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Abstract: The frequency band gaps concept is commonly
employed in many fields of physics. Recently, the concept is
extended to other disciplines such as seismic vibrations. This
article explores the potential of an approach based on periodic
arrays to protect a civil engineering structures from seismic
effects. The principle consists of an arrangement of periodic
components that act as a barrier to divert or attenuate the
propagation of the seismic waves in the frequency range of
0.1-30 Hz. For this purpose, a numerical investigation of two
periodic structures (1D and 2D) has been conducted to
demonstrate the feasibility of this technique in prevent the
propagation of seismic waves in the structure. The obtained
numerical results show that under certain conditions, two band
gaps have been detected in the low frequency range [7.87 to
12.47H7 and 15.82-21.01Hz] which is suitable for application in
earthquake engineering. It is recognized that the models used in
this study are very simplistic compared to reality, and therefore
more research work is needed to corroborate these results by
investigating the transmissibility of the system with different
materials and configurations.

Index Terms: Periodic arrays, Bands of frequency gap,
Seismic isolation of civil engineering structure, Seismic waves.

I. INTRODUCTION

Phononic crystals are macroscopic composite materials
that have a spatial periodicity in one or several directions
(1D, 2D and 3D). They are able, through the Bragg
reflection, to block the acoustic propagation in certain
directions and frequency ranges, when the wavelength is
comparable to the structural periodicity. This is known as a
band of frequencies gap, which is most often abbreviated as a
"band gap"[1].

Over the past two decades, a new category of media with
unusual physical behavior affecting the class of phononic
crystals has emerged. The composition and configuration of
these phononic structures make them capable to block the
propagation of waves with wavelengths much larger than the
structural periodicity. The origin of this phenomenon is
attributed to locally vibrating resonators at low frequencies.
The mechanism responsible for this behavior is called Local
Resonance, hence the name of Locally Resonant Phononic
Crystal. The potential of this mechanism has attracted
researchers to use these theoretical bases in the design of
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periodic structures for blocking or mitigating seismic waves
in civil engineering structures.

In this context, two perspectives were addressed, the first
approach rely on isolating a structure using meta-material
foundations[2-5]where most of the authors showed
experimentally and numerically that the foundation system
can efficiently isolate the super-structures; and the second
acts directly on the site to divert or stop ground vibration to
propagate into a site by implementing periodic networks on
the ground [6-9]in which some large-scale experiment
showed that a periodic array of boreholes embedded in the
soil can deflect the energy of an incoming seismic wave [10].

The aim of the work presented here is to design a periodic
media at the scale of civil engineering structures allowing the
inhibition ofwaves having a low frequency range
[0.1-30 Hz].

To this purpose two periodic structures with one and two -
dimensional periodicities are presented. The first consists of
a concrete matrix in which two heavy cores with rubber
coating are periodically arranged in both directions of the
[x,y] plane. The second structure consists of a
one-dimensional periodic arrangement of layers of concrete
and rubber. The seismic isolation efficiency of these
structures has been assessed in terms of the band gaps range
and position. A study of the effect of certain parameters of
the elementary cell constituting the periodic network on the
band frequency gap is presented, namely the influence of the
density of the core, the modulus of elasticity of the elastomer
and that of the concrete matrix as well as the filling fraction
of the components.

II. BASIC PRINCIPLES AND ASSUMPTIONS FOR
THIS STUDY

Before introducing the models, the underlying theory and
assumptions are first presented together with the main terms
used in this study.

In a periodic network, the passage from one point to
another spaced by a period L results in a phase shift ofe™=" .
The calculation of the band gaps of a periodic network is
limited to the study of an elementary cell by applying
periodic boundary conditions given by Eq. (2) below.

According to Bloch’s theory [11], solutions of the wave
equation with Floquet-Bloch nature can be written as:
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u(r,t)= Ky, (7) (1)
Where k denotes the wave vector in the reciprocal space, ®
the angular frequency; and u, (F ) has the same periodicity

as elastic parameters and satisfies uk (r)=uk (r+1). Then,

the following expression can be derived:

u, (r+L,t) — ¢/(K(+D)-ar) u, (r +L)

:eiK.L .ei(K.r—wt) a, (r) —u (r,t) .eiK.L (2)

Thus an equation with eigen values can be obtained. To
each wave vectorx corresponds a set of eigenvalues, whose
solutions ® (k) constitute the dispersion curves in the
network. The solutions being themselves periodic, it is
possible to represent the totality of the solutions on a graph
reduced to the zone of Brillouin in the reciprocal space
[12].The Brillouin zone is the equivalent of the elementary
cell in real space, it is the smallest cell to describe this
reciprocal network where the knowledge of the band
structure in this reduced Brillouin zone is sufficient to know
the set of the propagation modes in the network. For each of
these directions, there are frequencies f authorized which are
solution of the problem to the eigenvalues.

The main property offered by periodic arrays is the
possibility of creating band gaps at the band structure. A
band gap occurs in this case as a frequency interval where no
link is defined between the frequency and the wave vector (it
is the unauthorized frequencies) and therefore a wave at
these frequencies cannot spread in the middle. The
mechanism governing the band gap constitution is based on
two phenomena: Bragg reflections due to the periodicity of
the network whose waves lengths of the elastic waves, A
propagating in the medium, are on the order of periodicity of
the network a or, on the local resonance phenomenon of the
elements placed in networks whose waves lengths exceed by
far the periodicity of the network A>> a[13], this is the case
for seismic waves.

The main idea is to introduce into each cell a local
resonator, the interaction between the modes of vibrations of
the resonator and those of the matrix can give rise to band
gaps, it is therefore possible to place singular elements
possessing resonance properties rather than simple diffusing
elements. The appearance of the band of frequency gap is
related to the fact that each resonator will trap a part of the
energy of the transmitted wave, however the wave interacts
with all the resonant elements coupled to each other and also
coupled to the host matrix. It is really this association that
plays a key role in the presence or not of such a band gap.
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III. NUMERICAL MODELS AND BAND
CALCULATION

A. Final Periodic array 1D

The first model is a one-dimensional periodic lattice; the
elementary cell of this model (Fig. 1 (b)) consists of
succession of two layers: concrete and rubber having
thicknesses e;, e, respectively. This cell is arranged
periodically (constant period a=0.40) in the direction U, as
shown in Fig.. 1 (a). The elastic properties of the materials
used are given in Table 1.

.

e

v
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(a): Periodic array 1D.

—
v
Tv

(b): unit cell configuration
Fig.1. Periodic array 1D.

This is a one dimensional structure because the periodicity
exists only for one direction of space and consequently, k, is
the only component of the wave vector k.

With the configuration mentioned above, a 2D plane strain
model is elaborated on COMSOL Multiphysics software
[14] to solve for the eigenfrequencies and construct the
dispersion curves.

The mesh of the elementary cell and the periodic boundary
conditions imposed in the U direction are shown in Fig. 2,
where the top boundary conditions U(r) are related to those
at the bottom U{(I). Moreover, for a problem of plane
deformations, the components of the displacement vector are
Ut Gi=u,v).

ik

u, =u € v, = v e (3)
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Table 1.Properties of used materials.

Material Density p | Elastic modulus | Poisson’s ratio
(Kg /m?) E (Gpa) v
Concrete 2,500 32.1 0.3
Rubber 1,300 1.37.107* 0.463
Steel 7,850 210 0.3
Lead 11,600 16.46 0.4
Uz v
up: vy

Fig.2. Discretized mesh and periodic boundary conditions.

Frequency [Hz]

X
Fig. 3. Dispersion Curves of Model 1 (1D).

Table2. Band gaps obtained for modell.

a (m)
0.4

e;(m) h(m) Band gap (Hz)
0.2 10 [12.4-16.51]

e;(m)
0.2

B. Periodic array 2D

In fact, the one-dimensional periodic structures have limited
interest for seismic protection applications; hence periodic
two-dimensional structures are then produced. The second
model studied is a square periodic array, the structural units
of this model is made of a concrete matrix containing two
resonators consisting of a succession of cylinders and tubes
of elastomer and steel. Each of these layers will be managed
geometrically in the finite element model by a radius R;.
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These units are arranged periodically in a square lattice (1 m
of lattice constant), as shown in Fig. 4.

: [l Concrete
[l Elastomer
e [ Steel
r
Fig. 4. Periodic array 2D.
Uy Vy
1.V} U3, Vs
U2, V2

Fig.5. Discretized mesh and periodic boundary conditions.

Frequency [Hz]

Wave vector K

Fig. 6. Dispersion curve of Model 2
(Two-dimensional periodicity).

The mesh results and boundary condition are shown in
Fig. 5, where the right and top boundary conditions U (r)
and UY (t) are related to the left and bottom boundary
conditions U (1) and U (b) through two-phase coefficients

*aand e, respectively.

e ikya
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ikea _ ik,.a
, V3 =Vv,.e

(4)
ik, .a _ i.ky.a
) V4 = V2 .e

The band of frequency gap of in-plane mode waves is
obtained by the COMSOL software. The corresponding
dispersion curve is shown in Fig. 6, where the segments I'X,
XM, MI on the abscissa represent waves traveling along the
direction of 0°, 0°- 45°,45° respectively, and the vertical
coordinate represents the frequency of the wave.

The dispersion curve representing the relationship
between the frequency and the wave vector shows for this 2D
model two band gap ranges [7.87-12.47] Hz and
[15.82-21.01] HZ. The seismic waves (in the two directions
x and y) having frequencies which coincide with the band
gap frequencies.

Table 3. Band gaps obtained for model 2.

(1?1) Ri(m) | Ry(m) | Ry(m) | Ry(m) | Band gap (Hz)
[7.87-12.47] &
L0 | 049 | 039 | 029 | 019 | Lo Yo

IV. IDENTIFICATION AND STUDY OF
PARAMETERS INFLUENCING THE BAND GAP
CHARACTERISTICS

A parametric study on the elementary cell of the second
model is presented based on the three characteristics: the
lower frequency of the band (LFB), the upper frequency of
the band (UFB) and the width of the frequency band
(WFB).The factors studied are:

- Elastic modulus E of concrete.

- Elastic modulus of elastomer.

- Core density p.

- Geometric configuration including filling fraction F
(representing the ratio of the area occupied by the
two resonators and the area of the elementary cell;

f=nR’/a’.) and the ratios between the thickness
of the core and that of elastomer coating for each
Ry ond B, R~ R ).
R3 _R4 Rl - Rz
The calculation was performed under the same lattice
constant.

resonator ( 5,_

A. Influence of the core density

Different densities of materials such as concrete, steel and
lead were used for the core. Fig. 7 shows that the parameters
of the band gap (LFB, UFB and WFB) are very sensitive to
the variation of the density of the material constituting the
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core. Increasing the core density permits to decrease the
range of bang gap frequencies. The system considered can be
assimilated to a mass-spring resonator for which the

pulsation is written as:
X K
T
M

As per this formula, it is preferable to use heavy material
cores to obtain low frequencies.

One of the heavy density materials is lead
(p=11,600 Kg/m®). For this value of density, the band gaps
obtained cover the ranges 6.70 to 10.80 Hz and 13.60 to
20Hz.

4= Oy oo
q

[~

0

(=]
(8]

Fig. 7. Influence of core density on frequency band gap.

B. Influence of the coating elastic modulus

The three parameters of the band gap (LFB, UFB and
WEFB) illustrated in Figs. 8a and 8b increase with the value of
the modulus of elasticity of the elastomer. As mentioned
above, the system is linked to a mass-spring resonator, where
the cores play the role of mass and the elastomer layers are
the springs [15]. The increase in the parameters of the band
gap is due to the increase of the stiffness of the resonator, the
latter is proportional to the modulus of elasticity of the
elastomer.
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Fig. 8a. Influence of coating elastic modulus on 1*frequency

band gap.
2nd band gap
,,,,,,,,,,,,,,
60
=
o =
50 [
= —
5 —~ N
Z 4g =
£ 40 = L
_~ _a—
> - o
[N = P ——1Tm
= U _pr— ey ==LrID
g e o
= ™ _
g _ e _s=_yER
o0 S —=-UFB
g = -
= =~ S
= & WFB
10
10
0

[
N
4
o
o
2

Fig. 8b. Influence of coating elastic modulus on 2" frequency
band gap.

C. Influence of matrix elastic modulus

Fig. 9 shows that the variation in the elastic modulus of the
matrix does not entail any modification on the frequency
band gap because the elastic modulus of the matrix is much
higher than the coating (in order of 10%). Thus, a small
variation in the modulus of elasticity of the concrete has no
impact on the band gap.

1stband gap
14
12 = = = = u
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=
= R *r————¢
g ——LTB
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E —— KB
= 4 WEB
2

0 1 2 3 4 N 6 7
Matrix elastic modulus x10 [GPa]

Fig. 9a. Influence of matrix elastic modulus on the
1*'frequency band gap.
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Fig. 9b. Influence of matrix elastic modulus on the
2"frequency band gap.

D. Influence of filling fraction and parameter o

The filling fraction is defined as: f =7R’/a’ where R,

denotes the twin resonators radius. The ratios between the
thickness of the core and that of the coating elastomer for the
two resonators are:

R
Bo—

R, —R,

Rz_Rs
S

2

: Ratio of thickness for the first resonator.

: Ratio of thickness for the 2™ resonator.

Where Ry, R3, R; and R; denote the radius for each layer
from the center of cell

A parameters f, and f, are defined to assess the

contribution of these factors on the frequency band gap.
Fig. 10a shows that the lower limit (LFB) of the 1% band gap
decreases until reaching the Biin =1.85

corresponding to the lowest frequency for which the 1% band
gap can be opened. Beyond this value, the opening of the 1%
band gap is at higher frequencies. We also find that the first
band gap tends to close for values of B; less than 0.5.Fig. 10b
shows that the 2™ band gap tends to close with increasing
values of B;.

value

1st band gap
18
16
— 14
= 12
= r'/r
g 10 ——LFB
E] '“*—««—0—4""’/4
£ —=—UFB
=g WFB
2

(=]

p1

Fig. 10a. Influence of parameter f1on the 1st frequency band
gap (B2=1 and F=75.43%).
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Fig.

10a. Influence of parameter B1on the 2nd frequency band
gap (B2=1 and F=75.43%)).
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Fig. 11a. Influence of parameter f2on the 1st frequency band
gap (B1=1.9 and F=75.43%).

2 nd band gap

35
30
& 25
E 20
2 ——LFB
g 15
g —=—UFB
& 10
WFB
3
0 L
0 1 2 3 4 5

p2

Fig. 11b. Influence of parameter p2on the 2" frequency band
gap (B1=1.9 and F=75.43%).

Fig. 11 shows that for a value of B2 near 1, the lower limits
of the two band gapstend to their lowest values. These two
parametersP1 and B2 make it possible to define the geometry
of a phononic crystal in an optimal manner.

As illustrated in Fig. 12, when the filling fraction
increases, the upper and lower limits (LFB and UFB) of the
band decrease while the width of band gap (WFB) increases.

616

If we consider that this periodic structure is equivalent to a
resonator of frequency f =V (K / M), the increase of the
filling fraction tends to increase the mass, therefore, the
frequency decreases.

Triiiing fraction f

Fig. 12a. Influence of filling fraction on 1* frequency band
£ap.
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Fig. 12b. Influence of filling fraction on 2"frequency band
£ap.

V. CONCLUSION

Application of periodic networks to mitigate earthquake
induced vibration is still a challenging task due to the very
low frequency range of interest. The main concern of the
present work is to explore the potential of this concept to
reach frequency band gaps of interest using material
properties and network dimensions in the scale of civil
engineering structures. The numerical results obtained from
1-D and 2-D models showed that for characteristics of real
materials it is possible to produce a low frequency gap from
7.87 to 21.03 Hz. Parameters characterizing the material
properties and the geometric configuration of the cells have
been varied within the range of common materials to identify
the trend and the limits of variation of the low frequency
band, the upper frequency band and the width of the
frequency band. It has been found that an elementary cell
consisting of a high density core coated with a soft material
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having a low elastic modulus and a maximum filling fraction
produces a wider band gap in the low frequency range.
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