs). Pandemic influenza has been a major pub-
lic health concern in today’s global world and may require
mass vaccination and medication distribution under severe
scenarios. On the other hand, anthrax and smallpox are
among the most feared biological agents that may also re-
quire mass dispensing of antibiotics and antiviral (Craft
et al., 2005). Large-scale bioterrorist attacks using any bac-
terial and viral agents would require immediate mass pro-
phylaxis campaigns to prevent a massive loss of lives. Any
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Color versions of one or more of the figures in the article can

be found online at www.tandfonline.com/uhse.

mass dispensing operation may require rapid establishment
of a distribution network with dispensing sites and health-
care facilities. The capacity of these facilities should be
flexible for various scenarios to provide medical treatment
and prophylaxis for affected populations (Lee et al., 2009).
Optimizing the throughput of PODs with scarce resources
is an important public health problem which needs to be
addressed for effective delivery of required medical services.

Any large-scale emergency event, e.g., infectious disease
outbreaks or bioterrorist attacks, can lead to a huge de-
mand for medical supplies in a short amount of time. Re-
sponding to such an emergency in a timely manner requires
optimally locating medical supplies and then rapid distri-
bution. Decisions such as determining which of the possi-
ble sites should be open under different scenarios can play
an important role in reducing casualties as the number of
casualties depends on the affected region, the availability
of resources, and the demographic characteristics of the
region. An important criterion in selecting the locations
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Optimizing service times for a public health emergency 179

of PODs is being able to dispense medication at demand
points with minimum service times at the facilities. For this
purpose, we formulate a facility location (p-median) model
to minimize the average total time for individuals to reach
to service facilities and receive the services in PODs with
staff allocation considerations.

In the next section, we present a literature review of fa-
cility location problems for emergency response. Next, we
formulate our problem and present the solution method-
ology. We then present an experimental case study with
our computational results. Lastly, we conclude with our
findings and a future research discussion.

2. Literature review

Locating facilities for responding to an emergency is a
critical and complex problem (Daskin and Dean, 2004).
Owen and Daskin (1998) present a comprehensive liter-
ature review on strategic facility location problems. In a
more recent study, Snyder (2006) presents a review on
facility location problems under uncertainty. Facility lo-
cation problems with uncertain parameters and decision
variables are formulated with mathematical programming
techniques, such as stochastic programming, robust op-
timization and also with several hybrid methods such as
simulation-optimization. In a typical facility location prob-
lem, travel times, construction costs, locations and mag-
nitude of demand over time may not be known with
certainty. In addition to these parameters, the capacity
of facilities can also be variable. In this paper, we are
interested in the throughput performance of mass dis-
pensing facilities (i.e., PODs) with a stochastic arrival
pattern.

One of the first models formulated to minimize the ex-
pected cost of facility location under uncertainty is pre-
sented in Mirchandani and Oudjit (1980). There are also
several studies on supply network design with uncertainty
including determining the location of facilities (Tsiakis
et al., 2001, Schutz et al., 2008). For an emergency lo-
gistics application, Barbarosoglu and Arda (2004) present
a two-stage stochastic programming model to plan trans-
portation of first aid commodities to an area affected by
an earthquake. The resource requirements at each loca-
tion are modeled as random variables with a finite number
of scenarios. Beraldi et al. (2004) use a similar modeling
approach, within a probabilistic paradigm, to locate med-
ical service facilities under emergency situations. Chang
et al. (2007) present a scenario-based optimization model
for distribution of rescue resources in urban flood disasters.
Their decision variables include the structure of rescue or-
ganizations, locations of rescue resource stores, allocation
of resources under capacity restrictions, and the distribu-
tion of these resources. Afshartous et al. (2008) present a

simulation-optimization based methodology to determine
robust locations of Coast Guard stations. Based on a real
data set of distress calls, they develop a statistical model to
simulate distress call locations. Recently, Beraldi and Bruni
(2009) formulate and solve a probabilistic model for de-
termining the optimal locations of facilities in congested
emergency systems. The decision paradigm of the prob-
lem is handled with a two-stage structure of the stochastic
program and different solution methods are presented to
solve the problem. Several other studies consider large-scale
emergencies and emergency medical services delivery with
facility location and allocation decisions (Das et al., 2007,
Murali et al., 2009, McLay, 2009).

In a different context, a simulation-optimization frame-
work is presented by Vardar et al. (2007) for semiconduc-
tor manufacturing investment decisions including facility
location and worker allocation decisions. Similar to our
problem, Syam (2008) formulates a facility location model
with staff allocation considerations in order to minimize
the expected waiting times in the service facilities and uses
a Lagrangian relaxation method to solve the problem. We
use a similar optimization framework as Vardar et al. (2006)
and Acar et al. (2009) to locate POD sites with uncertain
performance to design a robust response system for a major
public health concern.

An emergency such as an influenza outbreak or a bioter-
rorist attack may require PODs to perform well on several
performance measures. These performance measures in-
clude average cycle time (i.e., average time an individual
spends in the POD to get the service), average queue length
(i.e., average number of individuals waiting to get service),
and average throughput rate (i.e., total number of people
that get service in a specific time period). These measures
are highly dependent on available resources, e.g., number
of staff allocated to bottleneck stations in a dispensing pro-
cess (Washington, 2009). In a large scale emergency that
is caused by anthrax, federal medical supplies from the
SNS (Strategic National Stockpiles) (CDC, 2003) would
be delivered to affected areas within 24 hours and it is the
responsibility of the local authorities to develop efficient
mass dispensing operation plans. An effective mass dispens-
ing plan would involve setting up PODs to distribute the
supplies and having easy access of individuals to the PODs.
Under these conditions, the decisions about determining
locations of the facilities to be opened and the amount of
resources (e.g., staff) allocated to each facility are essen-
tial. In this paper, we present a mathematical model and a
heuristic solution method for determining the locations of
mass dispensing sites and their capacity in order to opti-
mize service times in a public health emergency. The major
contribution of the paper is incorporating the variation of
demand on services, which can be due to the demographic
differences of the people in the various geographic areas,
into the facility location and allocation model for a specific
public health problem.
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180 Araz et al.

3. Problem statement and model formulation

Anthrax is an acute infectious disease caused by a spore-
forming bacterium (Jia et al., 2007). The logistical response
strategy for an anthrax attack is planned as follows: first,
the federal government will investigate the specific anthrax
attack and then allocate the appropriate SNS supplies to
states, then they will be sent from states to counties and
finally from counties to local emergency medical service fa-
cilities, i.e., PODs (CDC, 2003). Then, local authorities are
responsible for the mass distribution of these stocks within
48 hours, which is specific to anthrax attacks, to the affected
population. To measure the service performance, we first
present the queuing model formulation of multiple identi-
cal PODs operating at specified geographical locations. The
objective is to evaluate the average performance of PODs
under various staffing scenarios based on their throughput
performances. Based on our discussion with public health
managers and according to their bioterrorism prepared-
ness plans, we assume that the public health emergency
is occurring in one locale with a determined boundary.
In addition, we also assume that SNS assets and medical
countermeasures will be available in sufficient quantities
for the affected region. We use a queuing approximation to
save computational time of the solution algorithm, rather
than simulating the operations of the entire POD network.
Two of the important performance measures of POD op-
erations are the capacity of each POD (i.e., throughput
values) and the average time spent by individuals in each
POD (Zaric et al., 2008). These measures determine the
system responsiveness during a bioterrorist attack which is
highly dependent on the number of staff serving in PODs
at a given time.

For formulating the p-median location problem with staff
allocation decisions, we first identify aggregated demand
locations in a pre-defined geographical area, i.e., the census
block groups in Maricopa County, Arizona. Maricopa is
the largest county in the state of Arizona (in terms of its
population) and it includes the Phoenix Metropolitan area,
one of the largest metropolitan areas in the United States.
In the case of an anthrax attack to a metropolitan area,
e.g., Phoenix Metro area, a large and sudden demand on
medical facilities will emerge and medical agencies will be
very likely to suffer from insufficient resources. Due to the
nature of this public health emergency, timely response is
critical in terms of saving lives and avoiding chaos.

A mass dispensing facility which is close to the center of
the demand location will provide better quality of service
to the demand point and it is assumed to be more eas-
ily accessible than a facility located far from the center of
the demand location (Dessouky et al., 2006). Here, we for-
mulate a mathematical model to determine which PODs
among candidates to open with appropriate staffing that
can effectively respond to demographic needs, specified by
the age distribution of the assigned demand locations given
a limited time frame. The model is a nonlinear optimiza-

Fig. 1. POD layout and process flow diagram.

tion model that incorporates the waiting time performance
measure from the queuing formulation into the objective
function of the optimization model. The overall service
delivery performance measure that we evaluate in the ob-
jective function is the sum of the average waiting time in
PODs and the average travel time of individuals to reach
the PODs.

The baseline and simplified POD layout model that is
considered in this paper is presented in Figure 1. The dis-
pensing process includes basic operations and the param-
eters associated with these operations are assigned from
the published literature (Whitworth, 2006; Lee et al., 2006;
Hupert et al., 2002) and also based on the data we obtained
from the Public Health Department of Maricopa County.
The service process in a POD includes registration, triage
and dispensing. After triage, individuals are directed to reg-
ular or express dispensing stations based on needs of med-
ical screening. For example, elderly people or those with
pre-existing medical conditions may need to speak with a
healthcare professional (e.g., a nurse). During the triage
process, individuals go through a medical evaluation and
based on this evaluation they are led to the appropriate
medication dispensing station.

State health officials have identified numerous alterna-
tive locations for POD sites, because there may be multiple
attack locations and as a result multiple POD locations
may be required to mitigate the risk on response facili-
ties. However, opening all of these possible POD sites at
the same time may not be an efficient strategy in terms
of resource utilization and operating cost of PODs. The
Centers for Disease Control and Prevention (CDC) has de-
veloped guidelines for county health departments to plan
their response for bioterrorist events and infectious disease
outbreaks (CDC, 2003).

In this paper, we use a queuing approximation model
from Aaby et al. (2006) for calculating the average waiting
times to analyze the bottleneck stations in the process. The
waiting time approximations are embedded into our facility
location model to minimize the average waiting time at each
POD by allocating an optimal number of staff to each sta-
tion. In our model, we consider a POD with a registration
station, prescreening station, express dispensing station and
dispensing station with screening. Since the registration and
prescreening stations are very unlikely to be the bottleneck
in the whole process, the time to get through these stations
is assumed to be constant (Aaby et al., 2006). See Table 1 for
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Optimizing service times for a public health emergency 181

Table 1. Queuing model parameters and values (Aaby et al., 2006)

Stations
Mean Processing

Time SCV Variance

Registration 1 minute 0 -
Prescreening 2 minutes 0 -
Express Dispensing (E) 3 minutes 0.5 4.5
Screening and

Dispensing (D)
5 minutes 0.25 6.25

the parameter values, i.e., mean processing time, squared
coefficient of variation (SCV), and variance of processing
time at each station, used in queueing approximations of
the model.

We now present mathematical details of the queuing
model that we use to approximate several performance
measures in a single POD and also the p-median location-
allocation model.

3.1. Queuing approximation of waiting times in PODs

We model each POD as an open queuing network (Aaby
et al., 2006). In our POD model, we have two different ser-
vice lines and these lines are express dispensing and regular
dispensing. At a station k, (k = E or D), in POD j, we
assume the number of servers is represented by zkj. Let Nj
be the number of individuals per unit time arriving to POD
j and assume Nj has a Poisson distribution with parameter
λj. The service times at each station k, are assumed to have
a general distribution with mean μk and standard deviation
σ k. For a given POD j, based on the demographic needs of
the assigned demand locations, i.e. characterized by the age
distribution which may be high correlated with the medi-
cal complications, the proportion of the individuals who
require the regular dispensing process varies and this vari-
ability can significantly affect the throughput performance
of the PODs. Here we present the notation and variables
for the model.

Decision Variables

xi j =
{

1 If demand point i is assigned to POD j
0 otherwise

yj =
{

1 If a POD is open at location j
0 otherwise

zD, j : Number of staff allocated to regular dispensing
station at POD j

zE, j : Number of staff allocated to express dispensing
station at POD j

Model Parameters:

dij: Distance between the centroid of the demand location
(i.e. census block group) i and POD location j

tij : average travel time from demand point i to POD j

vij: average travel speed from the centroid of the demand
location i to POD j

tij = dij / vij
M: Total number of PODs decided to be opened (defined

a priori)
Kk: Maximum number of resource units of type k available
τ :Targeted total time for completing the dispensing of

medicines (minutes)
Pi: Population of demand point (i.e., census block group) i
TP: Total population in the service area

T P =
∑

i

Pi (1)

γ : Compliance rate (i.e., proportion of the population that
will be going to dispensing sites)

(0 < γ < 1)

λ: Expected arrival rate to PODs during the anthrax bioter-
rorist event

λ = T P
τ

γ (2)

Nj : Number of individuals arriving to POD j (Poisson
distribution) per unit time

λj: Arrival rate to POD j

γ j =
⎛
⎝
∑

i
Pi xi j

T P

⎞
⎠ λ =

(∑
i

Pi xi j

)
γ

τ
(3)

θi : Proportion of the population that requires regular dis-
pensing from demand location i

α j : Proportion of arrivals that require regular dispensing
at POD j

α j =
(∑

i
xi jθi Pi

)/(∑
i

xi j Pi

)
(4)

λD, j : Arrival rate to regular dispensing station in POD j

λD, j = α jλ j (5)

λE, j : Arrival rate to express dispensing station in POD j

λE, j = (
1 − α j

)
λ j (6)

μD : Mean service rate at regular dispensing stations
μE : Mean service rate at express dispensing stations
σD

2: = Variance of service times at regular dispensing sta-
tions

σE
2: = Variance of service times at express dispensing sta-
tions

cD
2: = Squared coefficient of variation for service times at
regular dispensing stations

cE
2: = Squared coefficient of variation for service times at
express dispensing stations

Let WE, j be the average waiting time in the express dis-
pensing station and let WD, j be the average waiting time
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182 Araz et al.

in the regular dispensing station at POD j. Given that the
queue structure in our model is assumed to form an M/G/s
queuing model, from Aaby et al. (2006) we can calculate
the average waiting times at any POD j with the equation
given in (7).

Wj = α j WD, j + (1 − α j )WE, j (7)

Equation (8), which is an expansion of Equation (7), ap-
proximates the overall average waiting time for POD j. It
is worth noting that the quality of this approximation in-
creases as the utilization of servers increases (Whitt, 1992).

Wj = α j

(
1 + c2

D

2

)⎡⎢⎢⎣
(
λD, j

/
μDzD, j

)√2zD, j +2−1

zD, j

(
1 −

(
λD, j

/
μDzD, j

))
⎤
⎥⎥⎦ 1

μD

+(1 − α j )
(

1 + c2
E

2

)

×

⎡
⎢⎢⎣
(
λE, j

/
μEzE, j

)√2zE, j +2−1

zE, j

(
1 −

(
λE, j

/
μEzE, j

))
⎤
⎥⎥⎦ 1

μE
(8)

3.2. POD location model and resource allocation

In this section we formulate the facility location and (staff)
resource allocation problem. This model incorporates trav-
eling and waiting times at each facility into the objective
function. The sum of average waiting times in PODs is min-
imized by allocating the appropriate number of staff. In the
presented model the total number of PODs to be open is
fixed, i.e., M. Finally, the average travel speed in the county
is assumed to be constant. These assumptions can easily
be relaxed to make the presented model more robust. Now,
the mathematical notation of the model is given as follows.

Location Allocation Model:

Min

⎡
⎣
⎛
⎝∑

i∈I

∑
j∈J

Pi
(
ti j + Wj

)⎞⎠ xi j

⎤
⎦ (9)

Subject to:∑
j∈J

xi j = 1 ∀i ∈ I (10)

∑
j∈J

yj ≤ M (11)

xi j ≤ yj ∀i ∈ I, ∀ j ∈ J (12)∑
j∈J

zkj ≤ Kk ∀k ∈ K (13)

Wj = f (α j , λE, j , λD, j , μE, μD, zE, j , zD, j ) (14)
xi j , yj ∈ {0, 1} ∀i ∈ I, ∀ j ∈ J
zkj ∈ Z+ ∀ j ∈ J, ∀k ∈ K (15)

In this model, we use rectilinear distances between the
center of the census block groups and the POD locations,
since it is the most appropriate distance measure for calcu-
lating the travel time in the considered area, i.e., Maricopa
County, Arizona (Wyman and Kuby, 1995). The objective
function (9) minimizes the total travel time from demand
points to PODs plus the average waiting times at PODs.
The presented model is extensible enough to consider cost
minimization related to POD operations (see Appendix for
the generic formulation). Constraint set (10) assures that
each demand point i is assigned to a POD and constraint
(11) guarantees that a maximum of M facilities are opened
as POD sites. In (12) we guarantee that a demand point i
can only be served by facility j if facility j is open and (13)
guarantees that the maximum availability of staff resources
is not exceeded. In (14) we formulate the average waiting
times in each POD as a function of resources allocated to
each POD (equation 8), the arrival of the individuals to
them and the service times at each station. Constraints in
(15) are the binary and integrality constraints on the deci-
sion variables.

4. Solution approach: Genetic algorithm for POD
location-allocation

The p-median facility location problem is an NP-hard com-
binatorial optimization problem (Alp et al., 2003). In ad-
dition, our problem formulation has nonlinearity in con-
straint (14), i.e., the definition of the waiting times in the
PODs. This constraint could be relaxed and linearized;
however, the computational time for finding the optimal
solution would likely increase significantly. Hence to solve
this problem, we develop a heuristic method based on a
genetic algorithm (GA). Here, we describe the implemen-
tation of our genetic algorithm.

A genetic algorithm (GA) is a local search algorithm
based on the biological evolution paradigm (Holland,
1975). In a GA, first a set of feasible solutions, called
the initial population, is generated and genetic operators
are used to search the neighborhood of the initial popula-
tion. Next, a selection is made based on the survival of the
fittest rule to determine the members of the next genera-
tion. This mechanism continues until a stopping criterion
is met (e.g., after a fixed number of iterations, or if the so-
lution has not improved sufficiently after a certain number
of iterations). Members of the population are called chro-
mosomes and each chromosome represents a solution to
the problem. The chromosomes evolve through successive
iterations called generations. In each generation, chromo-
somes are evaluated using the measure of fitness. To cre-
ate the next generation, new chromosomes called offspring
are formed by merging two chromosomes from the current
generation using a crossover operation and/or modifying a
chromosome using a mutation operator. A new generation
is formed from this intermediate population by selecting
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Optimizing service times for a public health emergency 183

2 3 34 … 62 20 24 14 29 … 34 20

Integer digits of open PODs’ IDs Integer digits of staff allocations: zkj

Fig. 2. Demonstration of the encoding scheme with a chromo-
some.

according to the fitness values, some of the parents and
offspring and rejecting others so as to keep the population
size constant. Fitter chromosomes have higher probability
of being selected. After several generations the fitness of
the solutions improves. Genetic algorithms have been used
for solving various types of facility location problems (Alp
et al., 2003; Bozkaya et al., 2002; Salhi and Gamal, 2003).
In our context, a solution is an integer code representing
the index of each open POD, and number of staff for two
types (express staff and regular staff) allocated to each fa-
cility. It is also worth noting that we used a generational
approach for the GA; an alternative approach would be the
steady state approach (Vavak and Fogarty, 1996).

4.1. GA-based heuristic for solving p-median problem

In this section, we describe the implementation of our ge-
netic algorithm to solve the facility location problem with
staff allocation decisions.

4.1.1. Chromosome encoding
Each chromosome represents a feasible solution to the
problem. Genes of the chromosome represent the elements
of a feasible solution. We first form a numbered list of the
potential facilities to open and the chromosomes have the
integer digits representing open facilities in each solution.
Our algorithm fixes M, as decision makers often determine
how many PODs to open and the model assumes a fixed
number of resources for both staff types. With the input

of number of PODs to open (i.e., M), the chromosomes
size is fixed. In our GA, the chromosomes representing the
solutions consist of two parts. The first part has M integer
values, each integer representing an open facility. The sec-
ond part is formed with 2M integer digits that represent
the number of express staff and regular staff allocated to
each open POD, respectively. An example of a chromosome
with the encoding scheme is given in Figure 2. In this ex-
ample, the POD with ID 2 is opened and 20 staff members
are allocated to the express dispensing station and 24 are
allocated to the regular dispensing station.

4.1.2. Fitness function (fitness evaluation)
In our genetic algorithm we evaluate the fitness of the chro-
mosomes by the value of the objective function (Equa-
tion 9). The fitness calculation assumes that every demand
point is assigned to one facility, specifically the closest open
facility.

4.1.3. Chromosome population and initialization
The GA has a fixed population size of N = 500 chromo-
somes, which was determined to be large enough to increase
the chances of obtaining the global optimum solution at the
expense of computational time, based on published litera-
ture (Alp et al., 2003). For all different number of PODs
open problem instances we calculated the suggested popu-
lation size based on Alp et al. (2003). Even 200–250 would
be sufficient as the population size; we doubled it to be safe
in our computations. A greedy method is applied to gen-
erate the initial population of the algorithm (see Fig. 3).
In the greedy algorithm, M randomly chosen facilities are
opened (there is an equal probability of each facility being
opened) and each census block group is assigned to the
closest open POD site. For each open POD, the algorithm
assigns a random number of staff, from a uniform distribu-
tion of which parameters are set based on the open PODs
and total servers available, by utilizing all the available re-
sources and checking if the queue feasibility conditions are

Fig. 3. Greedy algorithm for generating solutions.
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Fig. 4. Demonstration of the cross over operator.

satisfied, i.e., λD, j
/
μDzD, j

< 1 and λE, j
/
μEzE, j

< 1 for all
open PODs.

If these utilization constraints cannot be achieved in any
of the PODs for any service line, then the algorithm reports
infeasibility. In addition, the algorithm ensures all staff are
used after staff feasibility is checked, by allocating addi-
tional staff to open PODs based on the utilizations com-
puted in both lines. Priority is always given to the highly
utilized lines.

We use randomly selected solutions from the current gen-
eration and generate a candidate set consisting of 2N new
solutions (N current chromosomes and N offspring chro-
mosomes). These solutions then go through the selection
procedure based on their fitness values. We keep the best
solution from the candidate solution set (elitism) into the
next generation and tournament selection is used as our se-
lection mechanism to select the remaining members of the
next generation (Gen and Cheng, 2000). We generate new
solutions via a mutation operator and a crossover operator
as described below.

4.1.4. Genetic operators and offspring generation
Crossover: One point crossover is applied to selected par-
ent chromosomes as follows: a predefined crossover point
is selected and between two adjacent elements two new
chromosomes are generated by swapping all elements in
the head of the chromosomes (Gen and Cheng, 2000).
An example of a cross over operation is represented in
Figure 4. This crossover point can be in both location and
allocation parts of the chromosomes. Therefore, since the
resource allocation part of the chromosomes is twice the
size of facility location part, this operator is twice as likely
to be operating on the allocation portion of the problem
as the location portion of the problem. Crossover rate was
chosen as 0.5 after parameter tuning.

Mutation: Our mutation operator is a random mutation
operator and it picks a random gene in a selected chro-
mosome and changes the value of the gene by enforcing
a different value. If the gene being mutated is a location
gene, the operator ensures that an already open POD is not
selected. If it is an allocation gene, it changes the number

Fig. 5. Demonstration of the mutation operator.

Termination

Encoding Scheme

Initialization

Mutation

Selection

Cross-over

Are chromosomes feasible?
Open POD duplication
Queue feasibility 
Staffing feasibility 

Is the pre-specified 
stopping condition 

satisfied?

YES

YES

NO

NO

.

.

.

Fig. 6. Simple schematic representation of the GA.

of servers assigned as necessary for satisfying queue feasi-
bilities and avoiding the situations exceeding the available
capacity. A mutation rate of 0.1 was used; determined after
parameter tuning which yielded the best results in most ex-
periments. An example of a mutation operator is given in
Figure 5.

4.1.5. GA termination
The heuristic terminates once a pre-specified number of it-
erations, i.e., 500 iterations, is executed. A simple schematic
representation of the GA is presented in Figure 6.

5. Experimental studies and computational results

We solve the described problem by using the developed GA
for determining the POD locations in Maricopa County,
Arizona. Based on Maricopa County’s preparedness plan,
we consider the case of having 105 predetermined possible
POD locations in the area and perform computations for
the scenarios of opening 1, 2, 3, 4, 5, 10, 15, 25, 35, 45, 55,
65, 75, 85, and 95 PODs.

In our computations, we used a county-wide fixed travel
speed (i.e., vij = v) and we assume the geographical cen-
ters of the census block groups represent the aggregated
discrete demand locations. Each demand location has its
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Table 2. Staff availability for each scenario

Normal Staffing Regular 500
Express 1000

Low Staffing Regular 250
Express 500

High Staffing Regular 1000
Express 2000

population as the demand quantity. In addition, based on
the demographic structure of the demand locations, i.e., the
proportion of the population older than certain age and
thus may have more medical complications; each demand

point is characterized by its proportion of the population
that requires regular dispensing.

We first solve the formulated p-median problem with-
out considering any staff allocation decisions or the de-
mographics of the census blocks. Again, the census block
groups are assigned to their closest PODs as it was in
the population initialization of the solution. We deter-
mine the optimal facility locations in terms of minimizing
the average travel time for individuals to reach a POD.
Then, we calculate the expected waiting times for indi-
viduals in each POD by assuming the total available staff
are equally allocated to each open POD. We call this ap-
proach the naı̈ve staff allocation approach, which is a process

Fig. 7. (a) Average total service time to receive service for different number of PODs open in the naı̈ve approach. (b) Average total
service time to receive service for different number of PODs open in with GA allocation solution given p-median locations. (c) Average
total service time to receive service for different number of PODs open in the GA solution. (d) Comparison of total times for receiving
services in three scenarios.
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Table 3. Results for naı̈ve approach and GA approach for different number of PODs open

Naı̈ve Staff Allocation
Fixed Location &

GA Allocation
GA Sol. for Location &

Allocation
GA Comparison with Naı̈ve

Approach

No. of
PODs

Total
Time

Travel
Time

Waiting
Time

Total
Time

Waiting
Time

Total
Time

Travel
Time

Waiting
Time Overall Improvement (%)

1 103.31 86.11 17.20 103.31 17.20 103.31 86.11 17.20 0
2 89.56 72.10 17.46 89.45 17.35 89.44 73.02 16.42 0.13
3 78.28 60.50 17.78 78.08 17.58 80.88 64.89 15.99 −3.32
4 75.22 57.12 18.10 75.12 18.00 73.97 57.33 16.64 1.66
5 68.63 50.23 18.40 68.42 18.19 68.54 51.51 17.03 0.14
10 63.01 42.36 20.65 62.00 19.64 64.11 46.50 17.61 −1.75
15 62.40 40.63 21.77 61.61 20.98 59.91 41.79 18.12 3.99
25 60.49 35.20 25.29 58.56 23.36 56.47 36.79 19.68 6.64
35 58.54 29.68 28.86 56.55 26.87 51.72 30.43 21.29 11.65
45 55.02 22.56 32.46 53.03 30.47 46.82 24.50 22.32 14.9
55 55.70 19.62 36.08 53.56 33.94 43.85 20.85 23.00 21.27
65 56.56 16.85 39.71 54.38 37.53 44.58 18.00 26.58 21.18
75 57.59 14.23 43.36 54.42 40.19 46.29 16.14 30.15 19.62
85 58.24 11.23 47.01 56.51 45.28 47.44 14.81 32.63 18.54
95 62.63 11.96 50.67 59.87 47.91 49.54 13.34 36.20 20.9

Note. The time unit in the table is minutes.

considered by local officers for exercise planning scenario.
We perform additional computations to have comparisons
for the county’s plan with different strategies that may per-
form better. Based on the county’s plans, a number of PODs
will be opened and a pre-determined number of staff for the
express and regular dispensing stations will be equally dis-
tributed to these PODs. Staff in PODs would be reallocated
in real time based on backlogs in the system. In our prob-
lem, we first assume the county has a total of 1000 express
dispensing staff and 500 regular dispensing staff. We also
consider different scenarios with high and low staff avail-
ability, using the county numbers as the base case (normal)
staffing. The numbers of staff that we use for each case are
displayed in Table 2.

We solve the 1, 2, 3, 4, 5, 10, 15, 25, 35, 45, 55, 65, 75, 85,
and 95 median problems (normal staffing levels) using the
naı̈ve approach and report the average travel time for reach-
ing the PODs in the county and the average waiting time in
the PODs. As the number of PODs opened increases, the
average time for individuals to reach a POD decreases (as
expected). In addition, the average waiting time for indi-
viduals to get the required medication in PODs increases
dramatically when the total number of PODs opened in
the county is higher than 15. The results for average total
time for individuals to get service with different numbers of
PODs open are presented in Figure 7a. After our naı̈ve ap-
proach analysis, we fixed POD locations to the optimal sets
found as p-median solutions in all scenarios, and used the
GA to determine staff allocations for open PODs. The re-
sults are presented in Figure 7b. With this approach waiting
time results can be improved in comparison to the waiting
time results obtained in the naı̈ve approach (up to 7.6% in

the 25 PODs scenario). The total average times for receiv-
ing service and average waiting times in PODs for various
scenarios can be also found in Table 3 (see Fixed Location
and GA Allocation columns).

Then, we solve the problem by using the GA for de-
termining the POD locations in terms of minimizing the
average travel times to PODs while also determining the
optimal staffing configurations in each POD based on the
census block group assignments. We call this case the GA
approach and observe significant improvement in the wait-
ing times in the PODs, especially, when the total number of
PODs is relatively larger. We note that average total travel-
ing times do not change significantly from those in the naı̈ve
approach with any of these cases. The total time for receiv-
ing service could be improved up to 21.27% (i.e., opening 55
PODs scenario) with the use of GA for solving the prob-
lem for location and staff allocation simultaneously and
significant improvements can be achieved for scenarios of
opening 35 and more PODs. We present the results for the
GA approach in Figure 7c. As stated earlier, our objec-
tive is minimizing the average total time that an individual
spends in a POD in addition to the travel time that is spent
to reach a POD. The results show that allocating the staff
to each POD based on the demographics of the demand lo-
cations assigned to them with the GA, reduces the average
cycle time (i.e., time spent by an individual in the facility to
receive the service) of the PODs. We observe significant im-
provements in the average travel times to PODs with both
naı̈ve approach and GA approach as more PODs are open,
and when the total number of PODs open is relatively larger
(i.e., >25) we observe significant reductions in total service
delivery time. Figure 7d compares the objective function
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Optimizing service times for a public health emergency 187

Fig. 8. Comparison of algorithm execution times for three cases.

values for all scenarios obtained with all three approaches.
It is clear from the figure that, solving the problem with GA
simultaneously for both objectives can generate improved
total time results for scenarios with 15 or more open PODs.
This improvement is maximized at 55 open PODs scenario
with 21.27% in comparison to the naı̈ve approach and with
18.12% in comparison to the fixed p-median locations and
the GA allocation approach.

By using the GA for determining which POD sites to be
open and determining the amount of staff to allocate to
each POD based on the demographics of the assigned de-
mand locations, one can find solutions to the problem that
require less time for individuals to receive their required
medication in response to an anthrax attack. However,
optimizing the staff allocations simultaneously with the
location-allocation model in the GA, increases the com-
putational time significantly (see Fig. 8). Nevertheless, the
GA still generated solutions in a reasonable amount of time
(worst case is less than 7 minutes).

In Table 3, we show the details of the solutions that are
obtained for problem instances with a different number
of PODs open. These results are presented for the naı̈ve
approach, the GA approach, and also for the fixed location
and GA allocation approach. We report the total time spent
by an individual to get service, i.e., the sum of the average
travel time and the average waiting time in PODs. The naı̈ve
approach presents the results of locating facilities with the
GA but without considering staff allocations. On the other
hand, the GA approach presents the results for solving
the problem with the genetic algorithm both for facility
location and staff allocations simultaneously. As it is seen
from the table after opening more than 55 PODs in the
area, the objective function value starts increasing again,
even though the travel times continue to decrease.

Table 4. Comparison of total times and waiting times for normal
and high staffing scenarios

Normal Staffing (GA
Approach)

High Staffing (GA
Approach)

No. of
PODs

Total
Time

Waiting
Time

Total
Time

Waiting
Time

1 103.31 17.20 90.22 4.11
2 89.44 16.42 80.29 8.19
3 80.88 15.99 68.78 8.28
4 73.97 16.64 66.02 8.90
5 68.54 17.03 59.44 9.21
10 64.11 17.61 51.94 9.58
15 59.91 18.12 50.57 9.94
25 56.47 19.68 46.13 10.93
35 51.72 21.29 41.62 11.94
45 46.82 22.32 35.13 12.57
55 43.85 23.00 33.04 13.42
65 44.58 26.58 31.62 14.77
75 46.29 30.15 30.54 16.31
85 47.44 32.63 30.08 18.85
95 49.54 36.20 31.05 19.09

We also consider different staffing scenarios. The nor-
mal staffing scenario uses the planned staffing numbers for
the county and results show that for regular dispensing
the utilization rates are very high in PODs. For the low
staffing scenario, the GA could not find any feasible solu-
tion that could keep the utilization rates less than or equal
to 1 for the regular servers. In the high staffing scenario
the utilzation rates significantly decreased for both, regular
and express dispensing stations. In Table 4, the objective
function values are compared for both normal staffing and
high staffing scenarios with the GA solutions for various
number of PODs opened. For the low staffing scenario, as
it was mentioned before, no feasible solution was found
that could satisfy the queue feasiblity conditions, therefore
we do not report waiting time for that scenario. On the
other hand, in the scenario with a higher number of staff,
the average waiting times are decreased significantly when
it is compared to normal staffing scenario. These results
are consistent for all of the cases of number of PODs open.
For demonstration, we present the details of the scenario of
opening 10 PODs in the appendix with a figure of optimal
locations of open PODs and a table presenting the assigned
number of regular and express individuals and the number
of regular and express staff assigned to each open POD (see
Fig. A1 and Table A1 for details).

6. Conclusions and future work

An important problem in responding to public health emer-
gencies is determining the location of mass dispensing facil-
ities to open to provide the required service in a reasonable
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amount of time. In this paper, we not only investigate the
problem of finding the optimal locations of service facilities
(PODs), but also search for effective (staff) resource allo-
cation levels for each open facility in terms of satisfying a
certain quality of service. The quality of the service at each
POD can be measured in various ways, but the time to get
the service is one of the most important performance mea-
sures for anthrax bioterrorism. Previous simulation studies
show that the right level of staffing in PODs can signif-
icantly reduce the waiting times and this minimizes the
total time to get service in each POD (Washington, 2009).
For this reason, we investigate the problem of facility lo-
cation with the staff allocation of two types of servers in
order to minimize the average total time to get the right
medication. We use queuing approximations to calculate
the waiting times and solve the problem with a genetic
algorithm.

Our results show that as the number of PODs that are
open increases, the total travel time to reach a POD de-
creases, but on the other hand the waiting times at each
POD will increase due to limited staffing resources. In ad-
dition, considering the demographics at each demand loca-
tion and allocating the staff accordingly decreases waiting
times in PODs and increases the throughput values. Espe-
cially, when the number of PODs to open is high, the right
staffing at each facility decreases the average waiting times
significantly. Also, having multiple servers reduces the vari-
ability at the service stations and therefore it reduces the
cycle time. The solutions that our solution method (GA)
generates can be used to develop better dispensing strate-
gies by public health officials to deliver medications during
a public health crisis. The results we present in this paper
can help public health decision makers to make better plan-
ning and resource allocation decisions by considering the
demographics of the related populations.

Finally, in our future work we plan on relaxing several
assumptions that we made in our model and computational
analyses. The model can be modified to determine the op-
timal number of PODs to be opened, rather than assuming
it as fixed by the policy makers. The travel speed can be
also be made to be more robust and realistic in terms of
travel times by considering the population density of each
census block (e.g., lower travel speeds in densely populated
areas). In addition, the embedded queuing model allows us
to run the model in a reasonable time for decision mak-
ers (i.e., less than 5 minutes). A discrete event simulation
model could include more realistic assumptions about pro-
cess of dispensing; however, it might not give the results
in an acceptable time frame. A future work of developing
a simulation-optimization framework can potentially im-
prove both drawbacks. Also linearization of constraints and
solving the linear program can be performed in the future
work a for solution quality benchmark. Lastly, the compli-
ance rate used in our model may depend on socio-economic
characteristics which may be geographically dependent and
also may depend on the health status of the individual with
more vulnerable people more likely to comply. The model

can be extended to capture this heterogeneity in individuals’
behaviors.
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Appendix

A Generic Formulation of the POD Location- Allocation
Model

Min C1

⎡
⎣
⎛
⎝∑

i∈I

∑
j∈J

Pi
(
ti j + Wj

)⎞⎠ xi j

⎤
⎦

+C2

⎡
⎣
⎛
⎝∑

j∈J

∑
k∈K

Skzkj

⎞
⎠+

⎛
⎝∑

j∈J

f j yj

⎞
⎠
⎤
⎦

Subject to:∑
j∈J

xi j = 1 ∀i ∈ I (A.1)

∑
j∈J

yj ≤ M (A.2)

xi j ≤ yj ∀i ∈ I, ∀ j ∈ J∑
j∈J

zkj ≤ Kk ∀k ∈ K (A.3)

Wj = f (α j , λE, j , λD, j , μE, μD, zE, j , zD, j ) (A.4)

xi j , yj ∈ {0, 1} ∀i ∈ I, ∀ j ∈ J
zkj ∈ Z+ ∀ j ∈ J, ∀k ∈ K

(A.5)

Sk: Cost of resource type k, k ∈ {regular staff, express
staff}

Ci: Importance factor of objective i
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Table A1. Solution for the 10 open POD scenario with staff allocations and population assignments

POD POD ID Map Label
Total Individuals

Assigned

Regular
Individuals
Assigned

Express
Individuals
Assigned

Regular Staff
Allocated

Express Staff
Allocated

1 3 A 124,107 32,395 91,712 58 100
2 11 B 131,350 29,816 101,535 53 115
3 92 C 97,822 21,211 76,611 38 89
4 24 D 110,512 25,489 85,022 46 100
5 28 E 32,268 6,956 25,312 13 29
6 96 F 132,848 32,623 100,225 58 108
7 17 G 99,450 26,674 72,776 48 82
8 47 H 131,405 30,180 101,224 54 110
9 48 I 147,896 35,164 112,732 63 127
10 46 J 166,389 38,813 127,577 69 140

Fig. A1. Locations for the 10 open POD scenario.
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