Nurit Vered

Nurit Vered
Technion - Israel Institute of Technology | technion · Center for Security Science and Technology

Doctor of Medicine
pushing the expertise of hyperbaric practitioners to the next level

About

28
Publications
2,028
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
31
Citations
Introduction
decompression modelling & decompression algorithms

Publications

Publications (28)
Presentation
Full-text available
On the reliability of dive computer generated run-times, Part VIII: G2 TEK Abstract: Here, in Part VIII, we performed some basic comparisons with the highly topical SCUBAPRO / Uwatec mix-gas dive computer Galileo 2 TEK / G2 TEK along the SHEARWATER PERDIX. Both have been set to a standard perfusion model ZH-L 16 without and as well with gradient f...
Presentation
Full-text available
Here, in Part VII, we performed an altitude test, i.e. the simulation of diving in a mountain lake. During the previous parts I to VI ([1] to [6] and all the references therein), we observed by some of the dive computer manufacturers deviations from documented algorithms/decompression models with simulated dives on sea-level (SL), whereas Part VII...
Presentation
Full-text available
Abstract: We compiled lists/descriptions of errors found in the standard diving medicine literature. Methods: We scanned our diving medicine archives and looked there for already existing error-reports; typos etc. were ignored.
Presentation
Full-text available
Traditional Air-DivingTables and DIVE Version 3_11: Synopsis & update per 06/2022: as an extended quality-assurance assessment (or PoC) for the adaptivity, accuracy and usefulness of the DIVE Versions 3 framework there are now publicly available documents on RESEARCHGATE with in-depth comparisons along established and proven air-diving tables from...
Presentation
Full-text available
The United States Navy air diving tables from the U.S.N. Diving Manual Revision 7 [1] are widespread in military & professional use all over the world [2]. In fact, the precursor editions of these air-diving tables have or had been adopted by nearly all major civilian diver-training agencies like PADI, NAUI, SSI and the like. We selected several ai...
Presentation
Full-text available
The mapping of the DCIEM Air-diving table to a standard Haldane-/Workman-/Schreiner-algorithm Abstract: As we demonstrated recently ([1] and all the references therein) selected air-diving schedules from the DCIEM framework ([2] & [3]) could be recovered using a simple desktop decompression shareware with only one additional parameter: a conservat...
Presentation
Full-text available
The DCIEM air diving tables [1] are widespread in professional use [2] and considered conservative due to a low rate of DCS ([3], [4] & [5] and all the references therein). We selected several air diving schedules incl. repetitive dives from the recreational / TEC diving community and tried to recover these schedules from the printed DCIEM tables w...
Presentation
Full-text available
On the reliability of dive computer generated run-times, Part VI: Error Propagation Abstract: Here, in Part VI, we only point out to the law of error propagation. During the previous 5 parts ([1] to [5] and all the references therein), we observed by some of the dive computer manufacturers deviations from documented algorithms/decompression models...
Presentation
Full-text available
On the reliability of dive computer generated run-times (22.02.2022) Part IV Here, in Part IV, we checked the DCIEM implementation of one SHEARWATER® dive computer with the original source, the air diving table from the DCIEM Diving Manual [1] along selected table entries. Conclusion: the manufacturers claims on using the DCIEM model could be ver...
Presentation
Full-text available
On the reliability of dive computer generated run-times 07.02.2022, Part V Here, in Part V, we checked the ZH-L16C implementation of one SHEARWATER® dive computer with the original source, the air diving table ZH-86 from A. A. Bühlmann [2] along selected table entries as well with a freeware/shareware implementation [1], [3] as a 2nd. benchmark. C...
Presentation
Full-text available
On the reliability of dive computer generated run-times: Part III Here, in Part III, we checked 3 simple run-times with bottom depth 18 m / 60 min, 33 m / 60 min & 51 m / 30 min bottom times on air with the RATIO iX3M DEEP from Dive System® in comparison with the original source, the ZH-86 from A.A. Bühlmann [2] and DIVE Version 3_11 [1] & [3]. C...
Presentation
Full-text available
Executive editing" is an off hand change of calculated entries in the printed / published versions of diving tables. Usually, nowadays, the tables entries are calculated via an algorithm, written in a high-level computer language, like "FORTRAN" or "C" and thus coded into a piece of software. The deviations from the automated, algorithmically gener...
Presentation
Full-text available
The ZH-86 air diving tables and A.A. Bühlmanns underlying ZH-L16 algorithms are considered "gold standard" within the recreational diving community, thus they are widely used in decompression planning software and dive computers. In order to achieve a transparent comparability between the various methods of calculating a diving schedule and thus ge...
Presentation
Full-text available
Risk Assessment in the Norwegian Diving & Treatment Tables: our offer for improvement Abstract: The NDTT 5th. Ed. describes a transparent & straight-forward score-based risk assessment with 3 clear parameters (Ref. [1], p. 65). We used (de-)hydration as a 4th. parameter, based on our experience [2], as an offer for quick & easy improvement.
Presentation
Full-text available
On the reliability of dive computer generated run-times, 11.01.2022, Part II Abstract: Here, in Part II, we checked a simple run-time (bottom depth 45 m / bottom time 30 min on air) with the 3 different dive computers in comparison with the original source, the ZH-86 from A.A. Bühlmann and two free-ware desktop deco-programs. Results: there is s...
Presentation
Full-text available
Abstract: a somewhat belated case study for a sub-saturation dive on air to 8.5 m required for a GUINNESS® world-record of 36 h in-door underwater spinning in 2001 Methods: we analyzed the dive profile with the: USN Rev. 7 2018 tables [1], the DCIEM 1983 tables [2] and the shareware DIVE Version 3_11 from 11/2021 [3], [4]. Results: in one of the...
Presentation
Full-text available
Abstract: We compiled lists/descriptions of errors found in the standard diving medicine literature. Methods: We scanned our diving medicine archives and looked there for already existing error-reports; typos etc. were ignored. Results: Severe errors are appearing more frequently in monographs. Omnibus Volumes, written by teams of experts, are obvi...
Presentation
Full-text available
Synopsis & fact sheet for the Desktop Decompression Suite DIVE, Version 3_11; new features being the K-Index for CNS- & P-OT, as well the DCIEM deco stress index "I".
Presentation
Full-text available
Abstract / Methods / Results: as per Part I. i.e.: DOI: 10.13140/RG.2.2.15199.79528 We compiled lists/descriptions of errors found in the standard diving medicine literature. We scanned our diving medicine archives and looked there for already existing error-reports; typos etc. were ignored. Severe errors are appearing more frequently in monograph...
Presentation
Full-text available
Abstract: We compiled lists/descriptions of errors found in the standard diving medicine literature. Methods: We scanned our diving medicine archives and looked there for already existing error-reports; typos etc. were ignored. Results: Severe errors are appearing more frequently in monographs. Omnibus Volumes, written by teams of experts, are ob...
Chapter
Full-text available
Kapitel 14 aus "Dekompression": Fehlerchen im Bühlmann Konvolut, S. 368 - 372
Presentation
Full-text available
Abstract: in Part I we checked a simple run-time for a dive with: @bottom depth 42 m / bottom time 25 min. with 2 breathing gases (air & Trimix21/50) with the Scubapro/UWATEC G2 computer with various firmware releases from 2017 up to now (08 / 2021). Methods: pls. cf. slides # 3 to 11, and References [1], [2] & [4], [5] Results: there is variati...
Presentation
Full-text available
Synopsis & Fact Sheet: an update per 07/2021 wit new materials / publications for a Proof of Concept (PoC) for DIVE Version 3_10; including links to: --> Collateral Aspects of DCS --> an agile implementation of the K-value, a severity index for CNS-OT & P-OT (oxygen toxicity for the CNS and the pulmonary system)
Presentation
Full-text available
The K-value power functions for the central nervous system and pulmonary oxygen toxicity (CNS-OT, P-OT) are described in: [1], [2], [3], [4] & [5], pls. cf. chapter „References“. As Ran et al. would have it ([3], abstract), there is a need for an implementation. Which is what we did ([6], [7], [8], [9]). „Agile“ means here, in the context of IT-...
Presentation
Full-text available
Background Information on the "update 03 / 2021" to the 2011 paper from smc-de.com: Decompression-Calculations for Trimix Dives with PC-Software; Gradient Factors: do they repair defective algorithms or do they repair defective implementations?
Presentation
Full-text available
Synopsis: some collateral aspects of DCS A collection of papers / essays / presentations and their URLs at researchgate.net, related to DCS (decompression sickness), PBPK (physiologically based pharmaco-kinetic models), diving and their somewhat remote, unusal or at least, unorthodox aspects.

Network

Projects

Project (1)
Project
" ... helping to bring the time of Bühlmanns work in Zurich back to present and link it with current research and science." (citation, guideword from the organisers)