
Nunzio Alexandro Letizia- Doctor of Philosophy
- Researcher at Alpen-Adria-Universität Klagenfurt
Nunzio Alexandro Letizia
- Doctor of Philosophy
- Researcher at Alpen-Adria-Universität Klagenfurt
Co-founder of PiktID, AI Engineer, Research Scientist
About
26
Publications
4,969
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
210
Citations
Introduction
Skills and Expertise
Current institution
Publications
Publications (26)
The increased availability of data and computing resources has enabled researchers to successfully adopt machine learning (ML) techniques and make significant contributions in several engineering areas. ML and in particular deep learning (DL) algorithms have shown to perform better in tasks where a physical bottom-up description of the phenomenon i...
In this paper, the problem of determining the capacity of a communication channel is formulated as a cooperative game, between a generator and a discriminator, that is solved via deep learning techniques. The task of the generator is to produce channel input samples for which the discriminator ideally distinguishes conditional from unconditional ch...
The accurate estimation of the mutual information is a crucial task in various applications, including machine learning, communications, and biology, since it enables the understanding of complex systems. High-dimensional data render the task extremely challenging due to the amount of data to be processed and the presence of convoluted patterns. Ne...
In this paper, the problem of determining the capacity of a communication channel is formulated as a cooperative game, between a generator and a discriminator, that is solved via deep learning techniques. The task of the generator is to produce channel input samples for which the discriminator ideally distinguishes conditional from unconditional ch...
Deep generative models have drawn the attention of the AI community in the last decade. The scalability of neural architectures helps solving multiple relevant problems, e.g., text-to-image generation, otherwise not addressable. In the context of image data privacy, the increasing amount of produced, shared, and stored images imposes new measures t...
We are assisting at a growing interest in the development of learning architectures with application to digital communication systems. Herein, we consider the detection/decoding problem. We aim at developing an optimal neural architecture for such a task. The definition of the optimal criterion is a fundamental step. We propose to use the mutual in...
Probability density estimation from observed data constitutes a central task in statistics. Recent advancements in machine learning offer new tools but also pose new challenges. The big data era demands analysis of long-range spatial and long-term temporal dependencies in large collections of raw data, rendering neural networks an attractive soluti...
We are assisting at a growing interest in the development of learning architectures with application to digital communication systems. Herein, we consider the detection/decoding problem. We aim at developing an optimal neural architecture for such a task. The definition of the optimal criterion is a fundamental step. We propose to use the mutual in...
The development of optimal and efficient machine learning-based communication systems is likely to be a key enabler of beyond 5G communication technologies. In this direction, physical layer design has been recently reformulated under a deep learning framework where the autoencoder paradigm foresees the full communication system as an end-to-end co...
This paper presents a control-based trajectory generation approach for unmanned aerial vehicles (UAVs) under dynamic constraints. It exploits the concept of optimal control to find closed-form differential equations that satisfy any arbitrary dynamic limitation mapped into kinematic constraints. Pontryagin’s Minimum Principle applies to derive a se...
Channel capacity plays a crucial role in the development of modern communication systems as it represents the maximum rate at which information can be reliably transmitted over a communication channel. Nevertheless, for the majority of channels, finding a closed-form capacity expression remains an open challenge. This is because it requires to carr...
The autoencoder concept has fostered the reinterpretation and the design of modern communication systems. It consists of an encoder, a channel, and a decoder block which modify their internal neural structure in an end-to-end learning fashion. However, the current approach to train an autoencoder relies on the use of the cross-entropy loss function...
This aticle presents a novel recursive smooth trajectory (RST) generation algorithm for application in robotics and in particular for unmanned aerial vehicles (UAVs). RST builds the trajectory recursively as a smooth polynomial path, thus a closed form trajectory satisfying any arbitrary dynamic limitation that translates into kinematic constraints...
Recent advancements in generative networks have shown that it is possible to produce real-world-like data using deep neural networks. Some implicit probabilistic models that follow a stochastic procedure to directly generate data have been introduced to overcome the intractability of the posterior distribution. However, the ability to model data re...
The autoencoder concept has fostered the reinterpretation and the design of modern communication systems. It consists of an encoder, a channel, and a decoder block which modify their internal neural structure in an end-to-end learning fashion. However, the current approach to train an autoencoder relies on the use of the cross-entropy loss function...
A great deal of attention has been recently given to Machine Learning (ML) techniques in many different application fields. This paper provides a vision of what ML can do in Power Line Communications (PLC). We first and briefly describe classical formulations of the ML, and distinguish deterministic from statistical learning models with relevance t...
Objective:
Recent advances in wearable technologies and signal processing have made it possible to perform health monitoring during everyday life activities. Despite the fact that new technologies allow the storage of large volumes of data on small devices, limitations remain when data have to be transmitted or processed with devices with both ene...
A great deal of attention has been recently given to Machine Learning (ML) techniques in many different application fields. This paper provides a vision of what ML can do in Power Line Communications (PLC). We firstly and briefly describe classical formulations of ML, and distinguish deterministic problems from statistical problems with relevance t...