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Abstract—This paper presents TRICA, a security framework
for smart homes. When using controlling apps (e.g., smartphone
app), TRICA makes sure that only legitimate users are allowed
to control their Internet of Things (IoT) devices. Leveraging
User Behavior Analytics (UBA) and Anomaly Detection (AD)
techniques, TRICA collects and processes the historical cyber
and physical activities of the user in addition to the historical
states of the smart home system to build a One Class Support
Vector Machines (OCSVM) model. This model is then used as a
baseline from which anomalous commands (i.e., outliers) should
be detected and rejected, while normal commands (i.e., targets)
should be considered as legitimate and allowed to be executed.
Experiments conducted on adapted real-world data properly
show the feasibility of such user behavior-based authentication
approach. TRICA exhibits low false accept and false reject rates
ensuring both security and user convenience, respectively.

Index Terms—Architecture, Internet of Things (IoT), Smart
Homes, Security, User Behavior Analysis (UBA)

I. INTRODUCTION

The Internet of Things (IoT) is becoming increasingly
widespread in home environments. Consumers are transform-
ing their homes into smart spaces with Internet-connected
sensors, lights, appliances, and so on. Smart home owners
are now able to manipulate their intelligent devices either
from the inside, using control panels (e.g., Vivint), or from
any outside location, using smartphone and web apps (e.g.,
SmartThings). However, compromising controlling device or
security credentials could raise a serious security and privacy
concerns for smart homes owners. In fact, as controlling apps
only provide login-time authentication, no verification will be
required once the app has been closed and then opened another
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time. Consequently, once compromising the controlling app,
an adversary became fully privileged to control any device
with no way to verify his/her identity.

Smart home users usually follow frequent patterns when
manipulating their intelligent devices. Specifically, a user
frequently controls a specific number of devices control in
a given period of day, while following a particular order
of devices. Authenticating smart home users based on these
behavioral features has many advantages compared to conven-
tional authentication schemes. In fact, user behavioral patterns
could be non-obtrusively collected and monitored. Moreover,
authentication could be continuously performed throughout the
entire user’s control session. Assessing users actions based
on their previously collected activities is better known as
User Behavior Analytics (UBA) [5]. Anomaly Detection is
considered as the main enabler of UBA technology. AD
consists of first building a baseline model over target data.
Then, adherence to or deviations from this baseline could be
further analyzed accordingly (i.e., accepted or rejected).

Following the user behavior-based approach and leveraging
AD paradigm, this paper introduces TRICA, a security frame-
work for smart homes. TRICA was first indtroduced in [1]
and is distributed on all levels of a smart home architecture
and operates in three main processes. First, the historical cyber
and physical activities of the user in addition to the historical
states of smart home system is collected. Then, an offline
process (called enrollment) is performed to build a set of
baseline models over the collected data. Specifically, a One
Class Support Vector Machines (OCSVM) model is trained on
a set of scores (called behavioral scores). Finally, the trained
baseline OCSVM model is then saved to be used in an online



process (called continuous authentication) to continuously
verify the legitimacy of the user when controlling his/her IoT
devices. TRICA stands for Trust-based, Risk-aware, Implicit,
and Continuous Authentication, thus its ensures four security
requirements.

The rest of this paper is organized as follows. Section 2
presents the related research literature of this work. Section 3
presents a detailed description of the core modules underlying
the operation of TRICA. Section 4 presents the experimental
study to show the feasibility of such user-behavior approach.
Finally, Section 5 concludes this work and underlines some
future directions.

II. RELATED WORK

Researchers have been extensively working on techniques
leveraging UBA and AD to secure different applications
and computing systems such as Web-based Applications,
Databases, and Online Social Networks (OSN).

A. Web Applications

Web logs is rich data to extract clients behavioral patterns
when requesting web resources. Anomalous requests could be
consequently detected based on normal requesting patterns
seen in the logs. In this context, many methods has been
proposed to detect security threats such as Distributed Denial
of Service (DDoS) attacks. Assuming that web users access
and spend more time on pages of their interests, Liao et al.
extract two features to describe this behavior viz., the number
of user requests in every sub-time window and the duration
between them [7]. These features are then used to build a
classification algorithm based on Sparse Vector Decomposition
and Rhythm Matching to detect anomalous users requests.
Najafabadi et al. proposed to use the Principle Component
Analysis (PCA) algorithm to detect DDoS attacks [10]. The
idea was to identify the N-top principal components that better
describe the normal user behavior. Then, the data projection
on the remaining components captures anomalies and noise in
the data.

B. Databases

Databased clients usually follow some patterns when re-
questing DB resources (i.e., Tables). Learning these patterns
allows to detect deviations that could be a sign of an abnormal
access. Mathew et al. proposed a clustering-based AD tech-
nique to detect the abuse of privileges of DB users [8]. When
a new query arrives, if it belongs to the user’s cluster, it will
be classified as normal, or abnormal otherwise. More recently,
Mazzawi et al. [9] proposed to extract three behavioral features
from DB audit logs, viz., (1) rarity: probability of appearance
of the action in a new timeframe, (2) volume: number of oc-
currences of an action given that it appeared in the timeframe,
and (3) new object: amounts of new objects being accessed.
has been used to describe users activities. These features are
then used to determine whether a DB user activity is malicious
or not by assigning an anomaly scores to user actions.

Fig. 1. High-Level Architecture of TRICA

C. Smart Homes

Nevertheless, authenticating smart home users based on
their interactions with IoT devices is poorly addressed by the
research community. In this work, we draws the inspiration
from the afore-discussed prior works, since many behavioral
characteristics such as Browsing Sequence in Web applica-
tions, Actions Rate in Databases, could also be employed in
the context of smart homes to detect anomalous devices control
commands.

III. FRAMEWORK DESIGN

In this section, the high-level architecture of TRICA is first
introduced. Then, the framework operation is discussed in
details.

A. Overview

Figure 1 shows the distribution of TRICA on the three
levels of a smart home architecture. Specifically, the first step
towards the building of legitimate user behavioral patterns
is the collection of historical data of both user and devices
on the hub (Section B.1). After that, a process called enroll-
ment (Section B.2) is executed to build the baseline models
summarizing user patterns seen in the collected data. Since
the hub is the main coordinator of smart home system, the
collection of data is performed on this device, while the
enrollment is performed on the cloud as it is a resource-
consuming task. Once the enrollment stage is finished, the
local/remote continuous authentication is ready (Section B.3).
In particular, if a control command is locally requested (e.g.,
using control panel), the analysis is performed on the hub
using locally stored models. However, if a control command is
remotely requested (e.g., using smartphone app), the analysis
is performed on the cloud backend using cloud-stored models.

B. Framework Operation

1) Raw Logs Collection: The data used in the enrollment of
user behavioral pattern consists of different types of logs that
capture historical information about both users and devices.
The structure of raw logs is given in Table 1.

• User Control Log: traces the history of the authenticated
user when controlling his/her home devices.



TABLE I
STRUCTURE OF RAW LOGS

Log Structure

User Control Log Command ID, Controlled Device, Control Action,
Timestamp

System States Log Timestamp, State of Devicei, . . . , State
of Devicen

Fig. 2. Enrollment Stage

• System States Log: captures the different states of the
smart home system while devices are being controlled.
Each record in this log describes the status of each IoT
device together with the rest of devices at a given time
of the day.

2) Enrollment: Figure 2 describes the enrollment stage in-
cluding four sub-processes viz., Logs Preparation, Behavioral
Scores Extraction, and AD Models Training. The subsequent
sections explain each one in details.

a) Logs preparation: before used in the AD models
training, the collected logs need first to be prepared. This task
allows the extraction of more information about the user from
the raw data.

• Sessions Log Extraction: a smart home user session is
the set of controlled IoT devices within a time window.
Three information are used to describe a user session viz.,
Starting Timestamp: timestamp of the first command of
the session, Control Rate: number of devices controlled
during the session, and Control Sequence: order of con-
trol during the session.

• Logs Segmentation: Segmenting the logs consists of
adding the corresponding time interval of the day (called
period) to each row record in the logs. Adding this
information gives another precision to understand the user
frequent pattern. In fact, the behavior of a smart home
inhabitant through the 24 hours of the day is generally
segmented into a set frequent periods wherein the user
has some specific behavioral routines (e.g., waking up
and going to work in the morning, sleeping at night,
etc.). In this work, we follow an unequal interval-based

segmentation strategy in which the 24 hours are divided
in 2 or more periods with unequal lengths.
b) Behavioral Scores Extraction: we call the data on

which the AD models learn, the behavioral scores. These
scores allow to describe devices control commands in a
feature-based structure that is appropriate for a ML classifier
training. In particular, this task consists of calculating a set
of scores for each command seen in the control-activity log
using the constructed UBM and SBM models (see Figure 2), in
addition to other scores that can be calculated independently.
In fact, two types of commands may be distinguished, each of
which represented with a specific and common set of features
as follows.

First Command Scores: five (5) features are used to describe
a user behavior when starting a control session:

• Device Initialization Probability: Probability by which the
user starts requesting the given device with the given
action.

• Inter-Sessions Latency: Delay between this first requested
command and the last command of the previous session
that belongs to the same period of time.

• Control-Activity Probability: Probability by which the
user requests to control the given device for a the given
time period while doing the given physical activity.

• State Transition Probability: Probability by which the
home system transits to the state resultant from the
execution of the requested command.

• State-Activity Probability: Probability by which the home
system transits to the state resultant from the execution
of the requested command while the user is doing the
given physical activity.

• Device Frequent State Probability: Probability by which
the given device be in the given state (requested action)
in the given period of time.

Activity Command Scores: Eight features are used to
describe a user behavior when he/she performs a control
command preceded by other commands belonging to the same
session:

• Device Transition Probability: Probability by which the
previously controlled device would be followed by the
device requested in the given command in the same
control session.

• Current Sequence Probability: Probability to see the cur-
rent control sequence.

• Intra-Session Latency: Delay between the requested con-
trol command and its antecedent in the same session.

• Control Rate: Number of current controlled devices.
• Control-Activity Probability: Probability by which the

user requests to control the given device for a the given
time period while doing the given physical activity.

• State Transition Probability: Probability by which the
home system transits to the state resultant from the
execution of the requested command.

• State-Activity Probability: Probability by which the home
system transits to the state resultant from the execution



Fig. 3. Continuous Authentication Workflow

of the requested command while the user is doing the
given physical activity.

• Device Frequent State Probability: Probability by which
the given device be in the given state (requested action)
in the given period of time.
c) Anomaly Detection Models Training: training the AD

models on the set of extracted normal behavioral score is
the fruit of all the previous enrollment sub-processes. Since
our objective is to discriminate legitimate control commands
from anomalous ones, we are dealing with a binary classifi-
cation problem. However, as only target behavioral scores are
available during the enrollment stage, One Class Classification
(OCC) should be used in such situation. In this work, we use
the One Class Support Vector Machines (OCSVM) [12] as it
has shown high performances in detecting anomalies in many
other application domains compared to other AD algorithms
[4]. In particular, as two types of control commands are
distinguished viz., first and activity command, two OCSVM
models (called F-OCSVM and A-OCSVM, respectively) are
trained each on the corresponding extracted behavioral scores.

3) Continuous Authentication: Figure 3 describes the work-
flow of the Continuous Authentication, including four (4)
inter-complementary procedures (i.e., each with different
color; functions belonging to the same procedure have the
same color):

• Login (in blue): by providing the correct e-mail and a
password, the user should be authenticated to the con-
trolling app and authorized to control the home devices.
However, if the controlling app has been closed and
opened once again, no login is required. The wait function
in the figure means that the continuous analysis is only
triggered by user requested commands.

• Anomaly Analysis (in brown): upon receiving a requested
control command, the anomaly analysis sub-process
is triggered. Specifically, the corresponding behavioral
scores of the requested command are first calculated
according to its nature (i.e., first or activity command).
Then, the corresponding AD OCSVM model is used
for analyzing the calculated behavioral scores (i.e., F-
OCSVM, A-OVSVM) outputting an anomaly score. If
this score is above a predefined threshold, the requested

command is indicated as legitimate and then executed
and saved in the control log. However, a score below the
threshold indicates an abnormal command that triggers
another verification.

• Trust-based Verification (in green): if the requested
command is analyzed as suspicious, an explicit re-
authentication (e.g., password verification) is prompted to
the user. In order to follow the confidence level related to
user behavior, we leverage the trust-based verification first
introduced in [2]. In particular, a trust value is calculated
using the anomaly analysis score (aas) outputted from
analyzing the anomaly of the requested command. Hence,
the confidence towards the current user may increase or
decrease according to this score. This technique allows
to prevent a user, that can successfully pass the re-
authentication while continuously showing an anomalous
behavior, from keep using the controlling app. Precisely,
if the user fails to re-authenticate, the requested command
is directly rejected and the user is completely logged out
from the main interface of the controlling app. However,
if the re-authentication is valid, the user confidence is
verified. If user trust is still below the allowed level, the
command is executed. Yet, if user trust drops below the
threshold, the requested command is rejected, and the
user is logged-out.

• Risk-awareness (in purple): if the user is able to re-
authenticate and shows an acceptable level of trust, the
requested commands are executed, but his/her behavior
is still considered as suspicious. In order to reduce the
impact of suspicious executed commands during the trust-
based verification, a degradation to a restricted control
mode is proposed. This scheme makes the continuous
authentication aware of the risk that may come with false
executed commands, as the legitimacy of current user is
not certain. Precisely, when switching to degraded mode,
high-sensitive devices are disabled, and the current user
can only request to control low-sensitive devices. The
switch-back to the normal mode of control is done when
the user request a command analyzed as legitimate, mean-
ing that the current user has shown a normal behavior.

IV. EXPERIMENTAL STUDY

In this section, we validate the generality of TRICA in
detecting anomalous user behavior on datasets that involve dif-
ferent smart home environments. Specifically, we first present
the description of the evaluation dataset. Then, we introduce
the evaluation methodology. Finally, we discuss the obtained
experimental results.

A. Dataset Description

As it has been extensively used in many ambient intelligence
applications such as home recommender systems [11], user
physical activities history inside a smart home environment
can be easily found in public repositories. However, the history
data of control and states of smart home IoT devices when
they are controlled by their users is not publically available.



To remedy to the lack of such data, we propose to adapt the
historical data of manual control of appliances and objects by
inhabitants in real-world home environments, and assume that
they refer to app-based control of home IoT devices.

The data we will be using is the one collected by the
University of Amsterdam [6] which contains three datasets
(called house A, B, and C). Each one of the houses was
instrumented with wireless sensors (e.g., contact switches to
measure open-close states of doors; pressure mats to measure
lying in bed, etc.) to record the activities of one single
inhabitant during several weeks. The activities include both
manual control of different house appliances (e.g., open door,
turn-on microwave) as well as daily living activities (e.g.,
cooking, sleeping, etc.).

B. Evaluation Methodology

As the evaluation dataset contains the data of three inhabi-
tants each in one home environment, three baselines are built
over the data of each one of the three inhabitants. In order to
evaluate the ability of TRICA in discriminating anomalous
user behavior from genuine one, we follow a primary-vs-
adversary strategy. First, one inhabitant is designated as the
primary user where his/her iOCSVM models are considered
for the evaluation, while the two remaining inhabitants are
considered as adversaries where their control commands be-
havioral scores are considered as the testing data. Then, a
part behavioral scores of the primary user is also included
in the behavioral scores of the two adversaries. This process
is then repeated, designating each of other inhabitants as the
legitimate user in turn.

C. Results and Discussion

Table 5 shows the mean value of the obtained measurements
for the FAR (False Accept Rate) and FRR (False Reject Rate)
metrics. We can see that among all possibilities of the primary-
vs-adversary strategy, the FAR reaches at worst 5.84% while
successfully reaching down to 0.01%. This low rate makes
sure that the system is efficiently not accepting adversaries
thus ensuring a high security level. On the other hand, the FRR
reaches at worst 7.94% while successfully reaching down to
6.45%. This low rate ensures a high level of user convenience
since legitimate user is rarely prompted to re-authenticate.

TABLE II
AVERAGE OBTAINED VALUES OF FAR AND FRR

Primary Users
User 1 User 2 User 3

Adversaries FAR FRR FAR FRR FAR FRR
User 1 NA 0.0355 0.0718 0.0584 0.0718
User 2 0.0001 0.0794 NA 0.0227 0.0794
User 3 0.0144 0.0645 0.0226 0.0645 NA

V. CONCLUSION

Smart home users tend to follow different behavioral pat-
terns when manipulating their intelligent IoT devices. This
assumption is the working principle of TRICA: a security

framework for authenticating smart home users. Experimental
results conducted on adapted real-world data have reinforced
the ability of TRICA to differentiate between different smart
home users. In the future, we plan to investigate how the
normal OCSVM models should be updated to cope with the
change of normal user behavior using the incremental version
of OCSVM. In addition, as user behavior is being analyzed,
anomalous users patterns may become available from rejected
commands. We also plan to leverage such adversarial behavior
to enhance authentication performance.
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