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Abstract: The frequency band gaps concept is commonly 

employed in many fields of physics. Recently, the concept is 
extended to other disciplines such as seismic vibrations. This 
article explores the potential of an approach based on periodic 
arrays to protect a civil engineering structures from seismic 
effects. The principle consists of an   arrangement of periodic 
components that act as a barrier to divert or attenuate the 
propagation of the seismic waves in the frequency range of 
0.1-30 Hz.For this purpose, a numerical investigation of two 
periodic structures (1D and 2D) has been conducted to 
demonstrate the feasibility of this technique in prevent the 
propagation of seismic waves in the structure. The obtained 
numerical results show that under certain conditions, two band 
gaps have been detected in the low frequency range [7.87 to 
12.47Hz and 15.82-21.01Hz] which is suitable for application in 
earthquake engineering. It is recognized that the models used in 
this study are very simplistic compared to reality, and therefore 
more research work is needed to corroborate these results by 
investigating the transmissibility of the system with different 
materials and configurations. 

 
Index Terms: Periodic arrays, Bands of frequency gap,  

Seismic isolation of civil engineering structure, Seismic waves. 

I. INTRODUCTION 

Phononic crystals are macroscopic composite materials 
that have a spatial periodicity in one or several directions 
(1D, 2D and 3D). They are able, through the Bragg 
reflection, to block the acoustic propagation in certain 
directions and frequency ranges, when the wavelength is 
comparable to the structural periodicity. This is known as a 
band of frequencies gap, which is most often abbreviated as a 
"band gap"[1].  

Over the past two decades, a new category of media with 
unusual physical behavior affecting the class of phononic 
crystals has emerged. The composition and configuration of 
these phononic structures make them capable to block the 
propagation of waves with wavelengths much larger than the 
structural periodicity. The origin of this phenomenon is 
attributed to locally vibrating resonators at low frequencies. 
The mechanism responsible for this behavior is called Local 
Resonance, hence the name of Locally Resonant Phononic 
Crystal. The potential of this mechanism has attracted 
researchers to use these theoretical bases in the design of 
 

 
 

periodic structures for blocking or mitigating seismic waves 
in civil engineering structures.  

In this context, two perspectives were addressed, the first 
approach rely on isolating a structure using meta-material 
foundations[2-5]where most of the authors showed 
experimentally and numerically that the foundation system 
can efficiently isolate the super-structures;  and the second 
acts directly on the site to divert or stop ground vibration to 
propagate into a site by implementing periodic networks on 
the ground [6-9]in which some large-scale experiment 
showed that a periodic array of boreholes embedded in the 
soil can deflect the energy of an incoming seismic wave [10].  

 
The aim of the work presented here is to design a periodic 

media at the scale of civil engineering structures allowing the 
inhibition ofwaves having a low frequency range 
[0.1-30 Hz]. 

To this purpose two periodic structures with one and two - 
dimensional periodicities are presented. The first consists of 
a concrete matrix in which two heavy cores with rubber 
coating are periodically arranged in both directions of the 
[x,y] plane. The second structure consists of a 
one-dimensional periodic arrangement of layers of concrete 
and rubber. The seismic isolation efficiency of these 
structures has been assessed in terms of the band gaps range 
and position. A study of the effect of certain parameters of 
the elementary cell constituting the periodic network on the 
band frequency gap is presented, namely the influence of the 
density of the core, the modulus of elasticity of the elastomer 
and that of the concrete matrix as well as the filling fraction 
of the components. 

II. BASIC PRINCIPLES AND ASSUMPTIONS FOR 

THIS STUDY 

Before introducing the models, the underlying theory and 
assumptions are first presented together with the main terms 
used in this study. 

In a periodic network, the passage from one point to 

another spaced by a period L results in a phase shift of Bik Le


. 
The calculation of the band gaps of a periodic network is 
limited to the study of an elementary cell by applying 
periodic boundary conditions given by Eq. (2) below. 

According to Bloch’s theory [11], solutions of the wave 
equation with Floquet-Bloch nature can be written as: 
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having a low elastic modulus and a maximum filling fraction 
produces a wider band gap in the low frequency range. 
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