
Designing an online and reliable statistical
anomaly detection framework for dealing with

large high-speed network traffic

Nour Moustafa Abdelhameed Moustafa
B.Sc., M.S

A thesis submitted in fulfilment of the requirements

for the degree of

Doctor of Philosophy

School of Engineering and Information Technology

The University of New South Wales

Australia

June 2017

ii

i

PLEASE TYPE

THE UNIVERSITY OF NEW SOUTH WALES

Thesis/Dissertation Sheet

Surname or Family name: Moustafa Abdelhameed Moustafa

First name: Nour Other name/s:

Abbreviation for degree as given in the University calendar: PhD

School: SEIT

Faculty: UNSW Canberra

Title: Designing an online and reliable statistical anomaly detection framework for dealing with large high-speed network traffic

Abstract 350 words maximum: (PLEASE TYPE)

Despite a Network Anomaly Detection System (NADS) being capable of detecting existing and zero-day attacks, it is still not universally implemented in industry
and real applications, with current systems producing high False Positive Rates (FPRs) and low Detection Rates (DRs). The challenges involved in designing a
NADS architecture are 1) the methodology adopted for creating as comprehensive a profile as possible from diverse normal patterns and 2) in establishing an
adaptive and lightweight Decision Engine (DE) which efficiently distinguishes between legitimate and anomalous activities at high speeds in large network
environments. The need for such a method to be trained and validated on a decent dataset with the characteristics of current network environments is a
significant challenge.

This thesis provides substantial contributions to research on the building of a scalable, adaptive and lightweight NADS framework. It considers three aspects: a
data source, relevant features and observations, and new DE approaches for achieving a reliable NADS architecture.

The first key contribution is the creation of a new dataset called UNSW-NB15 that has a hybrid of realistic modern legitimate and synthetic malicious activities,
with statistical analyses and evaluations of it fully explained. Also, its complexity is assessed using existing techniques to demonstrate the extent of current
sophisticated types of anomalous events.

The second core contribution is the development of a new theory for selecting important features and observations from network packets without redundancy to
construct a legitimate profile from which any deviation is considered an attack, that is, establish an efficient NADS from analyses of the protocols and services of
the OSI model.

The third major contribution is the development of two scalable frameworks with two new DE techniques for successfully detecting malicious activities in less
processing times than current methods. These techniques, called the Geometric Area Analysis-ADS (GAA-ADS) and Dirichlet Mixture Model-ADS (DMM-ADS),
are based on mixture models for modelling all possible normal patterns and detecting abnormal events that deviate from them using new outlier approaches.

Declaration relating to disposition of project thesis/dissertation

I hereby grant to the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or in part in the
University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all property rights, such as patent
rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.

I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstracts International (this is applicable to doctoral theses
only).

……………………………………………………………

 Signature

……………………………………..………………
Witness

……….……………………...…….…
Date

The University recognises that there may be exceptional circumstances requiring restrictions on copying or conditions on use. Requests for restriction for a
period of up to 2 years must be made in writing. Requests for a longer period of restriction may be considered in exceptional circumstances and require the
approval of the Dean of Graduate Research.

FOR OFFICE USE ONLY Date of completion of requirements for Award:

THIS SHEET IS TO BE GLUED TO THE INSIDE FRONT COVER OF THE THESIS

ii

Copyright Statement

‘I hereby grant the University of New South Wales or its agents the right to archive

and to make available my thesis or dissertation in whole or part in the University

libraries in all forms of media, now or here after known, subject to the provisions

of the Copyright Act 1968. I retain all proprietary rights, such as patent rights.

I also retain the right to use in future works (such as articles or books) all or

part of this thesis or dissertation. I have either used no substantial portions of

copyright material in my thesis or I have obtained permission to use copyright

material; where permission has not been granted. I have applied/will apply for a

partial restriction of the digital copy of my thesis or dissertation.’

Signed

Date:.............

iii

Authenticity Statement

‘I certify that the Library deposit digital copy is a direct equivalent of the final

officially approved version of my thesis. No emendation of content has occurred

and if there are any minor variations in formatting, they are the result of the

conversion to digital format.’

Signed

Date:.............

Originality Statement

I hereby declare that this submission is my own work and to the best of my knowl-

edge and belief, it contains no material previously published or written by another

person, nor material which to a substantial extent has been accepted for the award

of any other degree or diploma at UNSW or any other educational institution, ex-

cept where due acknowledgment is made in the thesis. Any contribution made

to the research by colleagues, with whom I have worked at UNSW or elsewhere,

during my candidature, is fully acknowledged. I also declare that the intellectual

content of this thesis is the product of my own work, except to the extent that as-

sistance from others in the project’s design and conception or in style, presentation

and linguistic expression is acknowledged.

Signed

Date:............

iv

Acknowledgments

First of all, my faithful gratitude goes to ALLAH, the Ubiquitous God, the most

Gracious and Merciful. This work has been accomplished because of the unlimited

mercy and blessings of ALLAH during my PhD journey.

I would like to express my sincere thanks and genuine gratitude to the following

people who have supported and assisted me to successfully complete this work.

Of course, as Prophet Muhammad, peace and blessings be upon him, said “He

who does not thank people, does not thank ALLAH”.

I wish to express my sincere gratitude to Professor Jill Slay, my principal

supervisor, and Dr. Gideon Creech, my joint supervisor, for their outstanding

supervision, precious advice, constant skilled guidance and insightful discussions.

Despite their busy schedules, they always arranged meetings to provide me with

genuine feedback that enabled me to achieve a remarkable research record in the

cyber security field. Also, Dr. Shane McGrath and Dr. Paul Malcolm, researchers

in the Australian DSTO, guided me in this research direction when I began my

PhD journey while Mrs. Denise Russell assisted me by proofreading my thesis.

I thank my mother and offer the rewards of this work to the spirit of my father.

I am also very appreciative of my brothers and sisters support for my travelling

abroad to complete my PhD degree. I wish to express my gratitude and sincere

appreciation to my wife, Marwa, and my little daughter, Nardeen, who are the

flowers of my life as they are always patient and supportive of me doing my best

work.

I would like to thank all the people at the Australian Centre for Cyber Security

(ACCS), especially Professor Greg Austin, Mr Luke Garner, Dr. Elena Sitnikova,

Dr. Nalin Gamagedara Arachchilage and Dr. Benjamin Turnbull. Moreover, I

offer my sincere gratitude to the UNSW, Canberra, for awarded me a scholarship to

v

complete my PhD degree, and the school administration and IT support members

who provided me with all the necessary facilities and took care of my requirements.

Special thanks to Mr. Peter Newman who helped me in sniffing the network traffic

of the UNSW-NB15 dataset. Last but not least, I am grateful to Professor Ruhul

Sarker who guided me towards obtaining the scholarship and beginning my PhD

under the supervision of Professor Jill Slay.

vi

Abstract

Despite a Network Anomaly Detection System (NADS) being capable of detecting

existing and zero-day attacks, it is still not universally implemented in industry

and real applications, with current systems producing high False Positive Rates

(FPRs) and low Detection Rates (DRs). The challenges involved in designing a

NADS architecture are 1) the methodology adopted for creating as comprehensive

a profile as possible from diverse normal patterns and 2) in establishing an adap-

tive and lightweight Decision Engine (DE) which efficiently distinguishes between

legitimate and anomalous activities at high speeds in large network environments.

The need for such a method to be trained and validated on a decent dataset with

the characteristics of current network environments is a significant challenge.

This thesis provides substantial contributions to research on the building of a

scalable, adaptive and lightweight NADS framework. It considers three aspects:

a data source, relevant features and observations, and new DE approaches for

achieving a reliable NADS architecture.

The first key contribution is the creation of a new dataset called UNSW-

NB15 that has a hybrid of realistic modern legitimate and synthetic malicious

activities, with statistical analyses and evaluations of it fully explained. Also,

its complexity is assessed using existing techniques to demonstrate the extent of

current sophisticated types of anomalous events.

The second core contribution is the development of a new theory for selecting

important features and observations from network packets without redundancy to

construct a legitimate profile from which any deviation is considered an attack,

that is, establish an efficient NADS from analyses of the protocols and services of

the OSI model.

vii

The third major contribution is the development of two scalable frameworks

with two new DE techniques for successfully detecting malicious activities in less

processing times than current methods. These techniques, called the Geometric

Area Analysis-ADS (GAA-ADS) and Dirichlet Mixture Model-ADS (DMM-ADS),

are based on mixture models for modelling all possible normal patterns and de-

tecting abnormal events that deviate from them using new outlier approaches.

viii

List of publications

The following papers were produced in this Ph.D. research:

Refereed Journal Articles

• N. Moustafa, J. Slay, G. Creech, “Novel Geometric Area Analysis Technique

for Anomaly Detection using Trapezoidal Area Estimation on Large-Scale

Networks”, IEEE transactions on Big Data for Cyber security Applications,

2017.

• N. Moustafa, G. Creech and J. Slay. “Detecting Malicious Activity of DNS and

HTTP Protocols: An Ensemble Learning Framework using Proposed Statistical

Features”, Journal of Computers & Security, ELSEVIER, 2017, “in press”.

• N. Moustafa, and J. Slay. “The evaluation of Network Anomaly Detection

Systems: Statistical analysis of the UNSW-NB15 data set and the comparison

with the KDD99 data set”, Information Security Journal: A Global Perspective,

2016, p 1-14.

• N. Moustafa, G. Creech and J. Slay.”A Comprehensive survey: Components of

Intrusion Detection systems“, 2017, “under review”.

Book Chapters

• N. Moustafa, G.Creech and J. Slay. "Big Data Analytics for Intrusion

Detection System: Statistical Decision-Making Using Finite Dirichlet Mixture

Models." Data Analytics and Decision Support for Cybersecurity. Springer,

2017. 127-156.

ix

Conference Papers

• N. Moustafa, G. Creech and J. Slay. “Flow aggregator module for analysing

network traffic”, the International Conference on Computing Analytics and Net-

working (ICCAN 2017), KIIT University, Springer, 2017.

• N. Moustafa, G. Creech and J. Slay. “Anomaly Detection System using Beta

Mixture Models”, the International Conference on Computing Analytics and Net-

working (ICCAN 2017), KIIT University, Springer, 2017.

• N. Moustafa, G. Creech, E. Sitnikova andM. Keshk. “ Collaborative Anomaly
Detection Framework for handling Big Data of Cloud Computing”, Military

Communications and Information Systems Conference (MilCIS), IEEE, 2017.

• M. Keshk, N. Moustafa, E. Sitnikova and G. Creech. “ Privacy Preservation
Intrusion Detection Technique for SCADA Systems”, Military Communica-

tions and Information Systems Conference (MilCIS), IEEE, 2017.

• N. Moustafa, J. Slay. “UNSW-NB15: a comprehensive data set for network

intrusion detection systems (UNSW-NB15 network data set)”, Military Commu-

nications and Information Systems Conference (MilCIS), IEEE, 2015.

• N. Moustafa, J. Slay. “The Significant Features of the UNSW-NB15 and the

KDD99 Data Sets for Network Intrusion Detection Systems”, Building Analysis

Datasets and Gathering Experience Returns for Security (BADGERS), 4th Inter-

national Workshop on. IEEE, 2015.

• N. Moustafa, J. Slay. “A hybrid feature selection for network intrusion detection

systems: central points and association rules”, Proceedings of the 16th Australian

Information Warfare Conference (IWAR), Perth, Australia, November 2015.

• N. Moustafa, J. Slay. “Creating novel features to anomaly network detection

using DARPA-2009 data set“, Proceedings of the 14th European Conference on

Cyber Warfare and Security (ECCWS), Academic Conferences Limited, 2015.

x

Contents

Title page . i

Copyright Statement . iii

Originality statement . iv

Acknowledgments . v

Abstract . vii

List of publications . ix

Table of Contents . xi

List of Figures . xvii

List of Tables . xxi

List of Terms . xxv

1 Introduction . 1

1.1 Overview of Cyber Security in Current Era 1

1.2 Dimensions of Cyber Crime . 3

1.3 Problem Formulations and Research Questions 5

1.4 Protection against Cyber Crime 7

1.4.1 Network Data Sources . 10

1.4.2 Relevant Features and Observations for NADS. 11

1.4.3 Statistics-based NADS . 12

1.5 Thesis Contributions . 13

1.6 Thesis Structure . 14

2 Background and Related Work 17

2.1 Objectives . 17

xi

2.2 Intrusion Detection System (IDS) 17

2.2.1 Intrusion Detection Properties 19

2.2.2 Monitored environment 20

2.2.3 Detection methods . 22

2.2.4 Deployment architecture 23

2.3 Characteristics of Network Anomalies 24

2.4 Evaluation Metrics for IDSs 24

2.5 Challenges of NADS . 29

2.6 Components of NADS . 31

2.6.1 Data source . 32

2.6.2 Data pre-processing . 39

2.7 Decision Engine (DE) Approaches 44

2.7.1 Classification-based approaches 45

2.7.2 Clustering-based approaches 49

2.7.3 Knowledge-based approaches 51

2.7.4 Combination-based approaches 53

2.7.5 Statistical-based approaches 55

2.8 Contemporary Network Threats 68

2.9 Chapter Conclusion . 71

3 Towards Development of New Environments
of Large-scale Network Datasets and Their
Features for evaluating Intrusion Detection Sys-
tems . 73

3.1 Target of Network Dataset . 73

xii

3.2 Description of DARPA-2009 Dataset 75

3.2.1 Security Events in DARPA-2009 Dataset 76

3.3 Framework for evaluating DARPA-2009 Dataset 77

3.3.1 Pcap Transformation and Labelling 78

3.3.2 Proposed Statistical Feature Selection 79

3.3.3 Preparation of Training and Testing Sets for DARPA-2009 Dataset . 83

3.3.4 Evaluation of Four ML Algorithms. 84

3.4 Generation of UNSW-NB15 Dataset 86

3.4.1 Configuration of UNSW-NB15 Dataset Testbed 87

3.4.2 Network Traffic Analysis 91

3.5 Framework for generating UNSW-NB15 Features 91

3.5.1 Features extracted using Argus tool 95

3.5.2 Features extracted using Bro-IDS tool 95

3.5.3 Matched features . 96

3.5.4 Additional Features . 98

3.5.5 Labelling Process . 105

3.5.6 UNSW-NB15 Security and Malware Events 107

3.5.7 File Formats of UNSW-NB15 Dataset 111

3.6 Comparisons with Other Datasets 112

3.7 Big Data Properties in UNSW-NB15 Dataset 115

3.8 Dataset Splitting for Learning Techniques 118

3.9 Complexity Analysis of UNSW-NB15 Dataset 120

3.9.1 Z-score Function . 121

3.9.2 Kolmogorov-Smirnov (K-S) Test 122

3.9.3 Multivariate Skewness and Kurtosis 124

xiii

3.10 Use of Statistical Measures on training and testing sets 125

3.10.1 Feature Correlations of (TRIN
) and (TSIN

) 126

3.10.2 Evaluation of Five ML Techniques 129

3.11 Empirical Results and Discussion 131

3.11.1 Statistical Analyses and Explanations 131

3.11.2 Feature Correlations . 135

3.11.3 Complexity Evaluations using ML Techniques 137

3.12 Chapter Conclusion . 139

4 Relevant Feature and observation Methods and
Their Impacts on Design of Lightweight Net-
work Anomaly Detection System 142

4.1 Introduction . 142

4.2 Network Flow Analysis . 145

4.2.1 NetFlow . 146

4.2.2 sFlow . 146

4.2.3 IPFIX . 147

4.3 Aggregator Module for ADS. 147

4.3.1 Sampling Techniques . 150

4.3.2 Association Rule Mining (ARM). 153

4.4 Network Feature Creation . 157

4.4.1 Proposed DNS and HTTP Features 159

4.4.2 Proposed Ensemble Method for detecting DNS and HTTP Malicious
Activities . 165

4.5 Role of Feature Reduction (FR) 170

4.5.1 ARM Feature Selection Method 171

4.5.2 Principal Component Analysis (PCA) 173

xiv

4.5.3 Independent Component Analysis (ICA) 174

4.6 Experimental Results and Discussion 177

4.6.1 Aggregator Module . 178

4.6.2 Evaluation of Proposed Features of DNS and HTTP 184

4.6.3 Evaluation of proposed ensemble method and discussion 185

4.6.4 Feature Reduction and Evaluation 190

4.7 Chapter Conclusion . 199

5 Novel Statistical Decision Engines for Anomaly
Detection System based on analysing Poten-
tial Characteristics of Network Features 203

5.1 Introduction . 203

5.2 Network Data Analytics for Design of Effective DE 207

5.2.1 Normality measures . 209

5.2.2 Linearity measures . 210

5.3 Novel Geometric Area Analysis (GAA-ADS) Technique 212

5.3.1 Beta Mixture Model (BMM) 213

5.3.2 Trapezoidal Area Estimation (TAE) 219

5.3.3 Construction of Normal Profile of GAA-ADS Technique. 220

5.3.4 Testing Phase and Decision-making Method of GAA-ADS Technique 223

5.4 Novel Dirichlet Mixture Model–based ADS (DMM-ADS) Technique . . . 225

5.4.1 Finite DMM . 225

5.4.2 Training Phase of Normal Observations of DMM-ADS Technique. . 228

5.4.3 Testing Phase and Decision-making Method in DMM-ADS Tech-
nique . 229

5.5 Two Proposed Scalable Frameworks for ADS. 231

5.5.1 Data Sniffing and Storing Module 234

xv

5.5.2 Data Pre-processing Module 235

5.6 Experimental Results and Analysis 237

5.6.1 Statistical Analysis and Decision Support 238

5.6.2 Performance Evaluation of GAA-ADS Technique. 242

5.6.3 Performance Evaluation of DMM-ADS Technique 254

5.6.4 Comparative Study and Discussion of Both New DE Techniques . . 262

5.6.5 Clarifications of Complexity and Time Cost of Each New DE Tech-
nique . 264

5.7 Chapter Summary . 267

6 Conclusion . 270

6.1 Introduction . 270

6.2 Contributions of Research. 272

6.3 Limitations . 275

6.4 Future directions . 277

6.4.1 Issues to be resolved . 277

6.4.2 Open questions . 278

6.5 Final remarks . 279

References. 281

A Protocols of UNSW-NB15 dataset 313

B Features of NSL-KDD dataset 316

xvi

List of Figures

1.1 Thesis overview . 15

2.1 Architecture of classical IDS . 19

2.2 ROC curves - A, B and C show levels of detection 27

2.3 Components of NADS . 31

2.4 Main steps in feature selection . 40

2.5 Taxonomy of network anomaly detection approaches 45

2.6 Classification types . 46

2.7 NADS classifications . 46

2.8 Methodologies of clusters and outliers 50

2.9 Recent top network attacks . 69

3.1 Framework for analysis of samples selected from DARPA-2009 dataset 78

3.2 Architecture of UNSW-NB15 testbed network 90

3.3 Concurrent transactions of flows over simulation periods 92

3.4 Framework for creating features of UNSW-NB15 dataset 94

3.5 Statistical behaviours of normal and abnormal observations 112

xvii

3.6 Ethernet data rates transmitted and received over simulation periods117

3.7 Probabilities of features being in training and testing sets 133

3.8 Skewness values of features in training and testing sets 134

3.9 Kurtosis values of features in training and testing sets 135

3.10 PCCs of features in training and testing sets 136

3.11 Gain ratios of features in training and testing sets 137

3.12 ROC curves of five techniques using two sets from UNSW-NB15

dataset . 138

4.1 Proposed aggregator module . 148

4.2 Proposed features of DNS and HTTP 161

4.3 Tools used to create DNS and HTTP features 163

4.4 Adaboost flowchart . 169

4.5 Example of ARM FS method using UNSW-NB15 dataset 173

4.6 Scatterplot matrix analysis of data sample 180

4.7 Scatterplot matrix analysis of selected sample 181

4.8 Comparison of flow aggregator mechanisms 184

4.9 Correlations of proposed features 186

4.10 ROC curves of classification algorithms using DNS data source . . 187

xviii

4.11 ROC curves of classification algorithms using HTTP data source . . 188

4.12 Portions of association rules using both datasets 194

4.13 ROC curves of three ML algorithms using ARM 196

4.14 ROC curves of three ML algorithms using ICA 199

4.15 ROC curves of three ML algorithms using PCA 200

5.1 Feature vectors for mining and gathering in UNSW-NB15 dataset . 208

5.2 BMM for two arbitrary variables 218

5.3 Composite trapezoidal rule . 219

5.4 Parameters of finite DMM . 226

5.5 Proposed framework for establishing scalable, adaptive and lightweight

GAA-ADS . 232

5.6 Proposed scalable framework for design of intelligent DMM-ADS . . 233

5.7 Example of converting categorical features into numerical features

using UNSW-NB15 dataset . 236

5.8 Q-Q plots of feature vectors adopted from NSL-KDD and UNSW-

NB15 datasets . 240

5.9 Normal and suspicious density probabilities for some instances in

both datasets . 241

5.10 Correntropy plots of some instances in both datasets 243

xix

5.11 ROC curves for original features in two datasets obtained by GAA-

ADS technique for different K values 245

5.12 ROC curves obtained from GAA-ADS technique for components in

both datasets with different K values 247

5.13 ROC curves obtained from GAA-ADS technique for both datasets 248

5.14 Comparison of DRs (%) obtained by GAA-ADS technique for both

datasets with increasing K values 250

5.15 Comparison of DRs (%) obtained by GAA-ADS technique with 20

K values . 253

5.16 ROC curves obtained from DMM-ADS technique for both datasets

with different w values . 256

5.17 ROC curves obtained from DMM-ADS technique for components

in both datasets with different w values 258

5.18 ROC curves using both datasets of DMM-ADS technique 259

5.19 Comparison of complexities of four existing and two new DE tech-

niques . 267

xx

List of Tables

2.1 Confusion matrix for binary classification problems 25

2.2 Four attack classes in KDD99 dataset 35

2.3 KDD99 dataset distributions of attack and normal instances 35

2.4 Distributions of attacks in NSL-KDD dataset 36

2.5 Comparison of decision engine techniques 67

3.1 Input features . 74

3.2 Sample of highest probabilities of normal and attack classes 81

3.3 Descriptions of selected features . 82

3.4 Numbers of records of each attack type in first 30 pcap files 83

3.5 Numbers of records in training and testing sets 84

3.6 Confusion matrices of four techniques 85

3.7 Evaluation metrics of four algorithms 86

3.8 Comparative analysis of proposed framework and related studies . . 87

3.9 Statistics of UNSW-NB15 dataset 93

3.10 Flow features . 96

3.11 Basic features . 97

xxi

3.12 Content features . 97

3.13 Time features . 98

3.14 Additional generated features . 99

3.15 Labelled features . 106

3.16 Class distributions in UNSW-NB15 dataset 111

3.17 Comparisons of popular and UNSW-NB15 datasets 114

3.18 Comparisons of KDD99 and UNSW-NB15 datasets 115

3.19 Distributions in portion of UNSW-NB15 dataset 119

3.20 Features used for analyses of UNSW-NB15 dataset 132

3.21 Comparison of results obtained for KDD99 and UNSW-NB15 datasets139

4.1 New features created from analysing application protocols of TCP/IP

model . 158

4.2 Proposed features of DNS and HTTP Protocols 166

4.3 Types of DNS and HTTP records 168

4.4 Example of data sample for applying SRS and ARM techniques . . 179

4.5 Selected sample using SRS technique 179

4.6 Example of ARM technique for selecting relevant observations . . . 181

4.7 Comparison of performances of ARM and SRS techniques 183

xxii

4.8 Comparison of overall performances 187

4.9 Comparisons of DRs (%) and FPRs (%) using ensemble method . . 188

4.10 Original and UNSW-NB15 features in KDD99 dataset using ARM . 191

4.11 UNSW-NB15 features using ARM 191

4.12 Performance evaluations of original and UNSW-NB15 features on

KDD99 dataset . 192

4.13 Performance evaluation of UNSW-NB15 dataset 193

4.14 Features selected from both datasets 195

4.15 Performance evaluation using both datasets 196

4.16 Features selected from datasets . 197

4.17 Performance evaluation using both datasets 198

5.1 Examples of identifying attacks using estimated areas 225

5.2 Features selected from NSL-KDD and UNSW-NB15 datasets 238

5.3 Evaluation of overall performances of GAA-ADS technique on orig-

inal features . 244

5.4 Estimations of overall performances of GAA-ADS technique on prin-

cipal components . 246

5.5 Comparison of DRs (%) obtained by GAA-ADS technique for prin-

cipal components in NSL-KDD dataset 249

xxiii

5.6 Comparison of DRs (%) obtained by GAA-ADS technique for com-

ponents of UNSW-NB15 dataset . 251

5.7 Performance evaluation of DMM-ADS technique on original fea-

tures adopted from both datasets 255

5.8 Evaluation of overall performances of DMM-ADS technique on prin-

cipal components . 257

5.9 Comparison of DRs (%) obtained by DMM-ADS technique for NSL-

KDD dataset . 260

5.10 Comparison of DRs (%) obtained by DMM-ADS technique for UNSW-

NB15 dataset . 261

5.11 Performance comparisons of six ADS techniques with new DEs us-

ing NSL-KDD dataset . 263

A.1 UNSW-NB15 services . 313

B.1 NSL-KDD features . 316

xxiv

List of Terms/Abbreviations

Acronyms Description

ACCS Australian Centre for Cyber Security

ACSC Australian Cyber Security Centre

ADS Anomaly Detection System

ANN Artificial Neural Network

APT Advanced Persistent Threat

ARM Association Rule Mining

BMM Beta Mixture Model

CC Correlation Coefficient

CIA Confidentiality, Integrity and Availability

CP Central Points

CVE Common Vulnerabilities and Exposures

DDoS Distributed Denial of Service

DE Decision Engine

destip Destination Internet protocol

DMM Dirichlet Mixture Model

DoS Denial of Service

DR Detection Rate

DT Decision Tree

EM Expectation Maximisation

FE Feature Extraction

FNR False Negative Rate

FPR False Positive Rate

FR Feature Reduction

FS Feature Selection

GAA Geometric Area Analysis

GMM Gaussian Mixture Model

xxv

Acronyms Description

GR Gain Ratio

HIDS Host-based Intrusion Detection System

ICA Independent Component Analysis

IDS Intrusion Detection System

IQR Interquartile Range

K-S Kolmogorov-Smirnov test

LR Logistic Regression

MDS Misuse-based Detection System

ML Machine Learning

MLE Maximum Likelihood Estimation

NADS Network Anomaly Detection System

NB Naive Bayes

NIDS Newtrok-based Intrusion Detection System

PCA Principal Component Analysis

Pcap Packet capture

PDF Probability Density Function

SPA Stateful Protocol Analysis

srcip Source Internet protocol

TAE Trapezoidal Area Estimation

UNSW-

NB15

University of New South Wales Network Based 2015

xxvi

Chapter 1
Introduction

1.1. Overview of Cyber Security in Current Era

Currently, the use of computing and digital appliances has become widespread

in all private and public sectors. Different means of communication, including

computer systems, smartphones, tablet devices, wireless connectivity and other

innovations, have led to a dramatic increase in humans’ reliance on them to pro-

vide services and applications anywhere at any time. This clearly indicates coop-

eration between the virtual and physical worlds to accomplish tasks rapidly and

efficiently. Cyberspace plays a very important role in contemporary societies and

economies since the Internet has changed the way that people and organisations

communicate and conduct business in an electronic manner. Users, companies

and governments have become dependent on the Internet services as well as other

devices and applications for undertaking their daily activities [1].

The use of digital devices has been exponentially increasing throughout the

world. In [2], statistics reveal that approximately 1.4 billion smartphones, 150

million iPads, 38 million tablets, 255 million personal computers and 77 million

Samsung electronics were sold between 2007 and 2016, all of which are connected

to the Internet and emerging new communication and computing paradigms, for

example, wireless networks, 3G/4G and cloud computing [1, 3]. A wireless network

is any type of computer network that uses wireless data connections to link network

nodes. 3G and 4G technologies, the third and fourth generations of wireless mobile

telecommunications, depend on a set of standards for providing Internet services

for mobile devices. Cloud computing is a form of Internet-based computing which

provides shared computers, services and platforms, such as computer networks,

1

servers, storage, applications and services, for the handling of resources and data

on demand. While these technologies provide tremendous benefits, they constantly

face serious threats of cyber attacks which create various new vulnerabilities.

As each device, whether a personal computer, server, tablet or smartphone,

can be hacked by a sophisticated attacking methodology, its security should begin

by deterring an exploitation vector over the network to prevent malicious activ-

ity from penetrating its operating system’s resources and files [4]. An attacker’s

stealthy attempt to find any vulnerability of a target victim performing a task

on the Internet, such as downloading/uploading files, sending emails or execut-

ing financial transactions, launches malicious scripts to compromise the security

perimeter of the target device. Given the increasing numbers of protocol standards

and services that are often used in an insecure way, there is a significant risk of a

hacker exploiting them to achieve its aim of stealing valuable information and/or

financial funds, and/or corrupting device resources [5]. Therefore, the significant

role of cyber security is to protect device resources against cyber adversaries.

Many cyber security criteria for countering network threats and critical sys-

tems have been designed, with common ones established for technical product

assessments, for example, ISO/IEC 15408, ISO/IEC 27002, NIST SP 800–53, OC-

TAVE, NIST SP 800–82, ANSI/ISA 99.00.01 and NERC-CI [1, 6]. The aim of

these guides and standards, including the Zachman Framework and Department of

Defence Architecture Framework, is to provide theoretical frameworks that demon-

strate how to achieve high system security. According to the common criteria for

ICT system evaluations [6], the assets of organisations should be protected based

on the efficiency and correctness of their counter-measures [1]. This means that it

is vital to design intelligent systems that can identify network intrusions and pre-

vent their harmful actions compromising a target system. To date, no framework

has been able to ensure ‘complete’ security, i.e., efficiently identify sophisticated

stealth attacks and prevent them inflicting damage on network assets.

2

The rest of this chapter is organised as follows. Dimensions of cyber crime

are discussed in Section 1.2; Section 1.3 explains the problem formulation and

research questions; Section 1.4 outlines protections against cyber crimes and the

main components of intrusion detection systems; thesis contributions and structure

are provided in Sections 1.5 and 1.6, respectively.

1.2. Dimensions of Cyber Crime

The threats of attackers are described as sets of malicious events that try to ex-

ploit the principles of Confidentiality, Integrity and Availability, known as the CIA

triad, in computer systems [7]. As each attack has its own sophisticated vector,

this creates a big challenge for detection. Any anomalous attack on networks and

computer systems could lead to severe disasters which interrupt the computer secu-

rity policies of the CIA triad; for instance, Denial of Service (DoS) and Distributed

DoS attacks compromise computer resources by breaking the availability principle

while, as malware and malicious codes hijack the execution flows of programs,

violating the integrity principle [8]. According to the Australian Cyber Security

Centre (ACSC) [9] and McAfee threat reports [10], the number of network threats

is increasing dramatically, causing financial losses and reputational damage, the

stealing of sensitive information and intellectual property, and interruptions in

business environments.

Many intrusive actions result from zero-day attacks1, a term used to define

abnormal activities not previously detected by the available white-hat technol-

ogy, the vectors of which are difficult to define as no prior information is known

about them [11]. Attackers’ exploitation vectors, targets and means of execution

have changed substantially and become more complicated. It is very clear that
1Zero-day attacks, so-called new/unknown/future/unseen attacks, which are unidentified

computer-software vulnerabilities that attackers can breach to harm computer resources, data,
or network systems.

3

black-hat hackers attempt to find new vulnerabilities for penetrating a target sys-

tem/network in a dynamically low-footprint manner. They launch sophisticated

exploitation vectors against a particular target to compromise it as much as possi-

ble which is called an Advanced Persistent Threat (APT). This is a recent class of

threats implemented by advanced, complicated and well-resourced intrusions tar-

geting certain information of high-profile companies and governments, often based

on a long-term philosophy and involving many different steps [1, 11, 12].

The cyber crime faced by current Internet users can be classified in a broad

range of malicious activities and terms. Firstly, cyber terrorism, a term describ-

ing the integration of physical terrorism with advancements in Information and

Communication Technology (ICT), is the merging of terrorism and cyberspace by

a cyber terrorist with the aim of launching attack events against the computer

networks of a government or organisation to commit ideological, political and/or

social crimes. Its concept has multiple elements, for instance, the impact, motiva-

tion and target of a hacker, with its violation of computer networks which causes

critical damages to their service operations and infrastructures and lead to severe

economic loss [13].

Other threats related to fraud and financial crimes, including credit card fraud,

corporate espionage and fraud, and money laundering, have gained a great deal

of attention. Financial fraud attacks, which aim to abuse a profit organisation’s

system, are becoming of increasingly serious concern [14]. Cyber extortion is a

threat activity that takes place when an organisation’s resources, such as website,

e-mail server or network, are compromised by DoS/DDoS attacks or other types

of hacking that the hacker disrupts until the organisation pays a redemption fee in

return for the promise of the exploitation being stopped. According to the Federal

Bureau of Investigation [15], cyber extortionists are progressively breaching com-

pany websites and networks, crippling their capability to operate, and demanding

payment for the return of their services.

4

Finally, cyber espionage is an offensive activity intended to stealthily collect

information from a computer network for intelligence purposes [16]. The hack-

ers involved use cracking and malicious programs, including spyware and Trojan

horses, to obtain private information about users, groups and governments to hack

their systems. Cyber espionage has a great impact on national security and eco-

nomic wealth as it damages reputations, renders companies incapable of competing

in the global economy, limits business opportunities and decreases a corporate or-

ganisation’s financial competitiveness. As cyber crimes are rapidly increasing using

sophisticated means of exploitation, as detailed in Chapter 2, Section 2.8, they are

serious incidents that impose costs for users, organisations and governments.

According to the McAfee report issued in June 2014 [17], cyber-crime inci-

dents during 2013 affected more than 40, 20, 54, 16, 18 and 20 million people in

the USA, Korea, Turkey, Germany, Australia and China, respectively, with the

total cost estimated to be almost $160 billion per year and more than 800 mil-

lion individual attacks committed. Because of the cost of cyber crime, which is

substantially increasing, there is a strong motivation for the development of an

effective, lightweight and adaptable Anomaly Detection System (ADS) for detect-

ing existing and new (i.e., zero-day) attacks from current large-scale networks, as

described below.

1.3. Problem Formulations and Research

Questions

In this PhD thesis, we try to tackle the problem of “developing an efficient frame-

work for the identification of existing and zero-day anomalous events in a high-

speed and large volume of current network traffic in which the pattern of normal

data could change over time. Network flows consist of high-dimensional network

data that result in reducing the performance of the Network Anomaly Detection

5

System (NADS). The NADS techniques developed should be able to function ef-

fectively in the presence of an intelligent adversary tailoring its intrusive activity

in such a way as to actively evade/fool the detection mechanism”.

This problem is separated into the following three major sub-problems based

on the components of the NADS.

• Sub-problem 1: generating a quality network dataset which is one of the

big challenges for evaluating the credibility of NADS’ theories. It should

be captured from the norm of current network environments running at

high speeds with large network flows. It should also have a wide variety

of authentic contemporary legitimate and malicious patterns to ensure the

quality of new NADS approaches for deployment in real networks.

• Sub-problem 2: selecting the relevant network features and observations

is also a big challenge to the norm of current network environments. The

aim is to eliminate unimportant features and observations, improve the effi-

ciency of DE approaches and establish a lightweight NADS. The automatic

online selection of features and observations that can assist in discriminating

between normal and abnormal observations demands a careful study.

• Sub-problem 3: developing an adaptive, lightweight, scalable DE approach

that can distinguish between normal and malicious observations in real net-

work environments. It relies on its capability to self-automatically adapt and

effectively and efficiently identify anomalous patterns in a current high-speed

large network.

Based on the above discussion and background outlined in Chapter 2, to address

the above sub-problems, the following research questions are considered.

1. How can an acceptable network dataset be created for large-scale networks?

2. What are the metrics required to trust such a dataset when evaluating new

NADSs?

6

3. Which methodology could be effective for selecting the relevant features from

network packets?

4. Can a Feature Reduction (FR) methodology assist in building a lightweight

NADS and to what extent is it effective?

5. How can statistical models be used to establish an adaptive, lightweight,

scalable NADS?

6. To what extent can a statistics-based NADS detect zero-day attacks?

7. How can a NADS be applied in the industry rather than a Misuse-based De-

tection System (MDS) for efficiently detecting known and unknown attacks?

1.4. Protection against Cyber Crime

The aforementioned types of cyber crime are extremely difficult to detect and

prevent based on a single security mechanism. Despite the availability of net-

work security solutions, existing techniques, including firewall, data encryption

and authentication systems that are located on the first line of defence, cannot

offer complete protection, particularly against the modern philosophy of threats,

for computer systems and networks. As additional lines of defence against these

threats, specifically, anti-virus software and Intrusion Detection Systems (IDSs),

have been considered, a complete layered defence, also known as a defence-in-depth

strategy [11], is needed to combine them in order to provide a much more effective

defence.

Current protection systems, such as anti-virus and firewall systems, were de-

signed on the basis of logging attack signatures/rules and detecting attacks by

firing any of these rules but, although they are effective to some extent at iden-

tifying existing malicious patterns, any new patterns or even variants of existing

7

activities can easily hack a victim system. An IDS has become a primary compo-

nent for protecting critical computing infrastructures, with the first model of the

signature-based detection, which was designed to consider particular procedures

that recognise computer threats executed by attackers launching either inside or

outside an organisation, proposed by Denning [18].

An IDS can be used to monitor both host- and network-based systems [19, 20].

A Host-based IDS (HIDS) monitors the traces of a host by gathering information

about events which take place in a computer system [21]. It should be installed

on each client to monitor it and log its operating system’s behaviours to provide

audit trails for recognising both anomalous and legitimate observations. In con-

trast, a Network-based IDS (NIDS) monitors a network’s traffic to detect remote

attacks occurring in its environment [22]. It has always been a powerful security

solution that provides a solid line of defence against attack events before they

access the resources of operating systems. The research discussed in this thesis

is interested in designing a NIDS solution for large, high-speed network environ-

ments. Its architecture has to deal with the current paradigms of computing and

communications that contribute to performing detection in wireless and wearable

sensing nodes in relation to the current high speeds and large sizes of networks,

also known as large-scale networks [23].

An IDS methodology can be classified as one of three types, namely, Misuse-

based Detection System (MDS), Anomaly-based Detection System (ADS) and

Stateful Protocol Analysis (SPA) [8, 24, 25]. A MDS monitors network traffic to

match observed behaviours against those on a known blacklist but cannot detect

new attacks. An ADS constructs a normal profile and detects any deviation from

it as an attack. Although it can identify new and existing attacks, it still presents

some challenges, as described below. Finally, a SPA monitors particular protocols

for recognising malicious activities that attempt to exploit them but relies on

vendor-developed profiles of the protocols. More details of these methodologies

are provided in Chapter 2, Section 2.2.

8

With the goal of designing a solid line of defence against low-footprint network

threats2, many research studies [26–29] have focused on designing an intelligent

NADS that can recognise known and future malicious network activities. A NADS

has four key components, namely, a data source, data pre-processing module, De-

cision Engine (DE) and security responses [30]. Initially, the data source, which

provides the potential network data to enable the DE to classify observations as

either normal or abnormal, comprises a set of network observations, each of which

has a set of features captured from network ingress traffic. Then, the data pre-

processing module prepares this input data by excluding unimportant features and

observations to establish a set of patterns that discriminate between normal and

malicious activities, after which the DE uses a technique for classifying observa-

tions as either normal or abnormal. Ultimately, a security response is a decision

taken by a program or cyber administrator(s) to stop attack actions. Details of

these components are presented in Chapter 2, Section 2.6.

To apply the architecture of NADS in the industry and commercial products

on large-scale networks, it still faces three major challenges [23, 26, 31, 32]. Firstly,

the creation of a comprehensive profile from different possible normal patterns to

prepare it for real network environments is very difficult. Secondly, the method-

ology for building an adaptive and lightweight DE that efficiently differentiates

between legitimate and suspicious events at high speeds and in large networks is

an issue. Monitoring and analysing these networks, which have large flow volumes

with high transmission velocities and involve wide ranges of high dimensionality,

is not easy. For modern network data sources (i.e., datasets), it is considered

that, to perfectly handle big data, specific big data analysis techniques should

be used [23, 33]. Big data can be defined in terms of its volume (i.e., a large

amount of data), velocity (i.e., a high data-processing speed) and variety (i.e.,

high-dimensional, complex data) [36]. Finally, obtaining a decent-quality dataset,

which should have a wide variety of modern normal and malicious observations as
2Low-footprinting network threats are strategies of stealthily abusing a particular network

environment for revealing its vulnerabilities using different sophisticated methods of exploitation,
such as social engineering, DoS and phishing.

9

well as being correctly labelled, is always a major challenge for assessing, training

and validating NADSs as it is very difficult to achieve.

DE techniques have been developed based on the mechanisms of data min-

ing and machine learning [14, 30], artificial intelligence [30, 34], knowledge-based

[30, 35] and statistical [30, 36, 37] models. However, their proposed mechanisms

predominantly reflect high False Positive Rates (FPRs)3 due to the difficulty of

finding a solution that mitigates the aforementioned challenges. Recent research

studies [26–28, 30, 31, 36, 37] have concentrated on using statistical models as

the ease of simultaneously executing and determining potential characteristics of

normal and suspicious network behaviours for both features and observations.

The fundamental components of NADS that are the target of this PhD research

are explained in the following three subsections.

1.4.1. Network Data Sources

A network data source/dataset can be represented in a relational table as a set

of observations, each of which contains a set of features captured from network

packets and tagged as normal or attack based on network security events occur-

ring at the time of connection. The aim of a network dataset is to evaluate the

performances of DE approaches for efficiently detecting attack observations, with

a DE approach considered acceptable if its NADS solutions present high Detec-

tion Rates (DRs)4 and low FPRs. Such a dataset plays a key role in training

and validating DE approaches to identify their capabilities to recognise abnormal

behaviours and define their potential efficacy when a NADS is deployed in a real

network.
3False Positive Rate (FPR)- an evaluation criterion of learning algorithms, which is the per-

centage of incorrectly detected attack instances.
4Detection Rate (DR)- an evaluation criterion of learning techniques, which is the percentage

of correctly detected attack instances.

10

Public network datasets have serious problems that affect their reliability for

evaluating NADSs. Although the KDD99 dataset [38] and its enhanced version

(NSL-KDD) [39] are the most widely used, they are outdated and their behaviours

are very different from those of recent networks. Other datasets, such as CAIDA

[40] and DARPA-2009 [41], are seldom used, as discussed in Chapter 2, subsection

2.6.1. Some of these datasets do not publish their ground truth tables for ensuring

the correctness of the labelling process and do not have sufficient security events to

evaluate modern NADS solutions. Therefore, this was the motivation for designing

the new dataset UNSW-NB155 which is one of the core contributions of this PhD

research. The UNSW-NB15 dataset [42, 43] was generated to create a hybrid of

realistic modern normal, and security and malware events. A detailed description

and evaluation of this dataset are provided in Chapter 3.

1.4.2. Relevant Features and Observations for NADS

Determining relevant features, called Feature Reduction (FR) in the machine-

learning field, which is defined as the process of removing the unimportant or

noisy features in a data collection, comprises two procedures, Feature Selection

(FS) and Feature Extraction (FE) [44]. Firstly, FS removes redundant or irrelevant

features from a given dataset and then FE transforms high-dimensional space data

into a lower-dimensional space, with the size of the feature space often able to be

significantly decreased without the loss of a great deal of information of the original

feature space.

FS methods have been used in the network intrusion detection field to elimi-

nate unnecessary features in order to decrease the computational complexity and

improve the accuracy of DE approaches, remove redundant information and assist

the understanding of data. In a NADS, FR plays a significant role in effectively

reducing network features in order to improve the performance of DE techniques
5UNSW-NB15 refers to University of New South Wales Network Based 2015, is one of the

contributions in this thesis for testing performance of NIDSs

11

[26]. While choosing relevant features from network traffic, selecting relevant ob-

servations from network traffic, with no duplication of flows and no missing flows

that might have suspicious events, is an important task for improving NADS per-

formances.

The methods of selecting important features and observations are applied in

the data pre-processing module to establish a lightweight NADS, as discussed in

Chapter 2, Subsection 2.6.2. We develop a new principle, so-called ‘relevant fea-

ture and observation method’, for eliciting relevant attributes and instances from

network traffic that could precisely differentiate between legitimate and suspicious

activities in DE approaches for a NADS, as explained in Chapter 4.

1.4.3. Statistics-based NADS

Statistically speaking, an anomaly is a rare event which takes place between normal

data points. In NADSs, statistical models are fitted using normal network data and

then a statistical inference test using either a pre-defined threshold or probability

condition applied to consider observations which deviate from this condition as

attacks [30, 45].

Statistics-based techniques are classified as parametric and non-parametric,

both of which have been widely used to develop statistical models for NADS.

Parametric approaches assume that network data fit a certain distribution while

non-parametric mechanisms do not make any assumptions about the statistical

characteristics of the given data [26, 45]. Since statistical approaches can accu-

rately determine and analyse features and observations of network data in order

define a clear difference between normal and suspicious network activities [30, 45–

47], we can use them for developing new DE techniques, as detailed in Chapter

5.

12

1.5. Thesis Contributions

This thesis contributes to the field of NADS by offering promising solutions to

the above sub-problems through the following key aspects based on the main

components of a NADS.

• Creating a contemporary network dataset called the UNSW-NB15

dataset with deep statistical analysis and evaluation (Chapter 3)

- the IXIA PerfectStorm tool is used to extract a hybrid of modern normal

and anomalous activities from network traffic. Anomalous activities were

simulated from the CVE site, which contains up-to-date malware behaviours,

and the tcpdump tool used to capture approximately 100 GB of raw network

traffic in the pcap format, with each pcap file containing about 1 GB for easy

determination and analysis.

• Designing a new aggregator module (chapter 4) - based on the theory

of flow-level analysis for enhancing the performance of NADS via extracting

only significant observations without duplication or missing values in those

observations with the capability of handling large-scale network data.

• Developing and applying feature reduction and selection approaches

for selecting relevant features (Chapter 4) - three techniques of a new

Association Rule Mining-Central Points (ARM-CP), Principal Component

Analysis (PCA) and Independent Component Analysis (ICA), are used for

reducing and selecting important network features.

• Suggesting new statistical features of the DNS and HTTP pro-

tocols and ensemble-learning framework for detecting malicious

activities that face these protocols (Chapter 4) - these protocols con-

tain some information about the user and network activities and are two

fundamental protocols for Internet and network applications. We develop

13

a NIDS for recognising malicious activities, due to their importance in net-

work systems. An ensemble learning method, including Decision Tree, Naïve

Bayes and Artificial Neural Network techniques with the model of Adaboost

to fairly distribute network data between them, is developed.

• Developing two novel DE techniques using the statistical mixture

models for recognising known and zero-day attacks (Chapter 5) -

These techniques are based on the methodology of anomaly for building a

normal profile from parameters of statistical mixture models in the training

phase, as these models can fit the majority of all possible normal data points

accurately. The same parameters used in the training phase are applied to

the testing data, and then new outlier decision-making methods are used for

recognising anomalous observations, which are out of the normal profile.

• Designing scalable NADS frameworks for the above DE techniques

(Chapter 5) - these frameworks are designed for developing a lightweight,

adaptive and scalable ADS that can effectually process large-scale networks.

It comprises the three modules of data sniffing and storing, data pre-processing

and DE techniques. The first involves a feature set created from network

traffic, the second analyses and filters network data while the third includes

the proposed DE techniques for successfully detecting known and unknown

malicious activities.

1.6. Thesis Structure

The rest of this thesis is organised below and its overview is presented in Figure

1.1.

Chapter 2 provides the technical background to IDS methodologies and their

components, and the literature related to our research detailed in this thesis.

14

F:/F-template/Thesis-LyX/Figures/chapter1/thesis-overview.pdf

Figure 1.1: Thesis overview

The following NADS components and their challenges are investigated. Firstly,

publicly available benchmark datasets are reviewed as data sources for assessing

the performances of NIDSs and then data pre-processing methods and their roles in

establishing a lightweight, adaptive NADS are explained. Finally, existing ADSs

and the problems they pose for developing a lightweight, adaptive and scalable

NADS, and the statistical methods related to our new DE schemes are discussed.

Chapter 3 discusses modern network dataset environments. Firstly, and most

importantly, the capability of the DARPA-2009 dataset is analysed in depth to

evaluate new DE approaches but some challenges regarding its correct labelling

are encountered. In addition, as the patterns in this dataset are very different

from the sophisticated ones of normal and malicious behaviours in real network

environments, they are not sufficiently complex to be identified using existing ML

techniques. This was the motivation for generating the new UNSW-NB15 dataset

that resembles realistic modern network data. Its capability to generate a feature

set from raw packets is examined and its statistical and complexity evaluation

presented to demonstrate to what extent it can be used to efficiently assess new

DE approaches.

Chapter 4 details the new theory of selecting relevant features and observa-

tions from raw network packets. Firstly, a new aggregator module is designed for

collecting relevant observations and feature selection methods based on the asso-

ciation rule mining with central points, principal component analysis, as well as

independent component analysis for adopting the important features that assist

in building a lightweight NADS. Then, the new methodology involving the signif-

icant features from different network segments and application layers with depth

15

analysis for the HTTP and DNS protocols is discussed. The proposed features of

the protocols are obtained by computing their statistical characterises and then

passing them to the DE approach for recognising malicious instances.

Chapter 5 explains two new frameworks, for the first time in this field, de-

signed for building the methodology of adaptive, lightweight and scalable NADS

with two novel DE techniques using statistical models of Beta- and Dirichlet- mix-

ture models that precisely distinguish between legitimate and malicious network

vectors. The two frameworks have three main modules, namely data sniffing and

storing, data pre-processing and DE. The first two modules are the same in both

frameworks for eliciting and storing network data, and analysing and filtering those

data, respectively, whereas the DE techniques are different in the two frameworks

for successfully discovering existing and zero-day attacks.

Concluding remarks are provided in Chapter 6; protocols of the UNSW-NB15

datasets are presented in Appendix A; and the feature description of the NSL-

KDD dataset used for the evaluation of the mechanisms developed in the thesis is

provided in Appendix B.

16

Chapter 2

Background and Related Work

2.1. Objectives

This chapter discusses the background to and related work on, establishing an ef-

fective Intrusion Detection System (IDS), with the purpose of our research to build

an adaptive and online Network Anomaly Detection System (NADS) that discrim-

inates between legitimate and suspicious network traffic. A typical NADS archi-

tecture consists of four components: a data source, data pre-processing method,

Decision Engine (DE) technique and security response. In this chapter, we inves-

tigate mainly data sources, data pre-processing methods and DE techniques; and

their challenges. Firstly, public benchmark datasets are reviewed as data sources

for evaluating the performances of IDSs and the issues they raise. Secondly, meth-

ods for data pre-processing and their roles in establishing an online NADS are

discussed. Finally, existing anomaly detection (i.e., DE) approaches and the prob-

lems they pose for developing an adaptive and online NADS, and the statistical

methods related to our new DE schemes are described1.

2.2. Intrusion Detection System (IDS)

An IDS is important in the cyber security field for achieving a solid line of defence

against cyber adversaries. The digital world has become the main complement of
1

• Parts of this review has been submitted in:
Moustafa, N., Creech, G. and J. Slay.”A Comprehensive survey: Components of
Intrusion Detection systems”, 2017, “under review”

17

the physical world because of the ubiquitous use of computer networks and the

prevalence of applications that easily execute users’ tasks in a short time and at

low cost. Awareness of the need for information technology means of securing

network resources against threats of attackers which has been steadily increas-

ing. A system is considered secure if the three principles of computer security,

Confidentiality, Integrity and Availability (CIA), are successfully achieved [48].

Each attack type has its own sophisticated philosophy that poses serious threats

to computer networking and violates these principles. When an attacker gathers

significant information about a system, it breaches the system’s confidentiality

and, when it interrupts legitimate operations, compromises its availability and in-

tegrity. For example, Denial of Service (DoS) attack corrupts computer resources,

which breaks the availability principle, while malware code hijacks the execution

flow of an application which violates the integrity principle [8].

An IDS is a mechanism for monitoring and analysing the activities which take

place in a computer system or network to detect possible threats by measuring their

violations of computer security principles of CIA [48–50]. The classical architecture

of an IDS comprises four components [22] (Figure 2.1), namely, a packet decoder,

pre-processor, DE sensor and defence response/alert module, as described below.

• The packet decoder acquires portions of raw network traffic using audit data

collection tools, such as Tcpdump and Libpcap, which transfer each portion

into the pre-processor for handling.

• The pre-processor captures a set of features from the raw audit data which is

used later in the DE sensor. A typical pre-processor widely used in network-

based IDSs is the TCP handler which analyses TCP protocols in session

flows; for example, Netflow, Bro-IDS and Argus tools which examine different

protocols, such as HTTP, DNS, SMTP and UDP.

18

Network
traffic

Decoder
Pre-

processor
Decision

engine sensor
Defence
response

Database

Action

Figure 2.1: Architecture of classical IDS

• The DE sensor receives the proposed features from the pre-processor and

builds a model that distinguishes attack observations from normal ones. If

an attack is detected, it requests the defence response to raise an alert.

• The defence response is the process of raising alerts requested by the DE

which are logged in a database and then sent to the security administrator

to take action.

An IDS can be active or passive depending on the actions taken; it is passive

when an anomalous behaviour is identified and an alert raised but no further

action taken while an active IDS raises an alert and attempts to neutralise

the anomalous behaviour by executing a predefined script action and is also

called an Intrusion Prevention System (IPS).

2.2.1. Intrusion Detection Properties

An IDS can be categorised in three ways based on its properties: monitored envi-

ronment; detection approaches; and deployment architecture (see [22, 51–53]), as

discussed in the following.

19

2.2.2. Monitored environment

An IDS can be used to monitor host- and network-based environments. A host-

based IDS (HIDS) monitors the events of a host by collecting information about

activities which happen in a computer system [54]. A sensor should be installed in

such a system to monitor hosts and log the operating system’s activities to provide

an audit trail [20, 54]. A HIDS can identify the improper use of an organisation’s

internal equipment, for instance, an employee’s computer launching attacks. It is

also used when a network is encrypted by distributing its load to monitor its hosts

[54]. However, each operating system has different audit trials; for example, those

of Linux are API calls while those of Windows are DLLs. Therefore, it is difficult

to build a HIDS that can monitor different operating systems to be compatible

with their platforms. As they use their audit trails which are extremely expensive

which require significant amounts of storage space and increase the host server’s

load [20, 55]. Another drawback is that a HIDS can be exposed as soon as its host

server is compromised by an attacker. This means that any existing vulnerabilities

of a host server threaten the integrity of a host-based sensor [54, 55]. If an attacker

breaches one of these weaknesses, this could lead to a vulnerability which is hard

to detect. Also, a DoS attack can expose a host and impede the functions of a

HIDS by filling the audit file system [22, 55].

Another environment for monitoring is a Network-based IDS (NIDS) which

monitors network traffic to identify remote attacks that happen over a network

connection [22]. It has always been an essential security solution as it provides a

solid line of defence against a malicious activity before it accesses the resources of

a host and records itself in the audit trials of an operating system. Although a

HIDS can detect intrusions into hosts, this naturally occurs after a host’s computer

resources, such as its files and services, are accessed. It is clear that the best

security solution is to deter known and zero-day attacks before they exploit hosts,

i.e., over networks, to achieve the wisdom of ‘prevention is better than cure’. As,

even if a HIDS detects an attack, there is no guarantee that computer resources are

20

not exposed, the design of an intelligent NIDS considers a means of deterring such

attacks although it is still challenging to apply this in a reliable way. Therefore,

a combination of a HIDS and NIDS has been implemented to establish a hybrid

IDS which can monitor decrypted network traffic and host activities [51].

A NIDS has several advantages [56]. Firstly, its network monitoring does

not degrade the performance(s) of other software running on the network as it

only needs to read some information from each packet coming across its network

segment whereas a HIDS inspects the resources of the operating system that is

running [54]. Secondly, it is quite portable as it monitors network traffic over

only a certain network segment regardless of the destination’s type of operating

system. Thirdly, its network-based sensors can be installed on a network and

its data are easily collected which is beneficial in some situations; for instance,

following network topology or system resource changes that it can be moved and

used as needed.

Nevertheless, one of the major drawbacks of a NIDS is scalability. Since high-

speed connected networks (e.g., 100 Mbps, 10 Gbps and more) have become the

norm, attackers can define them and exploit their weaknesses using low-footprint

attacks, such as stealth and spy attacks [11, 57]. The encryption of a network rep-

resents a great challenge to the design of a NIDS for collecting cipher data while

the tunnelling of IPsec protocols establishes a new risk by allowing the encapsula-

tion of IPv6 traffic in IPv4 data streaming to route over non-compliant appliances

which involves serious threats of IPv4 DoS and DDoS attacks [58]. A modern

NIDS can deal with end-to-end encryption by extracting general and statistical

information about packets, for instance, their sizes, lengths and inter-arrival times,

as flow-based features [54, 59] but packet payloads, namely, packet-based features,

always obfuscate. These packets have been analysed using Deep Packet Inspection

(DPI) paradigms, with their classifications based on their behaviours or a hybrid

of learning theories and statistical approaches [59].

21

As this PhD thesis concentrates on the development of a NIDS, a HIDS is not

discussed in any further detail and the focus in this chapter is on NIDS technologies

and approaches.

2.2.3. Detection methods

Intrusion detection methodologies are classified in three major categories: Misuse-

based (MDS); Anomaly-based (ADS); and Stateful Protocol Analysis (SPA) [8, 25,

60]. A MDS monitors network traffic to match observed behaviours with attack

signatures logged in a database. Although it provides higher detection rates and

lower false positive rates (FPRs) to existing attacks than other categories, it cannot

detect zero-day or even variants of known ones. This is a significant issue in terms

of the computer security required to defend against those attacks. Moreover, a

huge effort is necessary to frequently update its database, which is a set of rules

for each malicious activity, generated by network security expertise [31].

An ADS creates a normal profile and detects any deviation from it as an at-

tack. It can identify known and zero-day attacks as well as require less effort to

construct its profile than a MDS. However, it still faces two challenges for appli-

cation in the computer industry or even commercial products: (1) determining a

way of creating a comprehensive profile from diverse legitimate behaviours; and

(2) designing an architecture for establishing an adaptive detection method which

efficiently distinguishes between normal and suspicious network traffic. These

challenges are the main motivation for our research into designing an online and

adaptive ADS.

Finally, a SPA examines and traces protocol states, specifically a pair of

request-response protocols, such as a HTTP protocol. Although a SPA is roughly

similar to an ADS, it relies on vendor-developed profiles of certain protocols and re-

quires information of the relevant network’s protocol standard from international

standard organisations [25]. As a SPA consumes many computer resources to

22

inspect protocol states and is incompatible with different dedicated operating sys-

tems, an ADS is a better defence solution if its DE approach is properly designed

[8, 26, 28, 31].

2.2.4. Deployment architecture

An IDS’s deployment architecture is either distributed or centralised. The former

is a compound system comprising multiple intrusion detection subsystems installed

at different sites and connected to exchange relevant information. This helps

in detecting malicious patterns which can identify corresponding attacks from

multiple locations in a particular time. Conversely, a centralised IDS refers to a

non-compound system which is deployed at only one site, with its architecture

dependent on the organisation’s size and sensitivity of the data which should be

considered when designing a deployment [51].

This PhD thesis focuses on statistical approaches and how to use them to de-

sign a statistical ADS for implementation in an online and adaptive way. The rest

of this chapter is organised as follows: the characteristics of network anomalies

are provided in Section 2.3; Section 2.4 outlines the evaluation metrics as well as

efficiency and reliability measures used for IDSs; Section 2.5 describes the partic-

ular challenges facing modern NADS; the components of NADS are presented in

Section 2.6; DE approaches are discussed in Section 2.7, with details of the statis-

tically based NADS used in the proposed DE described in subsection 2.7.5; and,

finally, contemporary network threats are presented in Section 2.8 and concluding

remarks in Section 2.9.

23

2.3. Characteristics of Network Anomalies

Anomalies are known as patterns in network traffic which behave differently from

legitimate ones. Their characteristics are classified as point, contextual or collec-

tive according to the output from the detection method used [61–63]. A point

anomaly occurs when a certain data observation deviates from the normal profile

and, in statistical methods, is referred to as an outlier. Contextual anomalies

occur when data patterns are anomalous in a particular context and appear as

related behaviours which are always different from the majority of normal activ-

ities. They are also called conditional anomalies that require a notion of context

to identify them from network data. Collective anomalies happen when a group of

similar data instances acts anomalously compared with the entire data of a normal

network.

The output from anomaly detection is often based on a baseline/threshold

which is a condition that discriminates between normal and attack instances [63].

Determining this threshold is one of the significant challenges faced when designing

a NADS due to the overlapping patterns of normal and attack activities. The

types of output from anomaly detection can be a score or binary which affects

the selection of a correct threshold. A score-based output is a numeric value of

either probabilities or real numbers for each data record while a binary/label-based

output is a certain value which tags each record as normal or attack; for example,

the labels of the KDD99 [38] and UNSW-NB15 [43] datasets are ‘0’ and ‘1’ for

normal and attack records, respectively.

2.4. Evaluation Metrics for IDSs

The performance of an IDS depends on conducting a confusion matrix (Table 2.1)

for a validated IDS model which is built for any classification problem, with its

size dependent on the number of classes included in the particular dataset [26].

24

Table 2.1: Confusion matrix for binary classification problems
Actual
Negative Positive

Predicted Negative TN FP
Positive FN TP

Its purpose is to compare actual and predicted labels, and it is acknowledged that

an intrusion detection problem, which contains two classes, normal and attack, is

defined by a 2-by-2 confusion matrix for an evaluation.

The terms TP (true positive) and TN (true negative) denote correctly pre-

dicted conditions and FP (false positive) and FN (false negative) misclassified

ones. TPs and TNs refer to correctly classified attack and normal records, re-

spectively and, conversely, FPs and FNs refer to misclassified normal and attack

records, respectively [26, 57]. These four terms are used to generate the following

IDS evaluation measures.

• Accuracy is a metric that estimates the overall percentages of detection

and false alarms an IDS model produces, which reflects the overall success

rate of any IDS, and is computed as

Accuracy = (TN + TP)/(TP + FP + TN + FN) (2.1)

• The Detection Rate (DR), also called the true positive rate (TPR) or

sensitivity, is the proportion of correctly classified malicious instances of the

total number of malicious instances and is computed as

DR = TP/(FN + TP) (2.2)

25

• The True Negative Rate (TNR), also called the specificity, is the pro-

portion of correctly classified normal instances of the total number of normal

instances and is computed as

TNR = TN/(TN + FP) (2.3)

• The False Positive Rate (FPR) is the proportion of normal instances of

the total number of normal instances misclassified as attacks and is computed

as

FPR = FP/(FP + TN) (2.4)

• The False Negative Rate (FNR) is the proportion of misclassified attack

instances of the total number of attack instances, given as

FNR = FN/(FN + TP) (2.5)

IDS approaches are evaluated using the TPR-FPR or specificity–sensitivity mea-

sure to estimate to what extent they are accurate in detecting malicious activities

[26]. A perfect IDS approach could have a 100% DR while a 0% FPR reflects that

all attack instances are detected without any misclassification. However, this is

very difficult and demonstrates the optimal performance to be achieved in a real

environment.

Another measure commonly used is the Receiver Operating Characteristics

(ROC) curve. It was created from the signal processing theory and then ex-

tended to other domains, such as medical diagnosis, bioinformatics, data mining

26

0 1

1

A

B

C

T
P

R

FPR

Perfect detection

Non-perfect detection

Figure 2.2: ROC curves - A, B and C show levels of detection

and machine learning as well as artificial intelligence. In an intrusion detection

methodology, it represents the relationship between the TPR and FPR of a DE

approach [57], as shown in Figure 2.2.

Ultimately, the F-measure criterion is a preferable measure of evaluating IDS

approaches. It is a harmonic mean of precision and recall [64], that is, a statistical

function for estimating the accuracy of a system by computing its precision and

recall given as

F −measure = 2 ∗ (Precision ∗Recall)/(Precision+Recall) (2.6)

27

where precision is the fraction of the predicted positive values which are actu-

ally positive and recall the actual number of positives correctly detected, as given

in equations. (2.7) and (2.8), respectively.

Precision = TP/(TP + FP) (2.7)

Recall = TP/(TP + FN) (2.8)

Similar to the TPR-FPR measure, when the precision and recall of an IDS

approach achieve 100%, as the F-measure is the maximum, a 0% FAR and 100%

DR are produced [64, 65]. This thesis uses these evaluation metrics to assess the

performances and effectiveness of the proposed IDS approaches and evaluate the

complexity of the UNSW-NB15 dataset with other widely applied functions.

The efficiency and reliability of IDSs can be assessed by the following measures

([26, 66]).

• Accuracy - indicates the overall success of correctly detecting legitimate

and anomalous records [22, 26], as previously discussed.

• Performance – is the capability of a system to handle network traffic that

deals with a high speed and low packet loss while running in real time. As,

in a real network environment, the packets are different sizes, the efficacy

of a NIDS relies on its capability to process a packet of any size. Moreover,

CPU and memory usage could also be considered criteria for assessing a

NIDS performance [22, 26]. The performance of any NIDS depends on its

configuration in a network and the capacity of the network it monitors.

28

• Completeness - is the capability to detect all the vulnerabilities and attacks

that attempt to breach a network [22]. This measure is more difficult to ap-

praise than the others as it is impossible to have knowledge about malicious

activities which could penetrate a user’s privileges.

• Timeliness - indicates the capability of a NIDS to perform its inspection as

quickly as possible to enable the security administrator or response engine to

take action before a great deal of loss occurs [1, 66]. There is a continual delay

between the detection of an attack and the response of the system which it

is preferable to reduce as much as possible to prevent attack threats.

• Profile update – when new vulnerabilities or abuses are identified, black-

lists or profiles have to be updated for new detection [1]. However, this task

is a big challenge in current high-speed network traffic.

• Stability - a NIDS should operate consistently in different network infras-

tructures and steadily log identical events to allow its triggers to be easily

configured [26].

• Interoperability - an effective NIDS is assumed to be capable of associating

information from numerous sources, such as system and firewall logs, HIDSs,

NIDSs and any other available source of information [67].

2.5. Challenges of NADS

Although a MDS cannot recognise zero-day attacks or even variants of existing

ones, it is still a common defence solution used in commercial products. On the

contrary, a NADS can detect serious threats but has often been faced with potential

challenges for its effective design. These challenges, which could be explored from

an anomaly-based methodology, which is the construction of a purely legitimate

profile with any variation from it declared an anomaly [1, 8, 26, 36, 47, 63], are as

follows.

29

• Constructing a comprehensive profile that involves all possible legitimate

behaviours is very complex to accomplish. As the boundary between normal

and abnormal behaviours is usually not accurate. There are errors of the

FPRs and FNRs which occur when a normal behaviour falls in an attack

region and a malicious one in a normal region, respectively. Although both

errors are dangerous for network data, the FPR is often used to evaluate the

performance of DE approaches because there are no alerts of attacks in real

network systems.

• When designing the architecture of an adaptive and scalable NADS, it is

very difficult to distinguish attacks from the normal profile as sophisticated

malicious activities, such as stealth and spy attacks, can adapt to be almost

the same as normal patterns. Therefore, methods for detecting such attacks

have to analyse and inspect the potential characteristics of the network traf-

fic.

• Real-time detection is also very challenging for several reasons. Firstly, the

features created for network traffic may contain a set of noisy or irrelevant

ones. Secondly, the lightweight of detection methods need to be carefully

adopted, with respect to the above problems. These reasons increase the

processing time and false alarm rate if not properly addressed.

• A decent-quality dataset is usually a major concern for evaluating, learning

and validating NADS models as it should have a broad range of contem-

porary normal and malicious behaviours as well as being correctly labelled

which is difficult.

For the above challenges, most existing ADSs address particular formulations of

them. The factors involved in designing an effective NADS framework are encom-

passed by solving the above problems and executing the components of NADS to

build an online and adaptive NADS.

30

Data source

Validation and testing
phase

Training phase:
normal profile establishing

Decision engine approaches

· Feature creation
· Feature reduction
· Feature conversion
· Feature normalisation

Data pre-processing

Defence response

Figure 2.3: Components of NADS

2.6. Components of NADS

As depicted in Figure 2.3, a typical NADS consists of four components: a data

source; data pre-processing module, DE method and security responses [30].

A fundamental component of a NADS is the data source which provides the

potential information to enable the DE to classify records as either normal or

attack. It includes a set of network records, each of which has a set of features

generated from network ingress traffic, with existing secure servers used to cap-

ture network connections for a particular time interval. Monitoring and analysing

the traffic at the destination network decrease the overhead of identifying attack

records by focusing on only relevant traffic [36]. Next, the data pre-processing

31

prepares the input data by excluding unnecessary features to create a set of pat-

terns that distinguish between legitimate and suspicious activities and then the DE

method uses a technique to classify records as either normal or abnormal. Finally,

a security response is a decision taken by the software or cyber administrators to

prevent attack actions. Details of these components are provided in the following

subsections.

2.6.1. Data source

In 1980, pioneering research in the area of NIDS stated that, audit data of com-

puter systems should be carefully analysed to understand the types of threats and

recognise attacks [68]. Later, the research community collectively realised that its

data source is a major component of any NIDS for evaluating the performances

of DE methods due to the difficulty of labelling legitimate and attack activities in

live network traffic [69, 70]. Network data sources have been collected in an offline

dataset which comprises a wide variety of normal and malicious records.

As previously discussed, datasets play a significant role in testing and vali-

dating NIDS methods. A decent-quality one can identify the capabilities of DE

approaches to detect malicious behaviours and define their potential effective-

ness when NIDSs are deployed in real network environments. In this subsection,

publicly available benchmark network datasets and the reasons for designing the

UNSW-NB15 dataset, which is part of this PhD thesis, are discussed (see [42, 71]).

With the high speeds and large sizes of current network environments, elicited

network data has the characteristic of the big data principle, as the case of the

UNSW-NB15 dataset explained in Chapter 3 - Section 3.4. Big data is typically

defined in the terms of Volume, Velocity and Variety proposed by Doug Laney in

2001 [72]. Volume indicates the amount of data that is processed, with traditional

computing mechanisms incapable of handling the current large sizes of network

32

data. Velocity refers to the speed of processing data and, although real network

environments run very quickly to provide services and programs at any time and

anywhere between different networks, traditional mechanisms cannot process such

data very rapidly. Variety indicates the complexity of the data and to what extent

they are of diverse types and dimensions, with those with high dimensions collected

from different sources or having multiple different structures, treated as complex

[33].

Two additional terms, Veracity and Value, determine whether a set of data is

considered big data. Veracity refers to the correctness of the data, including the

problems of their quality, such as noise and missing values, while Value relates to

the importance and sensitivity of particular data, such as bank and government

ones. If the data are not important, a big data analysis is not appropriate [73]. As

traditional techniques generally cannot process the big data in real-world prob-

lems, such as those in the cyber security field, it is vital to develop intelligent,

mainstream computing mechanisms capable of efficiently and effectively handling

a network’s big data.

Handling big data has become a significant issue for NIDS, with its challenges

discussed in [32, 33, 74]. From these studies, a Hadoop-based DDoS attack detec-

tion technique for processing vast network traces to mitigate network adversaries

was suggested, and a new traffic monitoring system developed to perform a Net-

Flow analysis of internet traffic. A MapReduce technique was used to generate a

set of features from the libpcap as input to the detection method for recognising

malicious observations [75] while Kamaldeep et al. [76] proposed a quasi-real-time

IDS based on open-source tools, such as Hadoop, Hive and Mahout. The big data

required for evaluation are sniffed from realistic network traffic and the CAIDA

dataset in order to determine intrusive traces.The benchmark network datasets

are discussed as in the following subsections.

33

A. KDD99 dataset

The IST group at the Lincoln Laboratories in the MIT University performed a

simulation involving both normal and abnormal traffic in the military network of

the U.S. Air Force LAN environment to generate the DARPA 98 dataset using

nine weeks of raw tcpdump files. The training set’s size was approximately four

GBs and comprised binary tcpdump files captured over seven weeks in almost five

million connection records while the testing set consisted of two million connection

records captured over the other two weeks [38].

In 1999, the DARPA 98 dataset was analysed by the BRO-IDS to capture

41 features and the class label for each connection record and called the KDD99

dataset which has been the most widely used for evaluating NIDS methods. In it,

the features are divided into three groups: firstly, the intrinsic features acquired

from the headers of the network packets; secondly, the content features captured

from the payloads of the network packets; and, thirdly, the traffic features obtained

from information about previous connections. This dataset contains five classes,

one normal and the four attack ones (DoS, Probe, U2R and R2L) listed in Table

2.2 [71], with the training and testing sets comprising 22 and 15 attack types,

respectively. Table 2.3 presents two samples of the KDD99 dataset distributions,

namely the entirely corrected and 10% corrected training ones, used to evaluate

DE approaches.

The KDD99 dataset has three main drawbacks which can affect the fidelity of

evaluating the performances and effectiveness of NIDS mechanisms. Firstly, every

attack data packet has a time to live (TTL) of 126 or 253 while those of most

packets of current real traffic are 127 or 254 [77]. Secondly, the data distribution of

the testing set is different from that of the training set because new attack records

have been added to the testing set [78, 79]. This means that, as classification

34

Table 2.2: Four attack classes in KDD99 dataset
Denial of Service (DoS) Attackers, such as SYN flood, Smurf and teardrop,

endeavour to obstruct legitimate users from using a
service provided by a system

Remote to Local (R2L) Attackers attempt to get right of access to a
machine without authorization, for example, the
password-guessing attack

User to Root (U2R) Attackers try to access the local super-user (root)
privileges from the same domain user, for instance,
buffer overflow attacks

Probe Attackers, such as port scanning and ping-sweep,
attempt to obtain information about the target
client

Table 2.3: KDD99 dataset distributions of attack and normal instances
Dataset DoS U2R R2L Probe Normal Total
Corrected KDD 229853 70 16347 4166 60593 311029
10% corrected KDD 391458 52 1126 4107 97278 494021

approaches have a bias towards some observations rather than balancing legitimate

and attack ones, a poor NIDS evaluation often results. Thirdly, this dataset’s

network traffic is very different from current network traffic in terms of network

speed, network bandwidth, upgraded protocol types, attack behaviours and even

normal behaviours.

B. NSL-KDD dataset

The NSL-KDD dataset [39] proposed by Tavallaee et al. [80], is an enhanced ver-

sion of the KDD99 dataset and, similar to it, consists of five classes, one normal and

the four attack ones DoS, Probe, U2R and R2L, with each record having 41 fea-

tures and a class label. Its data has two sets: training (‘KDDTrain+_ FULL’ and

‘KDDTrain+_20 %’); and testing (‘KDDTest+_FULL’ and ‘KDDTest-21_new

attacks’) [39].

This dataset addresses some of the problems of the KDD99 dataset. First and

foremost, as it does not contain superfluous and duplicated records in either the

35

Table 2.4: Distributions of attacks in NSL-KDD dataset
Parts DoS U2R R2L Probe Normal Total
KDDTrain 45927 52 995 11656 67343 125973
KDDTest 7458 67 2887 2422 9710 22544

training or testing set, NIDS methods could not be biased towards more repeated

observations. Secondly, as the numbers of records in the training and testing sets

are adopted from different portions of the original KDD99 dataset without any

duplication, they are reliable for evaluating NIDS approaches. Moreover, they

are rational and used to run experiments on the full dataset without the need

to randomly select a small proportion (Table 2.4). Nevertheless, the NSL-KDD

dataset cannot represent contemporary network traffic as its legitimate and attack

behaviours are extremely different from those of current network traffic.

C. CAIDA datasets

The CAIDA datasets [40] are collections of different data types for analysing

security-related events to validate attack detection approaches, but are limited to

particular types of attacks, such as DDoS ones, with their traces the anonymised

backbones of the packet headers without their payloads. The most common

CAIDA dataset is the CAIDA DDoS 2007 anomaly one which includes an hour of

anonymised network traffic for DDoS attacks.

A simulation was designed to consume a significant amount of network re-

sources while linking to the internet, with the network traffic involving only attack

activities to the victim, the responses of which were stored every 5 minutes in a

separate pcap file for easy inspections of attack behaviours. It attempted to en-

sure that the pcap files were free of legitimate traffic to reliably evaluate detection

methods [71]. However, these datasets did not indicate a clear ground truth about

the attack activities involved and, moreover, their pcap files were not inspected

36

precisely to elicit features in order to discriminate attack activities from normal

ones.

D. DEFCON dataset

The DEFCON dataset, which comprises a list of packets, is freely available on the

internet [81]. Although most of the files are Full Packet Capture (FPC) ones, some

have truncated frames. They were captured during a hacking competition called

Capture-the-Flag (CFT) in which competing teams were divided into two groups,

attackers and defenders. It contains only malicious activities with no legitimate

traffic which is different from real network traffic. This dataset is only effective

for assessing alert correlation approaches and poor for evaluating NADS ones due

to its limitations of losing frames and lacking legitimate network traffic.

E. ISCX dataset

The ISCX dataset [82, 83] was designed based on the concept of profiles which

contains descriptions of attacks and distribution models for a network architecture.

Its records were captured from a real-time simulation conducted over seven days of

normal network traffic and synthetic attack simulators. Their traces were analysed

to create profiles from the HTTP, SSH, SMTP, IMAP, POP3 and FTP protocols

which were used to generate the dataset’s files in a testbed environment. Several

multi-stage attack scenarios were included to help in evaluating NIDS methods.

However, the dataset did not provide the ground truth about attacks to reflect the

credibility of labelling and, secondly, the profile concept used to build the dataset

could be impossible to apply in a real complex network because of the difficulty

of analysing and logging. Also, the profiles were established for protocol types to

evaluate Stateful NIDSs but would increase the alarm rate for NADS.

37

F. Kyoto dataset

The Kyoto dataset, which was developed at the Kyoto University [84], is a set

of network traffic collected from honeypot systems, with the BRO-IDS tool used

to extract 24 features from those in the KDD99 dataset. These features were

categorised into 14 conventional and 10 additional ones that reflected network

characteristics [71]. The main drawbacks of the Kyoto dataset were that it lacked

measures for labelling and describing attack behaviours or even variants of legiti-

mate ones.

G. DARPA 2009 dataset

The DARPA 2009 dataset [41] was synthetically designed to emulate the traffic be-

tween 16 sub-networks and the internet with data collected over 10 days, from 3rd

to 12th November 2009. It contains synthetic HTTP, SMTP and DNS background

data traffic, and has a set of attack types such as DoS and DDoS. It consists of

7000 pcap files with almost 6.5 TB, with each file including approximately a one-

or two-minute timing window.

We analysed the first 30 GBs using the TCP trace tool to evaluate the per-

formances of some existing classification methods [85]. Although these methods

provided high detection rates, the ground truth of the attack events had many

faults as the same information was used to label records as normal or attacks

which led to attack detection being unreliable.

From the above discussion, as the benchmark datasets have serious problems of

either containing out-dated network data or ground truth faults for labelling, they

are unreliable for evaluating real anomaly detection methods. This was the moti-

vation for designing the UNSW-NB15 dataset to evaluate our proposed statistical

NADS approaches, as detailed in Chapter 3.

38

2.6.2. Data pre-processing

Data pre-processing is a significant step in learning theories because, like data-

gathering measures which are often loosely controlled and result in irrelevant or

duplicated data values, network data extracted from network traffic also include

these data. It filters network data by removing redundant, noisy or irrelevant infor-

mation which leads to improving the performance of DE approaches for detecting

attack behaviours. Data pre-processing for network data involves the creation,

reduction, conversion and normalisation of feature, as described in the following.

A. Feature creation

Network features are captured from raw network packets using different tools,

such as Argue, Bro-IDS, Netflow, Tcptrace and Netmate. It is impossible to

operate a NIDS on raw packets without extracting a set of features, often called

basic features, as in the KDD99 and UNSW-NB15 datasets. Moreover, additional

features are established using both transactional flow identifiers (i.e., source and

destination IP addresses, source and destination ports, and the protocol type) and

transactional connection times (e.g., 10 or 100 connections per second) to define

the potential characteristics of network behaviour. These features are significant

for identifying attackers who scan victims in a capricious way, such as one scan per

minute or per hour; for example, in the KDD99 and UNSW-NB15 datasets, the

is_sm_flw feature could identify land or teardrop attacks [86], as further discussed

in Chapter 3.

B. Feature reduction

Feature reduction is the process of removing irrelevant, redundant and/or noisy

features, and can be divided into feature selection and feature extraction. The

former finds a subset of the original features and the latter converts the data from

39

Subset
generation

Subset
evaluation

Result
validation

Stopping
Criterion

Original
feature set

Portion of
features

Q
u

al
it

y
 o

f
su

b
se

t

YesNo

Figure 2.4: Main steps in feature selection

a high dimensional to lower-dimensional space [36]. In more detail, the size of the

feature space can often be greatly decreased without losing much information.

FR is applied in the data pre-processing module for building an effective and

online NADS in which it plays a significant role in efficiently and effectively de-

tecting network attacks. As network packets have some information which might

be important for identifying anomalies, they should be carefully analysed to se-

lect only the relevant information that can help a DE approach correctly detect

anomalous activities. FS methods comprise four steps, subset generation, subset

evaluation, a stopping criterion and result validation, as depicted in Figure 2.4

(see [26, 87, 88]).

• Subset generation

This is an essential heuristic search process whereby each state in the search

space specifies a candidate subset for the evaluation step which is analysed

using two strategies. Firstly, the starting points that affect the direction of

the search have to be determined. The search, which begins with a randomly

adopted subset to avoid the local optimal problem, could have an empty set

40

of features then added, a full set with features then eliminated or a set with

features added and eliminated simultaneously. Secondly, it has to determine

a search strategy, such as a sequential or random one. For a dataset with D

features, there are 2D candidate subsets, a space that enables an excessively

thorough search with even only a reasonable number of features [88].

• Subset evaluation

Each new subset created has to be assessed using an evaluation measure

which can be classified as either independent or dependent based on the

learning techniques in which it is applied on the selected features [88]. Some

common independent measures are information, distance and consistency

which are used in filter models. A dependent measure is used in wrapper

models which require a predefined learning technique for feature selection.

This technique provides the criteria/criterion for determining which features

should be chosen.

• Stopping criterion

A stopping criterion controls when a FS method should end, with common

ones the minimum number of features selected, maximum number of itera-

tions and completion of the search [88].

• Result validation

A simple means of validating results is estimating the output using prior

information about the data. Although it is difficult to find such information

in real applications, we depend on some indirect approaches via monitoring

changes in performance with changes in selected features; for instance, a

classification error rate can be used to measure the learning performance

and check the relevance of the selected features [26, 88].

The Association Rule Mining (ARM) [89], Principal Component Analysis (PCA)

[90] and Independent Component Analysis (ICA) [91] techniques are used in Chap-

ter 4 for selecting important network features. Their methodologies are described

41

in Chapter 4, and the popluar studeis applied them in NADS are explained as

follows.

Many studies [92–94] have used the ARM technique in a NADS to detect

abnormal instances. Lee et al. [92] proposed an IDS that correlates program and

user activities using ARM to generate the most frequent observations to identify

malicious activities. Luo et al.[93] used the ARM to construct a set of rules from

audit data to establish a normal profile and detect any variation from it as an

attack. Yanyan and Yuan [95] developed a partition-based ARM technique for

scanning the training set twice. In the first scan, the data is divided into many

partitions to run easily in memory while, in the second, itemsets of the training

set are created.

Nalavade et al. [94] proposed an ADS based on integrating association rules.

Its algorithm establishes abnormal rules that can identify malicious observations

in network data. However, this technique has some problems in terms of detecting

abnormal events as it requires a huge number of instances to correctly generate

normal and attack patterns. Moreover, as it takes a long time to build a model for

network data, it is difficult to create online systems for detection purposes and it

needs the labels of normal and attack data to efficiently generate rules. However,

in Chapter 4, Section 4.5, we use it to select relevant features and observations

due to its capability to proficiently correlate variables by selecting a set of network

flows each time.

As several research studies have been undertaken using the ICA and PCA

techniques to analyse the potential properties of network traffic and eliminate

inappropriate or noisy features, we use it in the data pre-processing module to

address the variety of problems inherent in big data discussed in [96, 97]. Palmieri

et al. [91] suggested NADS using the ICA to elicit the basic components of network

data from several network sensors, improving the performance of attack detection.

In [98], a technique using the ICA mechanism was developed to detect stealthy

attacks with a high detection accuracy. it was supposed that the attacker has

42

no information about the system, and those attacks were detected based on a

measurement matrix. A similar technique for attack detection considering both

full- and partial- measurements was suggested in [99].

Horng et al. [100] proposed a category-based ADS based on the PCA mech-

anism to decrease the number of features in the DARPA 1998 dataset. Their

experimental results demonstrated that their model produces a smaller number

of features which leads to an increase in the speed of detecting an attack with

the same accuracy. In [101], an adaptive IDS using a combination of SVM and

PCA evaluated on the KDD99 dataset is proposed, with the results showing that

PCA improves both the accuracy and processing time. Recently, Eduardo et al.

[50] suggested a hybrid statistical technique using PCA, the Fisher Discrimination

Ratio and Probabilistic Self-Organising Maps (SOMs) to remove unimportant fea-

tures when building an adaptive IDS. In Chapters 4 and 5, the two techniques are

used to estimate their effect on the overall performance of NADS.

C. Feature conversion

NIDS datasets include quantitative (i.e., numeric) and qualitative (i.e., symbolic)

features. As this thesis focuses on a statistical DE that can deal with only quan-

titative data, a standard format for features (X) is applied to convert symbolic

features into numeric ones (i.e., X ∈ R), where R indicates real numbers [47].

In other words, symbolic data are replaced with sequential numbers for ease of

processing in statistical approaches.

D. Feature normalisation

This is a function for scaling the value of each feature into a specific confidence

interval, such as [0, 1] [47]. Its main benefit is to remove the bias from raw data

without amending the statistical properties of the features. Common functions

43

of normalisation are the linear transformation and z-score, as given in equations

(2.9) and (2.10), respectively.

Xnormalised = (X −min(X))/(max(X)−min(X)) (2.9)

Z = (X − µ)/σ (2.10)

where X denotes the feature values, µ the mean of the feature values and σ

the standard deviation.

2.7. Decision Engine (DE) Approaches

The DE module of a NADS is clearly a critical aspect in the design of an efficient

system for discovering intrusive activities in real time. Selecting the functions of

DE, as well as its training and testing phases, fundamentally contributes to mea-

suring the effectiveness of a NADS as, if it is not performed correctly, the overall

protection level will be able to be easily penetrated. Many research studies have in-

vestigated DE approaches which can be classified in five categories, classification-,

clustering-, knowledge-, combination- and statistical-based, as depicted in Figure

2.5. The background to these categories and related work are discussed in the

next subsections.

44

Network Anomaly Detection
Approaches

Classification-based

Clustering-based

Knowledge-based

Combination-based

Statistical-based

· Support Vector machine (SVM)
· Artificial Neural Network (ANN)
· K-Nearest Neighbour (KNN)

· Regular Clustering
· Co-Clustering

· Rule-based and expert systems
· Ontology and logic based

· Ensemble-based
· Fusion-based

Parametric

Non-Parametric

· Particle Filter

· Hypothesis testing

· Bayesian Network

· Finite Mixture Models

· Kernel density estimator

· Negative Selection

Figure 2.5: Taxonomy of network anomaly detection approaches

2.7.1. Classification-based approaches

Classification is categorising data instances in certain classes based on those in a

training set while a testing set contains other instances for validating the labelling

process; for example, assuming that we have two classes in which observations are

labelled ‘1’ and ‘2’, these observations can be classified as linear or non-linear, as

depicted in Figure 2.6.

In network anomaly detection, the data source always has high dimensions

with different data types (i.e., quantitative and qualitative features), as discussed

in subsection 2.6.2. Therefore, classification approaches have been used to build

models that enable classifying network traffic behaviours into either two classes

45

1 1 1 1
1 1 1 1

1 2 1
1 1 1 1

1 1 1 2 2 2 2
2 2 1 2
2 2 2 2
2 2 2 2

2 2 1 2

1 1 1 1
1 1 1 1 1

1
1 1 1 1 1

1 1 1

2 1 2 2 2
2 1 2 2 2

2 2 2 2
2 2 2 2 2 2 2 2

2 2

2 2

 1 1

(a) Linear classification (b) Non- Linear classification

Figure 2.6: Classification types

 ++ +++ +++
++

 ++ +++
+++ ++++

+ +++ + ++
+ +++ + ++

 ++ ++
 ++ +++

+++
+ + ++
+ +++ +

++

 ++ ++
 ++ +++
++ +++++

+ ++ +
+++++

+ +++ +++++
++

**

**
*

**

Normal class 1

Normal class 2

Normal class 3

Anomalies

(a) Multi-class anomaly

 ++ ++ + + ++ +++
+++ +++ ++ +++ +++
 + ++++ +++ +++

+++ ++++ +++ ++++
+ +++ + ++ ++

+ +++ + + ++ +++ ++
+ + ++

+ ++++ ++ + ++ + ++ + +
+++ + + + +

One - class for
normal data

** *
**

Anomalies

(b) One - class anomaly

Figure 2.7: NADS classifications

(i.e., normal or attack) or a set of classes (i.e., normal with each attack as a class)

[26, 102], as depicted in Figure 2.7.

The most popular classification-based techniques applied for NADSs are the

Support Vector Machine (SVM), Artificial Neural Network (ANN) and K-nearest

Neighbour (KNN). A typical SVM involves two steps for classifying data obser-

vations [103]; firstly, the training set is moved from the original input space into

46

a higher-dimensional feature space based on kernel functions to convert a linear

non-separable problem into a linearly separable one; secondly, the data points are

on a hyperplane with the maximal margins at the nearest data points on each

side. A one-class SVM [104] uses only the training set of legitimate network data

and considers any deviation from the normal patterns as an anomaly.

Wagner et al. [96] used a one-class SVM technique to build a network anomaly

detection approach which detected zero-day attacks that did not belong to the

normal training class. However, this technique often took a long time to train

a large amount of data, such as network data. Khan et al. [97] decreased the

time required for the training set using the hybridisation concept whereby they

designed a NADS using a hybrid of SVM and hierarchical clustering techniques

called the Dynamically Growing Self-organising Tree (DGSOT). They stated that

using clustering in parallel with SVM improved both the training time and accu-

racy of network anomaly detection. Similarly, Horng et al. [100] proposed a NADS

which included a hierarchical clustering and SVM to reduce the training time and

improve detection accuracy. In [101], a least-square SVM was proposed for the

design of a lightweight NADS by selecting the significant features of network data

and detecting anomalies. More recently, a patent containing techniques such as

SVM for achieving high rates of detection was published, with the SVM technique

applied to detect anomalous behaviours of network traffic over a network node

[105].

Another approach is to use ANNs that are inspired by the human brain and

calculate in an entirely different way than traditional digital methods. An ANN

technique is a machine-learning model that converts the input into outputs through

non-linear latent processing of a set of artificial neurons [106] and has been widely

applied for NADS research due to its popular use of pattern recognition method-

ologies. In a NADS methodology, ANNs require some information about the

legitimate data class to systematically alter the interconnection neurons to learn

the weights of the network and obtain a model that can discriminate attacks from

47

normal behaviours. There are several different types of ANN configurations, with

artificial intelligence researchers aiming to optimise parameters and classify data

points.

ANNs have been used with other kernel functions, specifically Multi-layer

Perceptrons (MLPs), the Radial-basis Function (RBF) and Self-organizing Maps

(SOMs), to improve the performance of a NADS [107], with an example of an

ANN-based NADS employing a combination of an ANN and SOM to identify in-

trusions using resilient propagation ANNs provided by Jirapummin et al. [108].

Horeis [109] designed a NADS using a hybrid of ANN, SOM and RBF techniques

which showed better results than NADSs based on only RBF networks. Liu et

al. [110] proposed a NADS for detecting existing and zero-day attacks in net-

work traffic based on an unsupervised ANN. It applied a hierarchical NADS using

the Principal Components Analysis (PCA) and ANN to address the drawbacks of

single-level structures. Recently, Shreya et al. [111] developed a NADS based on

the collection techniques of a back-propagation neural network (KBB), K-means

and Naïve-Bayes to improve the detection of malicious activities. However, ANNs

usually take a long time to process a large amount of network data to determine

the best neural weights for minimising classification errors as possible.

A KNN mechanism classifies each observation assigned to the class label by

computing the highest confidence among the k data points nearest the query data

point [30]. A KNN-based NADS creates a normal network profile and treats any

deviation from it as an attack. It is a powerful DE for NADSs because it does

not require learning parameters in the training phase. The KNN technique was

used to design a Dependable NIDS (DIDS) based on the strangeness and isolation

measures of its potential functions which could effectively identify network attacks

[112]. Nevertheless, KNNs are often time-consuming and require vast amounts of

storage to classify high-speed network traffic.

Other classification techniques, for instance, a decision tree, regression models

48

and fuzzy logic (see [38] – [41]) have also been applied to design NADSs. How-

ever, overall, classification-based IDSs rely heavily on the assumption that each

classifier has to be adjusted separately and always consume more resources than

statistical techniques. Ultimately, if these techniques do not successfully build nor-

mal patterns, they are not capable of detecting zero-day attacks or even variants

of known ones. It is important to note that most classification techniques have

been evaluated using old datasets, particularly the KDD99 dataset, and their poor

performances will certainly be worse a on newer datasets.

2.7.2. Clustering-based approaches

Clustering approaches are unsupervised machine-learning mechanisms which as-

sign a set of data points to groups based on the similar characteristics of these

points, such as distance or probability measures; for example, if we have unla-

belled data instances in two dimensions (X and Y), we might group them into five

clusters, namely C1 to C4, as shown in Figure 2.8 (a). Another concept derived

from clustering is outliers which denote that some data points in a dataset are

more highly deviated than regularly grouped ones; for example, in Figure 2.8 (b),

the data points of O1 and O2 are outliers while those of N1 and N2 are normal

clusters [113].

Although there are different clustering techniques, the most popular types

applied for NADSs are regular and co-clustering with the difference between their

strategies of processing the observations and features of a network dataset [62, 63].

Specifically, regular clustering, such as K-means clustering, assembles data points

from the observations of a dataset while co-clustering simultaneously considers

both the observations and features of a dataset to provide clusters.

When using clustering to identify anomalies, three key assumptions are usu-

ally made. The first is that, as legitimate data instances often fall into a cluster

49

** ***
*** ***
**** ** *

** ***
*** **** *****

*** *** *****
********* ** *

** *

**** **
* **

** ******
*** ***

**** ** *

++++ +++
+++++
+++++

+++++++
++++++++++
++++++++++
++++++++++
++++++++

-

-
-

C1 C1

C2 C3

C4 N1

N2

O2

O1

(a) Clusters (b) Outliers

Figure 2.8: Methodologies of clusters and outliers

whereas attacks do not, in a NADS methodology, clustering identifies any data

instances that do not fall into a legitimate cluster as attacks, with noise data also

considered anomalous, as in [59]. A drawback of this assumption is that cluster-

ing techniques cannot be optimised to identify anomalies as the major goal of a

clustering algorithm is to define clusters. Secondly, legitimate data instances are

usually located near the closest cluster centroid while anomaly ones are often far

away from it [63]. Techniques using this assumption consider the points farthest

from the cluster centre as anomalies, with many of them suggested for designing

NADSs [63] whereas, if anomalies are located in normal clusters, they cannot be

correctly identified. To tackle this challenge, the third assumption is that legiti-

mate data instances fall into vast and dense clusters and anomalies into small or

spare ones. Mechanisms using this assumption identify data observations belong-

ing to clusters with those of sizes and/or densities under a baseline considered

anomalies.

Bhuyan et al. [114] designed an outlier-based NADS in networks in which

legitimate data were clustered using a k-means technique and then a reference

point computed for each cluster, with these points classified as attacks if they were

less than a certain threshold value. Also, in [76], a NADS for large network datasets

using tree-based subspace clustering and an ensemble-based labelling mechanism

50

for improving detection accuracy in a real network environment was proposed.

Nadiammai et al. [115] analysed and evaluated k means, hierarchical and fuzzy c-

means clustering techniques for building a NADS and reported that the complexity

and detection accuracy of the fuzzy c-means algorithm were better than those of

the others. However, this system could not work effectively on an unbalanced

data problem in which the network instances of normal class are too larger than

the instances of abnormal class. Jadhav et al. [116] proposed a NADS based

on clustering network packets and developed a new data pre-processing function

using the fuzzy logic technique for classifying the severity of attacks in network

traffic data. Zainaddin et al. [117] proposed a hybrid of fuzzy clustering and ANN

to construct a NADS which efficiently detected malicious events.

Clustering-based NADS techniques have several advantages. Firstly, they

group data points in an unsupervised manner which shows that they do not need

to provide class labels for observations, which is a very difficult process, to ensure

the correct labelling of data as either normal or attack. Secondly, they are effec-

tive for clustering large datasets into similar groups to detect network anomalies,

which decrease computational complexity, and perform better than classification

methods. In contrast, one of clustering-based NADS drawbacks is that its cluster-

ing is highly reliant on its efficacy in profiling normal instances while another is

that dynamically updating a profile for legitimate network data is time-consuming.

Finally, its dependency on one of the three above assumptions is occasionally prob-

lematic for effectively recognising abnormal behaviours as it produces a high false

alarm rate and, in particular, attack instances can conceal themselves in a normal

cluster.

2.7.3. Knowledge-based approaches

Knowledge-based techniques establish a set of patterns from input data to clas-

sify data points with respect to class labels. In NADSs, network traffic data are

examined against predefined patterns of anomalies and system vulnerabilities to

51

detect malicious events and raise an alarm [118]. Although these approaches can

identify known attacks, they cannot determine zero-day ones unless a profile is

constructed from diverse normal patterns which is extremely difficult to do as is

updating it with new normal patterns [22].

Common knowledge-based NADS approaches are rule-based and expert as well

as ontology- and logic-based [26]. Rule-based methods model the knowledge col-

lected about suspicious network events which allows browsing of network traffic

data to find evidence of existing vulnerabilities [119]. An expert system comprises

rules which define attack events whereby network traffic data are transformed

into patterns according to their relative weights in the system and an inference

engine matches the predefined rules with the current state of the system to de-

tect attack activities [120]. Rule-based and expert system approaches have been

widely applied to detect suspicious network events while ontology- and logic-based

ones model intrusion signatures based on a logic structure by incorporating the

constraints and statistical characteristics of network traffic data [26].

Snort [121] is one of the most popular open-source and rule-based IDSs. Its

rules recognise malicious network packets by matching the current packet against

predefined rules and cannot detect zero-day attacks but produce a high FPR due to

its methodology for identifying attack signatures [122]. Currently, Snort involves

more than 20,000 rules which are usually updated by users [22]. The Petri nets

tool [123], which was designed at Purdue University, is an example of a knowledge-

based IDS which consists of directed bipartite graphs and Coloured Petri Nets

(CPNs) representing the signatures of intrusions. Although this tool can easily

represent small network data and helps in discriminating known attacks, its process

for matching an attack signature with predefined rules is very difficult to execute

in real network environments and takes a long processing time. Vaccaro et al.

[124] proposed an intrusion-detection tool which identifies malicious statistical

behaviours by establishing a set of rules that statistically depicts the behaviours

52

of users using logs of their activities over a certain period of time. It then matches

the current activity against the stored rules to detect suspicious behaviours.

Scheirer et al. [125] proposed a syntax-based system which utilised a variable-

length partition with many break points to identify polymorphic worms. It pro-

vided a semantics-aware capability to design a NIDS and could extract polymor-

phic shellcodes with additional stack structures and mathematical procedures.

Naldurg et al. [126] suggested a framework for intrusion detection using temporal

logic specifications with intrusion patterns formulated in a logic structure called

EAGLE. It supported data values and parameters in recursive equations and en-

abled the identification of intrusions with temporal patterns. Hung et al. [127]

presented an ontology-based approach for establishing a NADS according to the

end-users’ domain in which, as ontologies were applied as a conceptual modelling

technique, a NADS could be simply built.

Knowledge-based NADS mechanisms have some advantages: firstly, they are

sufficiently robust and flexible to discriminate existing attacks in small network

traffic data; and, secondly, achieve a high detection rate if a significant knowledge

base about legitimate and anomalous instances can be extracted correctly. On

the contrary, they have FPRs due to the unavailability of biased normal and

intrusion network traffic data and cannot identify rare or zero-day anomalies.

Finally, their procedures for dynamically updating rules are very challenging and

their processing times very expensive which are deterrents to building an online

NADS [26].

2.7.4. Combination-based approaches

A combination-based methodology uses multiple mechanisms to classify data points

effectively and efficiently, with most of those used for NADSs ensemble- and fusion-

based mechanisms. Ensemble learning approaches integrate many techniques and

consolidate them to achieve an overall accuracy which outperforms that of each

53

classifier [26, 128–130] and are categorised as bagging, boosting and stack gener-

alisation [26, 131]. Firstly, bagging, so-called bootstrap aggregation, improves the

detection accuracy by establishing an enhanced composite classifier which com-

bines the findings of previously used classification techniques into one predictor.

Secondly, boosting constructs an incremental ensemble by learning misclassified

observations acquired from a previous model. Thirdly, stack generalisation obtains

the highest generalised accuracy by utilising the output probabilities for each class

label from base-level classifiers. Fusion-based approaches, which integrate the de-

cisions coming from different classifiers, have emerged as techniques that could

reinforce the final decision [132], with their taxonomy consisting of three levels,

data, feature and decision. Some methods tackle the problem of high dimension-

ality by adopting only relevant attributes while others amalgamate classification

techniques trained on diverse attributes using either hierarchical abstraction levels

or the types of attributes involved [26].

Ensemble- and hybrid-based methods have been applied to design effective

NADSs; for example, Chebrolu et al. [133] proposed an ensemble technique that

combined two classifiers, Bayesian networks (BNs) and classification and regres-

sion trees [134]. Also, a collection of feature selection methods for designing a

NADS was merged to achieve a better detection rate. Folino et al. [135] provided

a distributed data mining technique for improving the accuracy of intrusion de-

tection based on genetic programming extended with ensemble learning. Their

data were distributed across several autonomous sites, with the winning module

obtaining patterns from the input data and used network profiles to identify mali-

cious observations, and achieving high accuracy. Perdisci et al. [136] established a

high-speed payload NADS based on an ensemble of one-class SVM techniques for

improving the accuracy of detection. Nguyen et al. [137] proposed a classification

technique based on both the input features and additional ones provided by k-

means clustering. These ensemble methods were computed using the classification

capabilities of techniques for different local data segments provided by k-means

clustering.

54

Giacinto et al. [138] developed a pattern recognition technique for NADS

that employed a fusion of multiple classification mechanisms after five decision

fusion approaches were evaluated by experiments and their performances com-

pared. Shifflet [139] discussed a platform which allowed a hybrid of classification

techniques to be executed together to build a fusion mechanism for the state of a

network capable of efficiently detecting anomalous activities. Shreya et al. [111]

proposed a hybrid technique for NADS using k-means clustering, a NB and back-

propagation neural network, with its findings provided by the Bayesian inference

to detect attack activities. Aburomman et al. [140] suggested an ensemble method

which used PSO-generated weights to build a hybrid of more accurate classifiers for

NADS created based on local unimodal sampling and weighted majority algorithm

approaches to improve the accuracy of attack detection.

Combination-based methods are advantageous as they achieve higher accuracy

and detection rates than single ones while requiring a set of controlling parameters

that can be easily adjusted. However, adopting a subset of consistent and unbiased

classification techniques is difficult because it depends on usinng a hybridisation

measure to combine them. Also, it is evident that their computational costs for

large amounts of network traffic data are high due to the number of classifiers used

[26].

2.7.5. Statistical-based approaches

From the statistical aspect, an anomaly is a rare event which occurs amongst

natural data events and is measured by statistical approaches which could be of

the first order, such as means and standard deviations, the second order, such as

correlation measures, or the third order, such as hypothesis testing, mixture models

and inference approaches. In NADSs, these approaches fit a statistical model of

legitimate network data and then apply a statistical inference test, using either

a threshold/baseline or probability condition, to identify deviated instances as

anomalies [141]. In other words, an observation which has a low probability or does

55

not belong to a threshold condition can be declared an attack activity. Statistical-

based approaches are classified as non-parametric and parametric [26, 141], both

of which have been widely applied to develop statistical models for NADS. This

research thesis also applies and develops a new DE based on such approaches which

has the capabilities to discriminate among rare events and effectively analyse the

potential properties of network data.

A. Non-parametric approaches

Non-parametric approaches do not make any assumptions about the statistical

characteristics of given data. They create a model as they run and attempt to

resolve the complexity of the data to efficiently adapt the data points. One of

the simplest non-parametric statistical approaches is using histogram tools which

graphically illustrate the tabulated frequencies of data [69]. In a NADS, a normal

histogram is built and then new tested data points determined which, if they

do not fall into the normal histogram are considered anomalous instances. For

multivariate network data, feature-level histograms are established, with an overall

score for a test data point attained by accumulating the scores of selected features.

The methodologies of the non-parametric methods applied in this PhD re-

search are described below.

• Kernel density estimator

The kernel density estimator is a non-parametric method which bases its

estimations on some kernel distributions, such as Gaussian, for all the sample

space data and then integrates the local contributions of all the distributions

[142]. Estimating the probability density of each sample depends on the data

points that fall in a localised neighbourhood of the kernel.

The Parzen windows approach can be applied for non-parametric data den-

sity estimation to identify abnormal behaviours. A NADS-based Parzen is

56

built on estimating the probability density of normal data and rejecting out-

lier patterns as anomalies [143]. The Gaussian kernel function is chosen for

such a technique for two reasons: firstly, as it is smooth, a PDF estima-

tion also differs smoothly; and, secondly, if a radial symmetrical Gaussian is

assumed, the function is identified using the data variance. A threshold is

adapted based on a separate training set and the unconditional probability

(p(x)) of a test observation (x) used to model the data distribution.

Shen et al. [142] suggested a NADS based on a non-parametric method

which simulates the PDFs of some random variables. A set of kernel den-

sity estimators was established and the distribution parameters estimated

to classify malicious and normal instances. These estimators were applied

to enhance the SOM technique in order to produce a high detection rate

and low false alarm rate. This method was extended in [144] to build a

non-stationary high-dimensional PDF estimator using parallel programming

to identify computer intrusions. Nicolau et al. [145] provided a one-class

classification for a NADS using kernel density estimation and genetic pro-

gramming, with each query point in the method classified as an attack if

its density was below a certain threshold. However, this model was lazy

because most of its computation was required to build the model. Yeung

et al. [143] presented a NADS using a non-parametric density estimation

method which utilised the Parzen window approach and Gaussian kernels

to establish a profile from normal data and detect any deviations from this

profile as attack instances. However, the Parzon window approach took a

relatively long time during the testing phase.

• Negative selection

Negative Selection (NS) techniques have been widely applied for detecting

anomalous network instances. The theory behind NS was inspired by the

characteristics of the human immune system which can identify antigens

[146], meaning that anything that is not a portion of the human body can be

57

detected, for example, viruses and bacteria. The aim of the immune system

is to discriminate between antigens and the human body itself, with its

potential process known as ‘self/non-self’ discrimination which ‘recognises’

an antigen by certain antibodies called T-cell receptors generated by an

arbitrary process of genetic re-arrangements. The cells which successfully

bind with normal cells are treated as normal instances while those that do

not are considered anomalous ones, a process called NS. Likewise, attack

detection has the essential objective of differentiating among the ‘self’ which

resembles the normal operation of the monitored system and the ‘non-self

indicating abnormal data.

Jinquan et al. [147] proposed a NS algorithm for building an adaptable

NADS, with a normal training profile established using the ‘self/non-self’

space to adapt the model’s parameters. The empirical results showed that

it provided a high detection rate and low FPR but its processing time was

relatively high. Mostardinha et al. [146] suggested a NADS using a NS

approach with a random diversity which used two kinds of agents, detectors

and presenters. As the presenters passed information to the detectors, the

detectors were chosen to participate in a greatly frustrated dynamic and the

presenters received data from a state, the algorithm performed ’self/non-self’

discrimination between the two agents. This detection-based methodology

was that ‘if presenters prepare information that has never been available

during the selection phase, they are involved in a less frustrated dynamic

and their anomalous behaviours can be identified. Ramdane et al. [77]

developed a NS approach called Hybrid NSA for IDS Adaptation (HNSA-

IDSA) to build an effective NADS which was adapted automatically to be

able to recognise low-footprint attacks. This system was evaluated on the

KDD99 dataset, producing a high detection rate and low FPR.

58

B. Parametric approaches

Parametric approaches assume that network data follow a certain distribution, for

instance, that a Gaussian distribution estimates the parameters of the given data

[69]. However as, in real networking, the underlying distribution of network traffic

data is not known, it is important to specify which probability distribution can fit

the data with a relatively low error rate.

The Kolmogorov-Smirnov (K-S) test method [47] is one of the most popu-

lar methods used to determine the distribution of data, either Gaussian or non-

Gaussian, and is used in this study to assess the best data distribution for the

UNSW-NB15 dataset, as detailed in Chapter 3. The K-S test is applied using the

SPSS tool and its hypotheses areH0 andHa which denote that the sample data are

not significantly different from a normal population and are significantly dissimilar

to a normal population, respectively. If the probability of finding an event is rare

(i.e., less than 5%), the data will be non-Gaussian, otherwise, Gaussian [148]. As

it is observed that network data do not belong to a Gaussian distribution [47], it

is better to apply non-Gaussian distributions, such as a Gaussian Mixture Model

(GMM), Beta Mixture Model (BMM) or Dirichlet Mixture model (DMM), to net-

work data. The Probability Density Functions (PDFs) of these distributions have

to be modelled from the ingress network data from which their parameters should

be dynamically adjusted, instead of there being a static setting, to build a flexible

model which distinguishes anomalies from normal observations [141].

The methodologies of the most commonly used parametric methods in this

thesis are discussed in the following.

• Particle filter

A particle filter is an inference mechanism which measures the unknown

state from a set of observations with respect to a time, with the posterior

distribution established by a set of weighted particles. The dynamic state

59

system comprises a state transition model and observation model. The state

transition function computes the changes of the object being tracked based

on the previous state and system noise whereas the measurement function

models the correlations among the observations and states given the obser-

vation noise [149, 150].

Lin et al. [149] suggested a NADS which applied the particle filter ap-

proach and was simulated using CPN tools to detect intrusion activities.

The Coloured Stochastic Petri Nets (CSPN) technique was used for an in-

depth assessment of the proposed NADS while the particle filter was applied

to analyse network packets. In this technique, the packet inspection for ex-

tracting a set of features (i.e., the flow identifiers of IP addresses and port

addresses and protocol types) as particles was considered. Each particle had

a different weight on a time window used to build the model. During the

filtering step, each packet was classified as normal or attack based on an in-

crease or decrease in the corresponding weights of the particles, respectively.

However, this scheme did not provide highly accurate attack detection for

two reasons; firstly, using flow identifier features with classifiers could not be

beneficial for distinguishing between normal and attack observations as their

standard protocols, such as DHCP, could dynamically change IP addresses;

and, secondly, adjusting and controlling network flows is very challenging be-

cause they are not continuous data for operating effectively with the particle

filter methodology.

Jing et al. [151] proposed a Continuous Time BN (CTBN) model for detect-

ing attacks that penetrated both host and network activities. In a NADS,

a hierarchical CTBN was established for network traffic data and a parti-

cle filtering approach for learning the parameters. The model was aimed

at recognising malicious activities if their likelihood was lower than that of

normal ones. This technique was assessed using the KDD99 dataset and pro-

duced high accuracy and a low FPR. If the challenges of using the particle

filter technique, as discussed in [149, 151], are properly tackled using feature

60

selection and discretisation methods, this technique will provide an efficient

and reliable NADS for tracking.

• Hypothesis testing

Hypothesis testing is a simple statistical method for designing a NADS which

examines whether the data samples come from the same distribution as

legitimate training data and consists of both the initial hypothesis (H0)

and an alternative one (H1), with the initial one assumed and then either

accepted or rejected after estimating its probability. The estimator used

separates data points into disjoint sets encompassed in both the acceptance

and rejection regions [152, 153]. The two types of errors related to hypothesis

testing are:

– Type I, which occurs when the null hypothesis is rejected even though

it is correct, with the probability of this error reflecting the FPR; and

– Type II, which occurs when the null hypothesis is accepted even though

it is incorrect, with the probability of this error reflecting the FNR.

Krishnan et al. [154] proposed an online technique of sequential hypothesis

testing for detecting malicious events from clients using non-existent (NX)

responses. It was designed to prevent botnets which tend to create DNS

queries which extract NX responses. Its aim was to discriminate among

benign and suspicious DNS queries initiating from the same client and de-

termine their capabilities to scale to high network traffic loads. The experi-

mental results showed that, on real-world data, this technique outperformed

other well-known ones.

Abouzakhar et al. [155] used the chi-square statistical approach on the

CAIDA backscatter-2008 dataset to detect suspicious activities occurring

in network traffic. A normal profile was established based on a chi-square

goodness-of-fit test which estimated variations between the distributions of

test observations and normal profile to recognise attack behaviours. Santos

61

et al. [156] built a NADS for monitoring malicious network behaviours based

on hypothesis testing, the BN and game theory mechanisms. They stated

that combining agent-based models and adversarial hypothesis testing could

improve the performances of network detection techniques. The evaluation

of the model showed that it was enhanced by adversarial hypothesis testing

which integrated the responses to malicious activities.

• Bayesian network (BN)

A BN is a joint probability distribution represented in a graphical mode

for making decisions regarding uncertain data [30]. It is built on the Bayes

theory which produces a hypothesis (H) of classes and observations (X)

estimated as

p(H|X) = p(X|H)p(H)
P (X) (2.11)

where p(H) is the prior probability of each class without available informa-

tion about observation X, p(H|X) the posterior probability of observation

X over the sustainable classes and p(X|H) the likelihood of observation X

given a class hypothesis (H).

Altwaijry et al. [157] developed a NADS based on a naive BN technique

which recognised possible attacks faced by computer networks and was then

extended to a multi-layer BN to improve detection accuracy. The system

was assessed on the KDD99 dataset and its results for detecting rare events,

such as U2R and R2L, were acceptable. Xiao et al. [158] proposed a BN

Model Averaging (BNMA) classifier for detecting network attacks which was

evaluated on the NSL-KDD dataset as it has fewer redundant data than the

KDD99 dataset. The BNMA classifier produced significantly better accu-

racy detection than the Naive Bayes technique and the BN with a heuristic

technique such as the genetic algorithm.

62

Han et al. [157] developed a naive BN NADS using the PCA which computed

the highest ranked features within the PCA and used the selected features

and their components as weights to improve the traditional naive Bayesian

technique. The experimental results reflected that it could effectively de-

crease the data dimensions and improve detection accuracy. Thaseen et al.

[159] designed a NADS using a combination of a naïve BN classifier, Lin-

ear Discriminant Analysis (LDA) and chi-square feature selection. The LDA

was used to reduce the dimensionality of the network data and, thus, remove

noisy features, the chi-square feature selection to adopt the optimal feature

set to improve detection accuracy and then the naïve Bayesian classifier to

classify normal and malicious data. This system was evaluated on the NSL-

KDD dataset and shown to provide better accuracy and a lower false alarm

rate.

• Finite mixture models

As a finite mixture model can be defined as a convex combination of two

or more PDFs, the joint properties of which can approximate any arbitrary

distribution, it is a powerful and flexible probabilistic modelling tool for

univariate and multivariate data [160]. The methodology of these models

is widely applied to design the BMM described in Chapter 5 which is used

for NADSs. Network data are typically considered multivariate as they have

d dimensions for differentiating between attack and normal instances [47];

for example, let X = [X1, . . . , Xd] be a d-dimensional random variable and

x = [x1, . . . , xd] an observation ofX. The PDF of a mixture model is declared

by a convex combination of K-component PDFs [101] and is given as

P (x|θ) =
K∑
k=1

αkP (x|θk) (2.12)

63

where α1, . . . , αk are the mixing proportions, each θka set of parameters defin-

ing the kth components and θ = (θ1, . . . , θk, α1, . . . , αk) the complete set of param-

eters required to identify the mixture. Applying the probability conditions, αk has

to satisfy

αk≥0, K = 1, . . . , k and
K∑
k=1

αk = 1 (2.13)

The mixture model is computed by the Maximum Likelihood Estimate (MLE)

[141]. Assuming X data with N observations, the probability of data in which xi
are identically and independently distributed (i.i.d) is given by

p(X θ) = L(θ|X) =
N∏
i=1

K∑
k=1

αkpk(xi|θk) (2.14)

The MLE is derived from the set of parameters (θ) by

θ∗ = argmaxθ|L(θ|X) (2.15)

The GMM is the mixture model most often applied for NADSs. It estimates

the PDF (from equations (2.11) to (2.14)) of the target class (i.e., normal class)

given by a training set and is typically based on a set of kernels rather than the

number of rules in the training set. The parameters of this technique are estimated

by maximising the log-likelihood of the training data (TR) computed using the

EM algorithm, conjugate gradients, re-estimation techniques or Bayesian inference

[45, 141]. Mixture models require a large number of normal instances to correctly

estimate their parameters and it is difficult to select a suitable threshold (δ), as

64

in equation (2.15), which differentiates attack instances from the normal training

class with a certain score.

 δ ≥ score =⇒ normal instance

otherwise =⇒ anomalous instance

 (2.16)

This score can be defined using the unconditional probability distribution

(w(X) = p(x)) and a typical approach for setting the threshold (δ = p(x)) [36].

Another method for determining the threshold is the Cumulative Density Function

(CDF) estimated by integrating p(x) over an area (A). The threshold is initiated

with 0 and gradually increased based on the Maximum-a-posterior (MAP) mea-

sure which, if lower for a test instance than the maximal threshold, indicates an

anomaly instance. This theory is further discussed in Chapter 5 as one of the

contributions of this research to designing new DE techniques which effectively

detects anomalous network events. Also, an Extreme Value Theory (EVT), which

is a statistical measure that considers extreme deviations from the median of a

probability distribution and reflects extremely large or small values of the proba-

bility distribution used to fit a set of data, is used to adapt the threshold [45].

Fan et al. [161] developed an unsupervised statistical technique for identify-

ing network intrusions in which legitimate and anomalous patterns were learned

through finite generalised Dirichlet mixture models based on Bayesian inference,

with the parameters of the mixture model and feature saliency simultaneously

estimated. In [162], they extended their study to provide an efficient method for

the varied learning of finite Dirichlet mixture models to design a NADS. This ap-

proach was based on the establishment and optimisation of a lower boundary for

the likelihood of the model by adopting factored conditional distributions through

its variables.

Greggio [163] designed a NADS based on the unsupervised fitting of network

data using a GMM which selected the number of mixture components and fit

65

the parameter for each component in a real environment. The highest covari-

ance matrix identified legitimate network activities, with the smaller components

treated as anomalies. Christian et al. [164] proposed a NADS based on combin-

ing parametric and non-parametric density modelling mechanisms in two steps.

Firstly, malicious samples were recognised using the GMM and then clustered in

a non-parametric measure in the second step. While a cluster stretched to an

adequate size, a procedure was identified, transformed into a parametric measure

and added to the established GMM. These techniques were evaluated using the

KDD99 dataset and their results reflected a high detection accuracy and low FPR.

However, they would require the use of Bayesian inference to be adjusted for their

efficient application in real networking.

Some research studies have used the Trapizodal Area Estimation (TAE) mech-

naism as a complementary function for detection purposes, in either network traf-

fic or other domains, such as signal processing, computer vision and neuroscience.

For example, Niandong et al. [165] suggested a fuzzy expert system for network

forensics to determine computer crimes and produce automated digital evidence.

Trapezoidal- and rectangular-shaped functions were applied as fuzzy membership

functions to show a degree of truth about the number of ping attacks. Similarly,

these functions were used for designing a fuzzy anomaly detection technique for

reducing energy consumptions [166]. Jongsuebsuk et al. [167] proposed a fuzzy ge-

netic mechnaism for defining suspicious network instances. The fuzzy trapezoidal

rule was used to define abnormal data, whereas the genetic algorithm is used for

finding appropriate fuzzy rules. Nedevschi et al. [166] proposed a lane stereovision

detection mechanism based on a trapezoidal rule for lane model matching. In [156],

Yuan et al. suggested a detection approach using trapezoidal rules for identifying

the windshield regions of vehicles which recognised each region as a trapezoidal

area by the shapes, colours and locations of parts of the vehicles. However, this

mechnaism is used in Chapter 5 for developing a new DE technique for detecting

existing and zero-day attacks based on area estimations of normal and abnormal

instances.

66

Table 2.5: Comparison of decision engine techniques
DE techniques Advantages Disadvantages

Classification - Reflect high detection
rate and low false positive
rate if the network data is
correctly tagged

- Depend on the
assumption that each
classifier has to be
constructed separately
- Take more computational
resources

Clustering - Group data with no
dependency on the class
label

- Depend on the efficacy of
establishing a legitimate
profile

- Decrease processing times - Need a higher time while
updating the established
profile

Knowledge - Identify on known
intrusive activities

- Consume too much time
during the training and
testing phases

- Provide high detection
rate for existing attacks

- Apply static rules for
recognising suspicious
events

Combination - Attain high accuracy and
detection rates

- demand a huge effort to
incorporate more than one
technique

- Need only a set of
controlling parameters to
be adapted.

- Consume a long
processing time than other
mechanisms

Statistics - Achieve higher accuracy
and detection rates if a
threshold of identifying
attacks correctly adjusted
from network data, as
provided in this thesis

- Need precise analysis to
select the correct threshold

- Do not take
computational resources
like other mechanisms

- Demand new functions to
identify attack types, such
DoS and DDoS

A brief comparison between advantages and disadvantage of the existing DE

techniques is demonstrated in Table 2.5.

67

2.8. Contemporary Network Threats

The numbers, types and complexity of network threats are increasing. Cyber ad-

versaries can cause financial losses and reputational damage, steal sensitive infor-

mation and intellectual property, and interrupt business. An attacker’s philosophy

almost invariably comprises two phases [11]. The first, the so-called exploitation

phase, is a method for controlling the execution flow in the targeted program. At

its abstract level, this can be a stack-based buffer overflow in which an intrusively

long text overwrites the instruction pointers of the targeted program but also in-

cludes a full suite of methods which can be used by more sophisticated adversaries

to gain control of a system while its code is running. The second phase is known

as the payload phase. After successfully exploiting the execution flow to the pay-

load, this phase performs the aim of the attacker, such as to steal information

and/or disrupt computer resources. The payload process is executed through a

shellcode terminal which establishes a command prompt on the hacker’s computer

to execute post-exploitation events.

Based on the Australian Cyber Security Centre (ACSC) [9] and McAfee threat

reports [10], Figure 2.9 depicts the current top attacks which expose computer

networks. Firstly, a DoS is an attempt by an attacker to prevent legitimate access

to websites by overwhelming the amount of available bandwidth or resources of

the computer system (e.g., zombies). When many computer systems are utilised

to investigate such activities, such as applying a botnet, it is known as a DDoS

attack. The number of these network attacks has been increasing, with a variety

of DDoS types of attack sending more than 100 Gbps which constitute serious

vulnerabilities for computer networking [168].

Secondly, another type of attack is Brute Force which endeavours to illegally

obtain pairs of user names and passwords by trying all predefined pairs to gain

68

Figure 2.9: Recent top network attacks

access to network services, with automated applications often used to guess pass-

word combinations. To prevent such an attack, network administrators can place

restrictions on the acceptable number of login attempts and generate a blacklist

for a client whose network traffic are anomalous. This leads to the blocking of

IP addresses after multiple login failures as well as limiting access to specific IP

addresses [169]. Thirdly, browser-based network attacks, such as Tor, attempt to

penetrate anonymous communication systems by exploiting JavaScript and HTML

to create some predefined rules for correlating user activities based on the websites

visited. They are often executed by an attacker penetrating a client’s vulnerabili-

ties, which are typically triggered by outdated software, and possibly tempting the

user to unwittingly download malware masquerading as a fake software/applica-

tion update. A common solution to browser-based attacks is to frequently update

web browsers and their services, for example, Java and Flash, so that browser

vulnerabilities are easily detected [10, 170].

69

Fourthly, Shellshock attacks relate to vulnerabilities that breach the command-

line shell of Linux, UNIX and Apple OS systems called Bash. When Shellshock

appeared in September 2014, many computer systems and appliances were vul-

nerable as they could be penetrated by a remote code execution which possibly

authorised attackers to have full access and control. This permitted anomalous

commands to be executed which could then download and implement anomalous

scripts. Fifthly, a successful SSL attacker aims to intercept encrypted data, send

them over a network and then access the unencrypted data and benefit by gaining

access to applications. In April 2014, a dangerous vulnerability in the OpenSSL

execution of the TLS/SSL Heartbeat extension, namely Heartbleed, was publicly

released and caused the leaking of memory data. An attacker could also access

private keys, confidential information and secure content which could help other

cyber adversaries. Moreover, these vulnerabilities allowed attackers to continually

access the private information in systems by sending a wide variety of malicious

commands to susceptible servers [9, 10].

Sixthly, a Backdoors attack can be defined as a technique which exposes com-

puters to remote access by naturally replying to particularly constructed client

applications. Several of them essentially use the IRC backbone and receive com-

mands from IRC chat clients through the IRC network [10, 171]. They are less

popular attacks than others and often used as part of targeted intrusions [171]

which can be custom-designed to evade security detection and provide a masked

point of entry.

Seventhly, a botnet denotes the number of hijacked computer systems remotely

operated by one or many malicious actors which coordinate their activities by

Command and Control (C&C). Networks are regularly hit with attempts to expose

their computer systems and appliances as attackers execute DDoS attacks to send

spam email or implement fraudulent botnets to penetrate their targeted networks

[9, 10]. Ultimately, hacktivism refers to malicious cyber-attacks designed by groups

or individuals for a particular reason or with the aim of targeting a certain person

70

or organisation to gain access to their resources (more details are provided in [9]).

These attacks could be called stealth attacks (see [11]) in which an active attacker

elicits data packets from a network in order to find a way of compromising that

network’s security. After this security is breached, the attacker removes all traces

of the network to keep it hidden and avoid discovery [10].

2.9. Chapter Conclusion

This chapter discusses the concepts and literature related to IDSs, specifically a

NADS. Due to rapid advances in technologies, computer network systems need

a solid layer of defence against vulnerabilities and severe threats. Although an

IDS is a significant cyber security application which integrates a defence layer

to achieve secure networking, it still faces challenges for being built in an online

and adaptable manner. Anomaly detection methodologies which can efficiently

identify known and zero-day attacks are investigated.

It has been a very challenging issue to apply a NADS instead of a MDS method-

ology in the computer industry which could be overcome by framing its architec-

ture with a data source, pre-processing method and DE mechanism. A NADS is

usually evaluated on a data source (i.e., a dataset) which involves a wide variety

of contemporary normal and attack patterns that reflect the performances of DE

approaches. Unfortunately, the publicly available benchmark datasets have seri-

ous issues which lose an evaluation’s fidelity. The research presented in this thesis

also presents the new UNSW-NB15 dataset which addresses the problems of the

legacy datasets in Chapter 3.

The network dataset used consists of a set of features and observations that

may include irrelevant ones that could negatively affect the performances and ac-

curacy of DE approaches. Consequently, data pre-processing methods for creating,

generating, reducing, converting and normalising features (see Chapter 4) are ex-

ecuted to pass filtered information to a DE approach which distinguishes between

71

anomalous and legitimate observations and has been applied based on classifica-

tion, clustering, knowledge, combination and statistics discussed to demonstrate

their merits and demerits in terms of building a NADS. In addition, as statistical

approaches could determine the inherent characteristics of data, they are described

in detail and used to develop the new DE approaches which can efficiently detect

existing and zero-day attacks described in Chapter 5.

72

Chapter 3
Towards Development of New

Environments of Large-scale Network
Datasets and Their Features for

evaluating Intrusion Detection Systems

3.1. Target of Network Dataset

In the 1980s, James P. Anderson released a paper that outlined for the first time

a way of establishing an automated IDS [1], with its main focus on collecting and

using audit data to identify potential threats which attempt to penetrate computer

resources. Since then, it has been acknowledged that DE approaches need a data

source to evaluate their efficiency and efficacy for detecting cyber adversaries.

NIDS datasets can be conceptualised as relational data, as reflected in Table

3.1. The input to a classification technique is a set of data records (also defined as

vectors, events, samples or observations), each of which consists of columns (i.e.,

attributes/features) with different data types, that is, integer, floating, binary or

categorical [172]. In the case of input multivariate data, whether their features

are the same or different data types determines the applicability of DE techniques

for processing them [173]. However, as most DE methods, particularly statistical

models, can handle only numeric data, they face the challenge of using all these

features.

NIDS datasets need to be labelled so that DE approaches can learn and val-

idate their models to effectively distinguish between legitimate and suspicious

73

Table 3.1: Input features
Feature 1 Feature 2 Feature 3 Class label Type

Record 1 2 Y 0.07 1 Training
Record 2 1 X 0.02 0 Training
Record 3 3 K 0.004 1 Testing

records. For this purpose, although network’s features, which are elicited from

raw network packets (i.e., pcap formats1) using different tools, for instance, Argus,

Bro-IDS and Net Flow, need to be understandable. The features elicited could

include irrelevant and noisy features that have to be eliminated. It is essential

that normal and suspicious activities in the acquired network data are correctly

labelled to ensure the fidelity of evaluating the DE technique used. The labelling

process is conducted by matching processed records according to the ground truth

of anomalies. The ‘class label’ column in Table 3.1 indicates whether a record in

a dataset is normal (0) or abnormal (1) [24]. It is noted that the labelling process

is expensive because of the difficulty of ensuring that the ground truth of attack

behaviours is precise and its records correctly matched with all the transaction

records in a dataset [172].

The key contributions in this chapter are described as follows.

1. We suggest statistical features from the DARPA-2009 dataset for building

an effective NIDS, with some existing ML techniques applied to evaluate its

credibility for detecting abnormal activities.

2. We develop a new dataset, called the UNSW-NB15 dataset by configuring

an authentic testbed environment at the UNSW cyber security lab, with the

IXIA tool used to simulate current representations of normal and abnormal

network traffic.
1Pcap stands for Packet capture, which includes an application-programming interface for

storing network data. The UNIX operating systems implement the pcap format using the libpcap
library, whilst the Windows operating systems use a port of libpcap, called WinPcap.

74

3. We analyse and determine these datasets in terms of statistical analysis using

different statistical measures and ML techniques in order to estimate their

reliability and credibility for evaluating new NIDSs.

As discussed in Chapter 2, subsection 2.6.1, public benchmark network datasets

have serious problems that affect their reliability for evaluating NADSs. This

was the motivation for describing and evaluating the DARPA-2009 dataset in

Sections 3.2 and 3.3, respectively. As we found that it has some issues, we created

the UNSW-NB15 dataset to address them, as discussed in Sections 3.4 and 3.5,

respectively. The rest of this chapter is organised as follows. Section 3.6 compares

the UNSW-NB15 dataset with others and Section 3.7 discusses its big data terms.

Section 3.8 explains the way of splitting a dataset for training and testing machine

learning (ML) techniques. The complexity analysis conducted of the UNSW-NB15

dataset is explained in Section 3.9 and its experimental results discussed in Sections

3.10 and 3.11, respectively. Finally, we conclude this chapter and suggest directions

for future research.

3.2. Description of DARPA-2009 Dataset

The DARPA-2009 dataset2 [85] was synthetically generated from a simulation of

16 local sub-net networks (i.e., 172.28.0.0/16) connected to the Internet. The

local network traffic was not extracted but the raw packets of traffic between the

local sub-nets and Internet were captured by a sniffer between the 3rd and 12th

November 2009. This dataset consists of an enormous amount of network data

with HTTP, SMTP and DNS protocols. It has a wide variety of security events

and attack types, such as DDoS and worms, that are parameterised to demonstrate

several propagation characteristics, and comprises 7000 pcap files with a total size
2The work of this study presented in this chapter has been published in:

Moustafa, Nour, and Jill Slay. "Creating novel features to anomaly network detection using
DARPA-2009 data set." Proceedings of the 14th European Conference on Cyber Warfare and
Security 2015: ECCWS 2015. Academic Conferences Limited, 2015.

75

of approximately 6.5 TBytes. Each file is less than 1 Gigabyte in size for easy

analysis of its events and represents an approximately one- to two-minute time

window with respect to the traffic rate of the simulation [174].

3.2.1. Security Events in DARPA-2009 Dataset

The DARPA-2009 dataset includes 46 security events occurring over 10 days, with

basic information about them documented in the dataset’s ground truth spread-

sheet [175]. This information includes attack types, source and destination internet

protocol (IP) addresses and ports, and start and end times of offensive events [174].

The following are serious security events in this dataset.

• DDoS attacks - occur when many intrusion systems are used to flood a

target system with many packets whereby the resources and services of this

system can become corrupted and inaccessible. The DARPA-2009 dataset

includes a wide variety of DDoS attacks, the scenarios of which are their

connections to the destination IP address 172.28.4.7 on the HTTP port with

SYN packets. Almost 100 IPs were observed penetrating the victim at the

same time through the dataset and establishing multiple SYN-flood attacks.

• Malware DDoS attacks – were caused by many local clients used to launch

malicious events via the IP address 205.63.202.67 and recorded as ‘client

compromise’ in the ground truth spreadsheet. To log these events, the IP

address 152.162.178.254 with a 499 TCP destination port was targeted from

days 4 to 9.

• Spambots - compromised 56 local clients between the 3rd and 5th days.

The two IPs 201.89.32.16 and 44.29.203.5 were used to start these malicious

spam events which were labelled in the ground truth as ‘spambot client com-

promise’. A spambot program was used to download the malicious events via

76

three outside IP addresses, 68.91.226.37, 64.222.102.58 and 64.222.102.58, to

expose the 56 local clients by sending approximately 14 KB of payload to

each of them.

• Scans - were logged as ‘scan/usr/bin/nmap’ in the ground truth sheet, with

some outside IP addresses scanning particular local IP addresses with specific

ports to collect information about target systems in the dataset.

• Phishing emails - were included in the dataset by two sequences of events.

The first began with the event ‘noisy phishing email/ exploit/ malware/-

trawler’ which exploited the SMTP protocol while the second, namely, ‘noisy

client compromise + malicious download exfil’, also exposed the SMTP pro-

tocol to penetrate mail servers embedded in the testbed setup of the dataset.

3.3. Framework for evaluating DARPA-2009

Dataset

In the first study of its kind, we propose a framework for analysing the DARPA-

2009 dataset and determining its pcap files to demonstrate to what extent it is

capable of evaluating the accuracy and performance of a new DE technique as-

sessing NIDSs. Figure 3.1 presents the framework’s architecture which consists of

pcap transformation and labelling processes, a proposed statistical feature selec-

tion technique, the preparation of training and testing sets and an experimental

evaluation using some existing ML algorithms [85].

77

Pcap transformation
and labelling

Statistical feature
selection

Preparing training
and testing sets

Evaluation with some
ML techniques

Figure 3.1: Framework for analysis of samples selected from DARPA-2009
dataset

3.3.1. Pcap Transformation and Labelling

We analysed the first 30 pcap files, which have the majority of security events in

this dataset, to determine the potential of these events to measure the dataset’s

reliability for evaluating anomaly detection approaches. They were inspected by

the tcptrace tool [176] developed by Shawn Ostermann at Ohio University for

analysing and inspecting TCP dump files to extract the features of the TCP pro-

tocol which can discriminate between normal and abnormal observations. It can

handle multiple input files produced by several packet-capture tools, including

tcpdump, snoop, etherpeek and WinDump. It creates information about each

network connection, for example, received re-transmissions, elapsed times, win-

dow advertisements, round-trip times and throughputs. It was installed on Linux

Ubuntu 14.0.4 to generate the features of the TCP protocol using the command

• tcptrace –CSV -l input.pcap > output.CSV

The features were logged in the SQL server 2008 [177] to establish a dataset

containing them and their class labels, with the labelling performed by matching

78

the ground-truth records with those generated from tcptrace. As discussed above,

the ground-truth spreadsheet includes all attack records for the 10 days covered

in the DARPA-2009 dataset. To tag each record in the SQL database as either

normal or attack, we used an update command to assign 0 for each normal record

and 1 for each attack record as

• update table1 set class=1, subclass=’attack type’ where srcip=’0.0.0.0’ and

dstip=’0.0.0.0’ – attack record

• update table1 set class=0 where srcip=’0.0.0.0’ and dstip=’0.0.0.0’ – nor-

mal record

This code updates the label columns, i.e., the class and sub-class of each record.

The class label column contains 1 if a record is an attack, otherwise 0, and, if

it is 1, the sub-class label column indicates the attack type, such as a phishing

email, DoS or DDoS. These conditions are satisfied when srcip and dstip (i.e., the

source and destination IPs, respectively) generated from the tcptrace equal their

counterparts in the ground-truth spreadsheet.

3.3.2. Proposed Statistical Feature Selection

Statistical feature selection is a type of filtering approach used to eliminate un-

necessary and duplicate features [178, 179]. Its goal is to reduce the number of

features in a given dataset and optimise the selection of the relevant features most

likely to improve the accuracy and performance of ML algorithms. In the do-

main of anomaly detection, these algorithms play a significant role in enhancing

the efficiency and effectiveness of building a lightweight NADS by identifying the

maximal number of malicious patterns with the minimal number of FPRs in a

relatively low processing time [101].

The features generated are flow-based ones which can be easily extracted from

packet headers without the need to rely on an inspection of the full packet which

79

might be encrypted. Before choosing the relevant features for building DE algo-

rithms, the identifiers of source/destination IP addresses and ports are excluded

as they could result in a high false alarm rate (FAR) if some are used for attack

and normal events while simulating the dataset. The flow-based features are taken

from the inter-arrival times, inter-packet lengths and directions of flows which re-

late to the bi-directional streams of network packets between two hosts (i.e., a

client and server). In real-time network environments, generating such features

from packet headers implies a low computational cost. The packet header denotes

the portion of the IP data which is followed by the packet payload/body and in-

volves IP addresses as well as other data needed for them to reach the intended

destination [173]. The major reason for using statistical features is that they are

a possible means of accomplishing real-time detection because many NADSs use

them to construct their patterns of normal profiles [180, 181].

These features are ranked based on a proposed Ranking Probability Feature

Selection (RPFS) algorithm to select the relevant features which help in distin-

guishing between normal and attack observations using DE techniques. Algorithm

3.1 describes the steps in the RPFS which, firstly, counts the feature values of each

class and computes their probabilities. Then, the highest probabilities of each class

are matched with a predefined threshold to select their features. Finally, the high-

est ranked features are passed to some ML algorithms for evaluating the reliability

of the DARPA-2009 dataset. The RPFS algorithm is implemented using the Vi-

sual Studio Business Intelligence 2008 tool [177], with its results provided below.

Table 3.2 presents pairs of the highest probabilities of each feature value and

its class. In this experiment, a 90% threshold is used to select the top-ranked

features. The RPFS method is designed to select all the possible features that can

affect legitimate and anomalous records, as described in Table 3.3. To pass them

80

Algorithm 3.1 Ranking Probability Feature Selection (RPFS)
Input: numerical features, class label {0 for normal, 1 for attack}, threshold

Output: feature selection (F)
1: for (each class) do
2: count (C) the values (V) of each feature by:
3: Ai = Vj ={v1, v2,, vj}
4: C(Vi) = {c(v1), c(v2), ..., c(vj)}
5: compute the probability (P) of each value count by:
6: Pi ={c(v1)/j, c(v2)/j,, c(vj)/j}
7: select the highest probability of each class which matches the threshold

8: select the features (F ={f11, f12, . . . , fij}) generated from step 3
9: end for

Table 3.2: Sample of highest probabilities of normal and attack classes
Feature name Value of

class=0
Probability
of class =0

Value of
class=1

Probability
of class =1

Mss_Requested_a2b 1460 98.21% 0 99.99%
Mss_Requested_b2a 1460 94.02% 0 90.92%
Min_Win_Adv_b2a 5888 93.84% 0 90.93%
Min_Win_Adv_a2b 5888 93.77% 32120 99.99%
Max_Win_Adv_b2a 5888 92.10% 0 90.92%
Avg_Win_Adv_b2a 5888 92.10% 0 90.92%
Actual_Data_Pkts_a2b 1 91.33% 0 99.99%
Pure_Acks_Sent_b2a 2 90.31% 0 99.94%
Unique_Bytes_Sent_a2b 28 91.82% 0 99.99%
Actual_Data_Bytes_a2b 28 91.82% 0 99.99%
Max_Win_Adv_a2b 64128 90.95% 32120 99.99%

directly to ML techniques, as almost all of them are of the numeric type, they are

much easier to process than categorical features.

It is observed that the first 30 pcap files have the 6 types of attack events

listed in Table 3.4, including 314206 DDoS and 26387 malware DDoS records,

which compromise target systems by flooding them with many packets which

corrupt their resources. It is also noted from this analysis that they do not have

81

Table 3.3: Descriptions of selected features
Feature name Description
Mss_Requested_a2b Requested maximum segment size from source to

destination
Mss_Requested_b2a Requested maximum segment size from

destination to source
Min_Win_Adv_b2a Smallest window advertisement sent from

destination to source
Min_Win_Adv_a2b Smallest window advertisement sent from source

to destination
Max_Win_Adv_b2a Largest window advertisement sent from

destination to source
Avg_Win_Adv_b2a Average window advertisement sent from

destination to source
Actual_Data_Pkts_a2b Number of packets containing amount of data

from source to destination
Pure_Acks_Sent_b2a Number of packets containing valid ACK from

destination to source
Unique_Bytes_Sent_a2b Number of bytes sent (excluding

re-transmissions) from source to destination
Actual_Data_Bytes_a2b Number of bytes (including re-transmissions)

from source to destination
Max_Win_Adv_a2b Largest window advertisement sent from source

to destination

packet sizes, as reflected by the ‘Actual_Data_Bytes_a2b’ feature in Table 3.2.

It is evident that this dataset does not have packet payloads (i.e., data about

attack events) for these malicious behaviours which could confirm its credibility

for evaluating novel DE approaches.

The 7 records for an event called ‘scan/usr/bin/nmap’ refer to some outside

IPs that scan certain local IPs with certain ports. Also, there are two different sets

of phishing emails, each consisting of a sequence of events of ‘client compromise’

and ‘no precursor client compromise exfil/sams_launch_v’ appearing in 6 records.

Finally, 1 malicious event is called ’c2 + tcp control channel exfil - no precursor nc’.

Both these malicious and normal instances were divided into training and testing

sets in order to measure the reliability of this dataset for evaluating NIDSs.

82

Table 3.4: Numbers of records of each attack type in first 30 pcap files
No. of records Attack category
314206 DDoS
26387 Malware DDoS
7 scan /usr/bin/nmap
3 client compromise
3 no precursor client compromise exfil/sams_launch_v
1 c2 + tcp control channel exfil - no precursor nc

We can observe from the above analysis that the data distributions of attack

and normal observations are unbalanced. As a consequence, ML algorithms are

almost always biased towards some records which produce high FARs even if their

detection rates are high. Although this unbalanced problem is natural for network

data containing a majority of normal records and a minority of unusual observa-

tions, ML techniques alone cannot mitigate this problem. Several solutions to this

challenge were suggested in [182] but their outcomes were not sufficiently accurate

to apply in real networking. A plethora of research [183–185] has used statisti-

cal methods which could improve the efficiency and efficacy of applying them for

network data.

3.3.3. Preparation of Training and Testing Sets for

DARPA-2009 Dataset

The process of separating a dataset into training and testing sets is an essential

step in assessing ML models. For the easy analysis and building of ML algorithms,

the feature values of the first 30 pcap files are recorded in one table, with 408204

records for the normal class (0) and 340607 for the attack class, which is divided

into training and testing sets at a ratio of 1:10, respectively, in order to efficiently

learn different attacking patterns using the ML algorithms. Table 3.5 shows the

numbers of records selected for the training and testing sets for each class, 367384

and 40820 normal and 306547 and 34060 attack, respectively. This division ensures

that most of the data in the training phase correctly build the model with a smaller

83

Table 3.5: Numbers of records in training and testing sets
Number of records Class Type of set
367384 0 Training
306547 1 Training
40820 0 Testing
34060 1 Testing

proportion used for the testing phase to validate correctness [186]. More details

of strategies for dividing a dataset are provided in Section 3.8.

3.3.4. Evaluation of Four ML Algorithms

ML algorithms are commonly used to establish DE approaches for identifying

abnormal patterns from a profile constructed for anomaly detection. In a real-time

anomaly detection methodology, when establishing a normal profile, attack data

are not labelled whereas normal records are labelled. Supervised ML algorithms

require attack-free data in the training phase but, as they cannot be obtained in

a real network environment, supervised models are generally built offline using

attack and normal observations and then run in either online or offline systems.

The main drawbacks of supervised techniques are their requirements to obtain

correctly labelled attacks to validate their models and frequently update the data

with new attacks to ensure the credibility of detection. Another type of learning

algorithms is unsupervised techniques which do not require attack patterns to

build its model as it groups data points based on their distances or probabilities.

For detecting network attacks, an unsupervised technique produces a higher FPR

than a supervised technique [30] while it is clear that using either requires carefully

setting their parameters to achieve the highest DR and lowest FAR.

We apply both supervised, the Naive Bayes (NB) [187] , Decision Tree (DT)

[188, 189] and Artificial Neural Network (ANN) [188, 189], and unsupervised, EM

clustering [190], ML techniques using their default parameters provided by the SQL

84

Table 3.6: Confusion matrices of four techniques
(A) Confusion matrix of NB
Predicted Actual (0) Actual (1)
0 34040 8
1 20 40812

(B) Confusion matrix of DT
Predicted Actual (0) Actual (1)
0 34060 10
1 0 40810
�

(C) Confusion matrix of ANN
Predicted Actual (0) Actual (1)
0 33746 7
1 314 40813

(D) Confusion matrix of EM
Predicted Actual (0) Actual (1)
0 33487 8
1 573 40812

Server Business Intelligence Development Studio in [177] to evaluate the credibility

of the sample of the DARPA-2009 dataset for detecting attacks. While the training

and testing phases are implemented on the dataset, the confusion matrix of each

algorithm is calculated, from which the DR, FPR, FNR and accuracy metrics are

computed using the equations in Chapter 2, Section 2.4, to estimate the reliability

of this dataset for evaluating new DE approaches. The confusion matrices, which

show the numbers of actual records versus those predicted by a model, for the NB,

DT, ANN and EM clustering algorithms are shown in Table 3.6.

Table 3.7 shows the evaluation metrics of the DR, FPR, FNR and accuracy

of the four algorithms. The DT algorithm achieves the highest DR and accuracy

(100 % and 99.9 %, respectively) and the lowest FAR (0.29 %). In contrast, the

EM clustering technique produces the lowest DR and accuracy (97.6 % and 98.2

%, respectively) and highest FAR (0.86 %). The results from the four algorithms

are approximately similar, providing relatively high rates of detection accuracy

and low FARs.

The findings from this work are compared with those from four competing

studies. The six terms used to conduct this comparative analysis, feature extrac-

tion tool, feature selection method, number of features, classification technique,

accuracy and FAR, are shown in Table 3.8. Butun et al. [3] used the tcptrace tool

85

Table 3.7: Evaluation metrics of four algorithms
NB (%) DT (%) ANN (%) EM (%)

DR 99.2 100 98.1 97.6
FPR 0.23 0.29 0.3 0.23
FNR 0.49 0 0.07 0.63
Accuracy 99.3 99.9 99.5 98.2

to extract the TCP features of the KDD99 dataset as we provided in this study of

the DARPA-2009 for the first-time analysis [85]. They applied some classification

techniques to evaluate the generated features without a feature selection method.

Their results were not as high as the findings using the feature selection method

to select the relevant features. Although, in [191], the features of the KDD99

dataset generated using the DRO-IDS tool were applied using feature selection of

the correlation coefficient to evaluate a specific DE approach, the outcomes of our

study are better. Heba F. et al. [192] suggested a DT algorithm for evaluating

the NSL-KDD dataset using a linear correlation feature selection method to select

the highest-ranked features. Their experimental results were close to the results

of this study, which have a 99% accuracy and 0.23% FAR.

Ultimately, existing ML algorithms can efficiently detect attacks in the DARPA-

2009 dataset, with the results significantly improved by applying feature selection

methods. As a result, the patterns in this dataset are easy to detect and very dif-

ferent from those in current network environments that have sophisticated patterns

of normal and abnormal behaviours with modern network protocol standards and

higher network speeds. This was the motivation for generating the UNSW-NB15

dataset that has the norm of contemporary real network data.

3.4. Generation of UNSW-NB15 Dataset

Because of their drawbacks discussed above and in Chapter 2, subsection 2.6.1,

publicly available benchmark datasets are incapable of evaluating NIDSs against

86

Table 3.8: Comparative analysis of proposed framework and related studies
Authors Dataset Feature

extrac-
tion
tool

Feature
selection
method

No. of
fea-
tures

Classification
technique

Accu-
racy
(%)

FAR
(%)

Lazarevic
et al.
[3]

KDD99 Tcptrace Not ap-
plicable 25

LOF 78.7 4
ANN 78.9 9
Mahalanobis 52.6 8
Unsupervised
SVM

84.2 12

Joffroy
et al.
[191]

KDD99 Bro-
IDS

Correlation
coefficient

41 PCC-R 78.7 3.2

Heba F.
et al.
[192]

NSL-
KDD

Bro-
IDS

Linear
correla-
tion

17 DT 99 0.03

Tan et
al. [36]

KDD99 Bro-
IDS

Multivariate
correla-
tion
analysis

41 Unsupervised
of MCA

95.2 1.26

Our
study
[85]

DARPA-
2009 Tcptrace

Ranking
probabil-
ity 11

NB 0.993 0.07
DT 0.999 0.02
ANN 0.995 0.03
EM 0.982 0.08

current network behaviours. However, designing a new and more dynamic dataset

is a big challenge. It should have new normal and anomalous network traffic that

can be described as a ‘big data’ problem which has to behave as realistically as

possible to ensure its credibility for evaluating NIDSs.

3.4.1. Configuration of UNSW-NB15 Dataset Testbed

In this section, the configuration of the testbed network and all the processes in-

volved in generating the UNSW-NB153 dataset are presented. The current large
3A portion of this study has been published in:

• Moustafa, Nour, and Jill Slay. "UNSW-NB15: a comprehensive data set for network
intrusion detection systems (UNSW-NB15 network data set)."Military Communications
and Information Systems Conference (MilCIS), 2015. IEEE, 2015.

87

volume and high speed of network traffic demand a sophisticated tool capable

of monitoring and testing them to ensure a satisfactory ongoing network perfor-

mance and must have a significant amount of space and power to process IT

infrastructures in real time. The IXIA’s PerfectStorm ONE product [193] han-

dles enterprise-scale applications and security simulations for large organisations.

It can simulate millions of real-world normal and malicious traffic to test and

validate the infrastructure of an entire network environment and handle 1 to 10

Gbps (Gigabytes per second) of network traffic. Its functionality incorporates

portability, performance and cost-efficacy criteria which permit an organisation

to accomplish enterprise-scale processing anywhere at any time to optimise its IT

infrastructure [193]. The key features of this product are that it:

• is an enterprise-scale and security-testing tool that can be used anywhere

and at any time;

• has a unified architecture which supports the BreakingPoint and IxLoad

programs;

• reflects high performances with hardware-based acceleration for SSL and

IPsec protocols;

• offers flexible interfaces with dual-speed support; and

• is a compact form factor with relatively low power requirements and high

performance.

PerfectStorm ONE is a commercial product which provides traffic generation and a

strike pack of network security and malware intrusions in a single rack-mountable

device. It has the capability to analyse a broad range of network segments and pro-

tocols that supports generating traffic for more than 150 web applications, such

as Skype, Facebook and Google services, and can concurrently simulate many

• https://www.unsw.adfa.edu.au/australian-centre-for-cyber-
security/cybersecurity/ADFA-NB15-Datasets/

88

user activities to offer a realistic network traffic scenario. It includes more than

4,500 live security and 28,000 live malware attacks taken from the Common Vul-

nerabilities and Exposures (CVE) [194] directory installed using multiple evasion

techniques. It can achieve high scalability, as it is capable of configuring large

network topologies involving hundreds of thousands of clients that can be sim-

ulated in a single device [195]. Therefore, we configured a network architecture

applied to a large-sized business environment which includes many servers, a wide

variety of hosts with different applications and services, routers, a packet sniffer

(tcpdump) and a firewall system for generating the raw network packets of the

UNSW-NB15 dataset, and installed it in the Cyber Range Lab of the Australian

Centre for Cyber Security (ACCS) [196].

As shown in Figure 3.2, the IXIA traffic generator was configured by three

virtual servers. Servers 1 (59.166.0.0) and 3 (149.171.126.0) were used to generate

normal and server 2 (175.45.176.0) malicious network traffic. These servers and the

traffic generator were interconnected by two virtual interfaces with IP addresses of

(10.40.85.30) and (10.40.184.30) to link the connected private and public network

devices. The servers were joined by hosts using two routers, each of which had

two interfaces for linking with clients and capturing packets while running the

simulation. The IP addresses of Router 1 were (10.40.85.1) and (10.40.182.1) and

those of Router 2 (10.40.184.1) and (10.40.183.1). A firewall was connected to the

two routers to filter the emitting traffic which showed that security events in the

UNSW-NB15 dataset could not be detected by traditional signature-based tool

[42].

As these security events need a NIDS as a possible means of identifying them,

the tcpdump tool [197] was installed on Router 1 to extract the pcap files while

the simulation was running. It is an excellent command-line packet analyser for

capturing network traffic which includes the packet contents of a network interface

associated with their time stamps. A pcap file is a common network capture and

89

Figure 3.2: Architecture of UNSW-NB15 testbed network

exchange format which can be identified by WinPcap for Windows and LibPcap

for UNIX platforms. It is a binary file comprising global and packet headers, with

the former containing the time-zone indicator of packet sniffing and the latter

information about the layers of the OSI Reference Model [197].

IXIA products simulate all anomalous events on the CVE website [194] which is

a dictionary of publicly existing security events with its index connected directly to

IXIA products to reflect real network threats. This simulation was implemented

on 22nd January and 17th February 2015 in order to compare the effect of the

number of attacks that might penetrate computer networks at particular times.

On 22nd January, the first simulation was executed by capturing 50 GB with

the configuration for generating one attack per second while the other, on 17th

February, elicited 50 GB for ten attacks per second. More details of the settings

of the configuration environments are provided in the UNSW-NB15 reports [32].

90

3.4.2. Network Traffic Analysis

An examination of the network traffic in this dataset demonstrates the occur-

rences of network flows over time, with their concurrent transactions indicating

the amount of network data emulated over the simulation periods. Figure 3.3

shows the number of Kbytes on the y-axis and time on the x-axis sniffed over the

simulation periods, with Figure 3.3 (A) depicting the synchronised transactions

that took place over 16 hours on 22nd January 2015 and Figure 3.3 (B) those

simulated over 15 hours on 17th February 2015. It is clear in both figures that

approximately 280 Kbytes per second were transmitted between network nodes

over the simulation periods.

The statistics of this dataset are computed in terms of the numbers of flows,

source and destination bytes, source and destination packets, protocol types, nor-

mal and attack observations, and unique source/destination IP addresses (Table

3.9). It is vital to record these statistics in order to demonstrate the extent of

the complexity of this configuration environment. The functionalities of these

protocols and services are explained in Appendix A.

3.5. Framework for generating UNSW-NB15

Features

This section describes a proposed framework for extracting the features of the

UNSW-NB15 dataset from the raw network packets, i.e., the format of the pcap

files. As shown in Figure 3.2, the tcpdump tool is used to save these files which have

well-known network capture formats. However, NIDSs’ classification algorithms

cannot read these files as input to build their models for distinguishing between

91

(A)

(B)

Figure 3.3: Concurrent transactions of flows over simulation periods

92

Table 3.9: Statistics of UNSW-NB15 dataset
Statistical term 16 hours on 22nd Jan. 15 hours on 17th Feb.
No. of flows 987,627 976,882
Src_bytes 4,860,168,866 5,940,523,728
Des_bytes 44,743,560,943 44,303,195,509
Src_Pkts 41,168,425 41,129,810
Dst_pkts 53,402,915 52,585,462

Protocol types

TCP 771,488 720,665
UDP 301,528 688,616
ICMP 150 374
Other 150 374

Labels Normal 1,064,987 1,153,774
Attack 22,215 299,068

Unique Src_ip 40 41
Dst_ip 44 45

legitimate and anomalous observations. Therefore, to generate a set of useful

information (features) as the input to classification algorithms, these files have to

be properly inspected and analysed.

The framework for creating these features is presented in Figure 3.4. Firstly,

some features are generated by the Argus [198] and Bro-IDS [199] tools and it is

vital that a ‘big data’ analysis technology is used to make the processing of these

files relatively easy. As the terms of big data, Volume, Velocity and Variety, can

be satisfied in this dataset, as described in Section 3.7, these features are logged

in a database using the MYSQL cluster CGE technology [200] which can handle

a highly scalable database established for a distributed architecture to read and

write dense workloads that can be accessed by SQL and NoSQL APIs. It can also

support disk-based tables and enhanced memory, automatic data splitting with

load balancing, and the addition of multiple nodes to a running cluster for pro-

cessing big data online. Its architecture is almost the same as those of the Hadoop

technologies [201] which are the most common for handling big data offline.

Secondly, the features of both tools are matched using the same source-destination

IP addresses and ports as well as protocols to ensure that they correspond cor-

rectly. Also, new features created from the matched features show network flow

93

Pcap files

Bro

MySQL

Log files

Conn, Http and

Ftp

Matched

features

Argus

Additional features

DatabaseCSV files

Figure 3.4: Framework for creating features of UNSW-NB15 dataset

transactions, such as source-destination IPs and source-destination ports, for each

connection of 10/100 records. These features can help the examination of network

observations and easily identify low-footprint attacks, as explained in subsection

3.5.3.

All features are matched with the security events provided in [43] to be cor-

rectly labelled with their data observations. Ultimately, the 47 features with labels

(i.e., attack categories and sub-categories) established from the pcap files are pre-

sented in Tables 3.10 to 3.15. Their values are then logged in CSV files to make

learning and validating NIDSs easier. This framework is designed and imple-

mented on Linux Ubuntu 14.0.4, with the additional features developed using the

C# programming language.

A full packet inspection is applied to create packet- and flow-based features.

Packet-based features relate to analysing the headers and contents of packets while

94

flow-based features are bidirectional streams between two hosts, i.e., client-to-

server and server-to-client [173, 202], which can evade the packet encryption prob-

lem and be handled faster than packet-based features [203]. Therefore, applying

a real-time NIDS relies on the flow features, most of which are explained in the

description cells in Tables 3.12, 3.13 and 3.14. Details of this framework are de-

scribed in the following subsections.

3.5.1. Features extracted using Argus tool

The Argus is an open-source auditing tool developed by Carter Bullard to analyse

raw network packets and create network features from them. It consists of an

Argus server, which retrieves packets received by a network interface(s) available

on a device and then converts them into a binary format that denotes network

flows, and Argus clients which include multiple scripts that can read the binary

flows executed by the Argus server and save them directly in a database [198].

The features of this dataset are generated from the following commands and are

explained in subsection 3.5.3.

• ~$./rasqlinsert -M cache -m none -r /home/admin1/out/1.argus –w mysql://

argusUser:root@ localhost /argusData/table1 \-s -Z ltime +spkts +dpkts +sbytes

+dbytes +rate +sttl +dttl +sload +dload +sloss +dloss +sintpkt +dintpkt +sjit

+djit +swin +stcpb +dtcpb + dwin +tcprtt +synack + ackdat +smeansz +dmeansz

This command indicates that the pcap files are transformed to binary ones using

the Argus server, with features such as ltime and spkts extracted and saved in a

MYSQL database.

3.5.2. Features extracted using Bro-IDS tool

Bro-IDS is an open-source tool used to efficiently analyse network traffic. It is also

a security monitor which examines network traffic against anomalous patterns and

95

Table 3.10: Flow features
No. Name Type Description
1 Srcip Nominal Source IP address
2 Sport Integer Source port number
3 Dstip Nominal Destination IP address
4 Dsport Integer Destination port number
5 Proto Nominal Transaction protocol

creates log files to record multiple network connections, including all records of

connections available on LANs, application-layer transcripts, such as DNS, and

HTTP services [199]. It is configured to create CONN, HTTP and FTP log files

from the pcap files of the UNSW-NB15 dataset based on the command

• ~$ bro -r /home/1.pcap

The CONN file includes all connections seen in the pcap files, the HTTP file all

HTTP requests and replies, and the FTP file all the events of an FTP service.

The files obtained from the Argus and Bro-IDS tools are stored in the MYSQL

database for matching with these generated features via the flow features in Table

3.10.

3.5.3. Matched features

The matched features of both tools are classified in the three groups, basic, content

and time, given in Tables 3.11, 3.12 and 3.13, respectively. The basic features

encapsulate all the attributes elicited from TCP, UDP and IP connections which

examine the essential information of packet flows. The content features include

attributes which can be extracted from the information of a TCP protocol and

services, such as HTTP. The time features contain attributes computed according

to a time period which can help to identify malicious patterns as they properly

examine network behaviours, as explained below in the statistical evaluation of

this dataset.

96

Table 3.11: Basic features
No. Name Type Description
6 State Nominal State of dependent protocol, such as ACC,

CLO, CON, ECO, ECR and FIN
7 Dur Float Total duration
8 sbytes Integer Source to destination transaction bytes
9 dbytes Integer Destination to source transaction bytes
10 Sttl Integer Source to destination time-to-live value
11 Dttl Integer Destination to source time-to-live value
12 Sloss Integer Source packets retransmitted or dropped
13 dloss Integer Destination packets retransmitted or dropped
14 service Nominal E.g., HTTP, FTP, SMTP, SSH, DNS and IRC
15 sload Float Source bits per second
16 dload Float Destination bits per second
17 spkts Integer Source to destination packet count
18 dpkts Integer Destination to source packet count

Table 3.12: Content features
No. Name Type Description
19 Swin Integer Value of source TCP window advertisement
20 Dwin Integer Value of destination TCP window

advertisement
21 Stcpb Integer Source TCP base sequence number
22 Dtcpb Integer Destination TCP base sequence number
23 Smeansz Integer Mean of flow packet sizes transmitted from

source
24 Dmeansz Integer Mean of flow packet sizes transmitted by

destination
25 trans_depth Integer Pipelined depth into connection of HTTP

request/response transaction
26 res_bdy_len Integer Actual uncompressed content size of data

transferred from server’s HTTP service

97

Table 3.13: Time features
No. Name Type Description
27 Sjit Float Source jitter (mSec)
28 Djit Float Destination jitter (mSec)
29 Stime Timestamp Start time
30 Ltime Timestamp Last time
31 Sintpkt Float Source inter-packet arrival time (ms)
32 Dintpkt Float Destination inter-packet arrival time (ms)
33 Tcprtt Float Round-trip time of TCP connection setup

computed by the sum of ’synack’ and ’ackdat’
34 Synack Float TCP connection setup time between SYN and

SYN_ACK packets
35 Ackdat Float TCP connection setup time between

SYN_ACK and ACK packets

3.5.4. Additional Features

Using the matched features, twelve additional features were created to estimate

the relationships among them that could identify stealth attacks, as suggested

in [36, 204, 205]. In Table 3.14, they are categorised as either general-purpose

features, which consist of a set of attributes generated from the relationships of

flow identifiers, or connection ones which include network connection events that

scan hosts over a specific time, for instance, one scan a minute, hour or even

day (s), with these kinds of features generated for each 100 network connections

in order to help the detection of network adversaries [69]. The procedures for

creating the additional features are elaborated below.

Algorithm 3.2 describes the steps for creating the is_sm_ips_ports feature

using the flow identifiers (flw), data records (dr) and flag (is_sm_flw) as inputs.

If the source and destination IP addresses are the same and the source and desti-

nation ports equal to any record, the is_sm_flw attribute is assigned 1, otherwise

0, a feature that can help to identify some sorts of DDoS attacks, such as land

strikes [206].

98

Table 3.14: Additional generated features
No. Name Type Description
General-purpose features
36 is_sm_ips_ports Binary If the source (1) equals the destination (3) IP

addresses and port numbers (2) and (4) are
equal, this variable takes the value 1 else 0

37 ct_state_ttl Integer A number of each state (6) according to a
specific range of values for the
source’s/destination’s times-to-live (10) (11)

38 ct_flw_http_mthd Integer A number of flows obtained using methods
such as Get and Post of an HTTP service

39 is_ftp_login Binary If the FP session is accessed by a user’s
credential, then 1 else 0

40 ct_ftp_cmd Integer A number of flows using a command in a FTP
session

Connection features
41 ct_srv_src Integer A number of connections containing the same

service (14) and source address (1) in 100
connections according to the last time (30)

42 ct_srv_dst Integer A number of connections containing the same
service (14) and destination address (3) in 100
connections according to the last time (30)

43 ct_dst_ltm Integer A number of connections containing the same
destination address (3) in 100 connections
according to the last time (30)

44 ct_src_ ltm Integer A number of connections containing the same
source address (1) in 100 connections
according to the last time (30)

45 ct_src_dport_ltm Integer A number of connections containing the same
source address (1) and destination port (4) in
100 connections according to the last time (30)

46 ct_dst_sport_ltm Integer A number of connections containing the same
destination address (3) and source port (2) in
100 connections according to the last time (30)

47 ct_dst_src_ltm Integer A number of connections containing the same
source (1) and destination (3) address in 100
connections according to the last time (30)

99

Algorithm 3.2 Creating is_sm_ips_ports feature

Input: [flw ← (srcip, sport, dstip, dsport), dr← data records, is_sm_flw ← 0]

Output: [flw, is_sm_flw]
1: for (sm_flw in dr) do
2: if (flw.srcip= flw.dstip && flw.sport=flw.dstipl) then
3: is_sm_flw ←1
4: else
5: is_sm_flw ←0
6: end if
7: end for

Algorithm 3.3 presents the procedure for generating the ct_state_ttl feature,

with the data records (dr) and counter (ct_state_ttl) provided as inputs. The

time-to-live values of a source (sttl) and destination (dttl), and the state occurring

in the dataset are matched with particular rules. If any of these rules are fired,

any of 6 distinct values will be assigned to the ct_state_ttl attribute, a feature

which shows that the ttl values have more real attack behaviours than those in

the KDD99 dataset, as stated in [78].

Algorithm 3.4 presents the steps for creating the ct_flw_http_mthd feature

using the data records (dr), flow HTTP methods (flw_http_mthd) and counter

(ct_flw_http_mthd) as inputs, with the method attribute extracted from the

HTTP log file. If a flow HTTP method equals the next included record, the

counter increments by 1, otherwise remain as 0. This feature can help to identify

some HTTP attacks, such as HTTP flooding ones [207].

Algorithm 3.5 describes the steps for generating the is_ftp_login feature using

a FPT session (ftp_login), dr and flag (is_ftp_login) as inputs, with the user and

password attributes elicited from the FTP log file. If the service attribute is

100

Algorithm 3.3 Creating ct_state_ttl feature

Input: [dr← data records, ct_state_ttl ← 0]
Output: [ds.id, ct_state_ttl]

1: for (each record in dr) do
2: if (ds.sttl == (62 || 63 || 254 || 255) && ds.dttl == (252 || 253) && ds.

State == FIN) then
3: ct_state_ttl=1
4: else if (ds.sttl == (0 || 62 || 254) && ds.dttl == (0) && ds. State ==

INT) then
5: ct_state_ttl=2
6: else if (ds.sttl == (62 || 254) && ds.dttl == (60 || 252 || 253) && ds.

State == CON) then
7: ct_state_ttl=3
8: else if (ds.sttl == 254 && ds.dttl == 252 && ds. State == ACC) then
9: ct_state_ttl=4
10: else if (ds.sttl == 254 && ds.dttl == 252 && ds. State == CLO) then
11: ct_state_ttl=5
12: else if (ds.sttl == 254 && ds.dttl == 0 && ds. State == REQ) then
13: ct_state_ttl=6
14: else
15: ct_state_ttl=0
16: end if
17: end for

Algorithm 3.4 Creating ct_flw_http_mthd feature

Input: [flw_http_mthd ← (scrip, dstip, sport, dsport, method), dr← data
records, ct_flw_http_mthd ← 0]
Output: [flw_http_mthd, ct_flw_http_mthd]

1: for (flw_http_mthd in dr) do
2: if (flw_http_mthd == next (flw_http_mthd) && ds. method ! = ’ ’)

then
3: ct_flw_http_mthd ++
4: else
5: ct_flw_http_mthd ← 0
6: end if
7: end for

101

FTP, and the user and password ones have values, is_ftp_login is denoted by 1,

otherwise 0. This feature can assist in identifying failures of attempts to obtain a

FTP login [208].

Algorithm 3.5 Creating is_ftp_login feature

Input: [ftp_login ← (scrip, dstip, sport, dsport, service), dr← data records,
is_ftp_login ← 0]
Output: [ftp_login, is_ftp_login]

1: for (ftp_login in d) do
2: if (ftp_login.service == ftp && ds.user != ’ ’ && ds.password !=’ ’) then
3: is_ftp_login ← 1
4: else
5: is_ftp_login ← 0
6: end if
7: end for

Algorithm 3.6 presents the procedure for creating the ct_ftp_cmd feature

using a FTP command (ftp_cmd), dr and counter (ct_ftp_cmd) as inputs, with

the FTP command attributes extracted from the FTP log file using the Bro-IDS

tool. If any FTP command corresponds to the next one and the command attribute

has a value, ct_ftp_cmd increases by 1, otherwise remain as 0. This feature can

be used to determine sensitive commands launched by an attacker [122].

Algorithm 3.7 shows the steps for establishing the ct_srv_src feature using

source IPs (scrip), a service with its corresponding scrip (srv_src), dr and a counter

(ct_srv_src) as inputs. Step 1 implies that a loop scans all the srv_src in the dr

while step 2 contains another loop that reads each subsequent 100 records from the

dr. In steps 3 and 4, if the srv_src equals the next one, the ct_srv_src increases

by 1, else remains as 1 or, otherwise, 0 (step 5). The steps in this algorithm are

applied to create the ct_srv_dst by replacing source IPs with destination ones.

102

Algorithm 3.6 Creating ct_ftp_cmd feature

Input: [ftp_cmd ← (scrip, dstip, sport, dsport, command), dr← data records,
ct_ftp_cmd ← 0]
Output: [ftp_cmd, ct_ftp_cmd]

1: for (ftp_cmd in dr) do
2: if (ftp_cmd == next (ftp_cmd) && ftp_cmd.command != ’ ’) then
3: ct_ftp_cmd++
4: else if (ftp_cmd != next (ftp_cmd) && ftp_cmd.command != ’ ’) then
5: ct_ftp_cmd←1
6: else
7: ct_ftp_cmd←0
8: end if
9: end for

Algorithm 3.7 Creating ct_srv_src feature

Input: [srv_src ← (scrip, service), dr← data records, ct_srv_src ← 0]
Output: [ct_srv_src, ct_srv_src]

1: for (srv_src in dr) do
2: for (each 100 record in dr) do
3: if (srv_src == next (srv_src)) then
4: ct_srv_src++
5: else if (srv_src != next (srv_src)) then
6: ct_srv_src←1
7: else
8: ct_srv_src←0
9: end if
10: end for
11: end for

Algorithm 3.8 presents the steps for constructing the ct_dst_ltm feature using

the destination IPs (dstip) and last time (ltime) (feature number 30) (dst_ltm),

dr and a counter (ct_dst_ltm) as inputs. The two loops read the dstip and ltime

(dst_ltm) of each 100 records in the dr and, if they equal the next ones, the

counter increases by 1, otherwise remains as 1. The steps in this algorithm are

used to generate the ct_src_ ltm by replacing destination IPs with source ones.

Algorithm 3.9 describes the creation of the ct_src_dport_ltm feature using

103

Algorithm 3.8 Creating ct_dst_ltm feature

Input: [dst_ltm ← (dstip, ltime), dr← data records, ct_dst_ltm ← 0]
Output: [dst_ltm, ct_dst_ltm]

1: for (dst_ltm in dr) do
2: for (each 100 record in dr) do
3: if (dst_ltm == next (dst_ltm)) then
4: ct_dst_ltm ++
5: else
6: ct_dst_ltm ← 1
7: end if
8: end for
9: end for

source IPs (srcip), a destination port number (dsport), the last time (ltime) fea-

tures stored in (src_dport_ltm), dr and a counter (ct_src_dport_ltm) as inputs.

The two loops scan all the src_dport_ltm in the dr for each 100 records with

respect to the ltime attribute. If a src_dport_ltm equals the next one, it is in-

cremented by 1, else remains as 1 or, otherwise, the counter value is 0. The

same procedure is used to construct the ct_dst_sport_ltm and ct_dst_src_ltm

features using their particular attributes.

Algorithm 3.9 Creating ct_src_dport_ltm feature

Input: [src_dport_ltm ← (srcip,dsport,ltime), dr← data records,
ct_src_dport_ltm ← 0]
Output: [src_dport_ltm, ct_src_dport_ltm]

1: for (src_dport_ltm in dr) do
2: for (each 100 record in dr) do
3: if (src_dport_ltm == next (src_dport_ltm)) then
4: ct_src_dport_ltm ++
5: else if (src_dport_ltm != next (src_dport_ltm) then
6: ct_src_dport_ltm ← 1
7: else
8: ← 0
9: end if
10: end for
11: end for

104

These additional features could be applied to recognise multi-flow attacks. The

theory behind using a flow watermark technology to trace current network traffic

between flows is that a network flow is uniquely recognised by content-independent

manipulations and, if sets of flows have the same pattern, they can be considered

connected. Watermarking is a new approach that takes less computational time

than traditional active monitoring techniques. As a powerful watermark is scal-

able, robust to packet losses and unseen, it is a remarkable alternative means of

identifying correlations of the flows and flow patterns in anonymous communica-

tion systems [209]. This technology is used to activate anonymous communication

systems by encrypting network traffic in order to evade attempts to exploit attacks

[209] by identifying correlations of the flows and then making the anonymous de-

vices accountable. It is observed that this technology achieves a high DR and low

FPR using such additional features [210].

3.5.5. Labelling Process

The labelling process relates to associating data instances with their class labels

which denote determining whether they are legitimate or anomalous. It is vital

that the labelled data are accurate and represent all types of network behaviours

to ensure the fidelity of a dataset for effectively and efficiently evaluating NIDSs.

Obtaining a labelled set of malicious data instances containing all possible kinds

of malicious patterns is more complex than determining labels for normal pat-

terns and, also, malicious behaviours are often dynamic in real networks. As this

means that new attacks not involved in a DE training set could occur, an anomaly

detection methodology has been proposed [69].

All the security events which occur while running the simulation are logged

by the IXIA traffic generator and used to label the observations in the UNSW-

NB15 dataset. They are saved in two reports for the two days of the simulation,

as published in [43], and then transformed into a ground-truth table to enable

easier matching of all data instances created in the MySQL dataset, as described

105

Table 3.15: Labelled features
No. Name Type Description
48 attack_cat Nominal The unsw-nb15 dataset has 9 malicious

categories, i.e., Fuzzers for malicious activities,
Analysis, Backdoor, DoS, Exploit, Generic,
Reconnaissance, Shellcode and Worm.

49 Label Binary 0 for normal and 1 for attack records

in subsection 3.5.3. This table comprises 11 attributes, that is, the start time,

last time, protocol type, source IP address, source port, destination IP address,

destination port, attack category, attack sub-category, attack name and attack

reference [43]. The SQL commands used to implement the labelling process are

• update table1 set class=1,subclass=’attack type’ where table1.srcip = gt_

table. srcip and table1.sport = gt_table. sport and table1.dstip = gt_table.

dstip and table1.dsport= gt_table.dsport and table1.proto = gt_table.proto

and table1.stime = gt_table.stime and table1.ltime = gt_table.ltime – at-

tack record

• update table1 set class=0 where class is NULL – normal record

The first command demonstrates the labelling of the attack instances whereby, if

the attributes in table1 (data instances) are equal to those in the gt_table (ground-

truth table), they are labelled malicious and the rest of the records normal. It is

worth mentioning that the labelling process is wisely performed to ensure the

credibility of using this dataset to assess NIDSs. Table 3.15 lists the labelled

attributes contained in this dataset with attack_cat (the attack categories) and

label of each instance described.

106

3.5.6. UNSW-NB15 Security and Malware Events

The UNSW-NB15 dataset has a wide variety of observations of normal as well

as network security and malware attacks [29] [28] [32], as shown in Table 3.16,

with each security event having its own scenario which interacts with a certain

protocol and service. The security and malware events included in this dataset

are categorised into the following 9 types.

1. Fuzzers for malicious activities – the IXIA traffic generator uses fuzzing-

strike lists to determine security vulnerabilities that cause computer systems

to crash. Fuzzing is defined as a technique for discovering weak points in

an application, operating system or network by feeding them with a mas-

sive input of random data designed to crash them. It is often used as a

tool for penetration testing to identify potential bugs in software and web

applications/services. Fuzzers work effectively for attacks that can crash a

computer system, such as a buffer overflow, cross-site scripting, DoS, SQL

injection and format bugs, by mimicking their behaviours. They show that

fuzzing behaviours are very different from normal vectors and adding them

to the security events in this dataset can assist in determining how current

normal patterns vary from abnormal vectors and validating new NIDSs, as

shown by the differences in Figure 3.5.

2. Analysis – this is an attack method which breaches internet applications

via ports (e.g., port scans), emails (e.g., spam) and web scripts (e.g., HTML

files). In a port scan, an attacker launches a port-scan listener to inspect the

ports open on a victim system and then sends several packets to the victim,

varying the destination port each time. Its goal is to discover the services and

operating systems running on this victim. Regarding spamming, electronic

messaging systems are used to repeatedly send unsolicited messages (spam),

in particular advertising, on the same website or email. Finally, a hacking

107

web script is a type of computer security vulnerability, for example, cross-

site scripting (XSS) which attackers use to inject client-side scripts into web

pages browsed by other users to bypass access controls.

3. Backdoor – this is a technique whereby an attacker bypasses a normal

stealth authentication method to secure unauthorised remote access to a

device. As it is executed in the background and concealed from users, it

is difficult to detect. Once an attacker gains access to a device through

a back door, it can potentially alter files, steal personal information, set

up malicious software and eventually take control of a computer system;

for example, install a keylogging program on a victim system which allows

everything written, including passwords and user identity, to be seen. As this

information is stolen, the accounts of victims are compromised and open to

identity theft.

4. DoS – this is an attack which disrupts computer resources via memory to

prevent authorised requests gaining access to a device. It frequently sends

unnecessary messages asking the network or computers to authenticate re-

quests that have invalid return addresses. The network or computers will not

be capable of finding the return address of the attacker while sending the

authentication approval which causes the computer system to wait before

closing the connection. When the server closes the connection, the attacker

sends more authentication messages with invalid return addresses and, as

a result, stops users from accessing their services and applications, such as

email, websites and online accounts. There are several basic types of DoS

attack, for example, flooding a network to obstruct legitimate network traffic

in order to prevent a particular person accessing a service. The difference

between DoS and DDoS attacks is that the former uses a single connec-

tion to exploit a software vulnerability or flood a target with fake requests

to exhaust computer resources (i.e., RAM and CPU) whereas the latter is

108

launched from many connected devices distributed across the Internet and

causes the victim system to stop working by sending huge volumes of traffic.

5. Exploit – this is a sequence of instructions that takes advantage of a glitch,

bug or vulnerability and causes an unintentional or unsuspected behaviour

to occur in a host or network. This behaviour normally involves anomalous

events such as gaining control of a computer system or allowing a DoS attack

or privilege escalation. Common types of exploits include a remote attack

which penetrates the security vulnerability of a computer system to which

it previously did not have access, a local access one which requires prior

access to the vulnerable system and often increases the privileges of the user

account implementing this exploit and a zero-day attack that is a malicious

activity not yet discovered.

6. Generic – this is an attack perpetrated against all block-ciphers to cause a

collision without respect to the configuration of the block-cipher, with com-

mon ones ‘collision’ and ‘pre-image’. The resistance of a hash function to

these attacks relies firstly on the length (n) of the hash value. Regardless of

how a hash function is established, an attack will usually be capable of find-

ing ‘pre-images’ after trying approximately 2n messages. A birthday attack

is a type of cryptographic and collision one which exploits the mathematics

of the birthday problem in the probability theory. It can be used to misrep-

resent communications between two or more systems and relies on a higher

likelihood of collisions being found between random attack attempts and a

fixed degree of permutations.

7. Reconnaissance - this can also be defined as a probe and is an attack

which gathers information about a computer network to evade its security

controls. An attacker typically runs a ‘ping sweep’, a network reconnaissance

mechanism that uses a ping (an ICMP echo and echo-reply), in order to

map a targeted network to determine its active IP addresses and responses.

The attacker’s queries collect information about the victim, including its IP

109

address range, software version, running operating system, server location,

types of devices and applications.

8. Shellcode – this is a small piece of code used to exploit the payload of

a software vulnerability which typically launches a command shell from an

attacker that could control the victim system. It is used to access a shell and

give the highest privilege to users and developers, and possibly as an exploit

payload to provide an attacker with command-line access to a computer

system. This malicious code is injected into computer memory via exploiting

the vulnerabilities of a stack or heap-based buffer overflow or formatting

string attacks. Usually, a shellcode execution is triggered by overwriting

a stack return address with the address of the injected shellcode. As a

consequence, instead of a subroutine returning to the caller, it returns to the

shellcode and spawns a shell.

9. Worm – this is a malware program which requires a user action to trigger it

and spread it on a computer network by replicating itself based on security

failures of the target computer. It causes harm to host networks by consum-

ing bandwidth and overloading web servers. It contains ‘payloads’ which

are pieces of code developed to trigger it to spread to damage a system’s

resources, such as by stealing data and/or removing files.

The training and testing sets of the dataset are statistically analysed to demon-

strate the dissimilarity between normal and abnormal observations, with the re-

sults depicted in Figure 3.5 normalised in the range of [0, 1] to be easier to plot.

The regression analysis is applied to draw a smooth line between normal and

abnormal records in order to show their relationship. When the data points of

normal and attack records locate at the same line, this denotes that there is a

strong correlation/similarity between these records, otherwise the records are not

similar in their statistical behaviour. The graphs show that normal records clearly

110

Table 3.16: Class distributions in UNSW-NB15 dataset
Class type Number of records
Normal 2,218,761
Fuzzers 24,246
Analysis 2,677
Backdoor 2,329
DoS 16,353
Exploit 44,525
Generic 215,481
Reconnaissance 13,987
Shellcode 1,511
Worm 174

deviate from abnormal records, with security events sometimes trending the same

as normal records, as shown by the blue lines, although their common points are

too low, averaging 0.1 - 0.3 % over all the data points.

3.5.7. File Formats of UNSW-NB15 Dataset

As previously mentioned, the raw network packets of the UNSW-NB 15 dataset

were created by the IXIA traffic generator to simulate a hybrid of contempo-

rary realistic legitimate and synthetic malicious activities. The source files in this

dataset were provided in different formats, pcap, BRO, Argus and CSV, and or-

dered based on the dates of the simulations (22-1-2015 and 17-2-2015, respectively)

[43]. The details of these simulations provided in reports [43] demonstrate that

security events occurred while a simulation was running.

The CSV files in this dataset, which consist of 47 features with class labels

and attack categories as stated in Section 3.5, were prepared for use in evaluating

NIDSs. Four files, named UNSW-NB15_1.CSV, UNSW-NB15_2.CSV, UNSW-

NB15_3.CSV and UNSW-NB15_4.CSV, contain both data records of normal and

attack events [43]. Their data records are ordered according to the last-time feature

111

0.00 0.10 0.20 0.30

0.
0

0.
2

0.
4

Normal

S
he

llc
od

e

0.00 0.10 0.20 0.30

0.
00

0
0.

01
0

0.
02

0
0.

03
0

Normal

E
xp

lo
its

0.00 0.10 0.20 0.30

0.
0

0.
4

0.
8

Normal

W
or

m
s

0.00 0.10 0.20 0.30

0.
0

0.
2

0.
4

0.
6

Normal

D
oS

0.00 0.10 0.20 0.30

0.
0

0.
4

0.
8

Normal

F
uz

ze
rs

0.00 0.10 0.20 0.30

0.
00

0.
02

0.
04

Normal

A
na

ly
si

s

0.00 0.10 0.20 0.30

0.
00

0.
10

0.
20

0.
30

Normal

B
ac

kd
oo

r

0.00 0.10 0.20 0.30

0.
0

0.
1

0.
2

0.
3

0.
4

Normal

R
ec

on
na

is
sa

nc
e

0.00 0.10 0.20 0.30
0.

00
0.

02

Normal

G
en

er
ic

Figure 3.5: Statistical behaviours of normal and abnormal observations

(ltime) and the total number of records is 2,540,044, consisting of 700,000 in each

of the first three and 440,044 in the fourth.

In [43], the ground-truth table, which is entitled UNSW-NB15_GT.CSV, has

information about the security events, with their categories and sub-categories

given in the UNSW-NB15_LIST_EVENTS file. Also, the portions of it proposed

for training and validating DE approaches, the UNSW_NB15_training-set.CSV

and UNSW_NB15_testing-set.CSV files, respectively, are described in Section 3.5.

3.6. Comparisons with Other Datasets

Many network datasets are available to the research community, as discussed in

Chapter 2. A decent dataset should have a set of terms that includes a realistic

112

network configuration, realistic network traffic, labelled observations, total interac-

tions and full packet captures as well as many malicious scenarios [82]. Table 3.17

presents a comparison of the most popular datasets, KDD99, NSL-KDD, CAIDA,

DEFCON, ISCX, DARPA-2009 and UNSW-NB15.

All these datasets except DEFCON were simulated or established by config-

uring a realistic network environment while KDD99 and its enhanced version,

NSL-KDD, do not involve a regular trace of the insertions of new dimensions of

synthetic attack traffic in the testing phase. Although most datasets that depend

on simulators often capture information about lower layers of the TCP/IP, the

IXIA traffic simulator used to generate UNSW-NB15 can capture a wide range of

segments from different protocols, such as TCP/IP, UDP, ICMP, DNS and HTTP.

The labelling process requires a trusted ground-truth table to ensure that mali-

cious observations are correctly tagged. The CAIDA, DEFCON and DARPA-2009

datasets are not tagged while the others are labelled. However, most do not pub-

lish their ground truth to ensure their reliability for assessing NIDSs. For this

purpose, tagging of the UNSW-NB15 dataset is reported in [43].

The term ‘complete capture’ relates to the extracted traces containing all the

information that could penetrate the privacy of users which can often be found

in the application layer of the OSI model by analysing its services, such as DNS

and HTTP. Almost all publicly available benchmark datasets eliminate any user’s

information by removing some or all of the information in the packet payload, as

shown in Table 3.17. The UNSW-NB15 dataset was simulated from a realistic

environment and its files published in different formats without any information

being removed, as discussed in Section 3.4. Although a network dataset should

have a broad range of current legitimate and anomalous activities for efficiently

evaluating NIDSs, most of the available datasets do not contain the current sophis-

ticated malicious activities that require the design of an intelligent DE to define

them because existing ML algorithms cannot efficiently detect them, as discussed

in Chapter 2. In fact, as these datasets do not reflect current threads which have

113

Table 3.17: Comparisons of popular and UNSW-NB15 datasets
Datasets Realistic

network
configura-
tion

Realistic
network
traffic

Labelled
observa-
tions

Total
interac-
tion
capture

Full
packet
capture

Many
mali-
cious
scenar-
ios

KDD99 True False True True True True8

NSL-KDD True False True True True True8

CAIDA True1 True False False5 False4 False2

DEFCON False False5 False True True True8

ISCX True2 True6 True True True True10

DARPA-
2009

True1 True5 False False5 True True

Our dataset
- UNSW-
NB15

True True9 True True True True10

1. Network configuration information not available
2. Basic captured network traces
3. No payload available; most simply reduced/summarised trace information
4. No payload available; in some packets, protocol, destination and flags deleted
5. Comprises no packet contents and no host or protocol information
6. Designed to include profiles of network information
7. Only malicious traffic
8. Does not reflect current trends
9. Contains a large number of protocols and services
10. Has modern security events and malware scenarios

complex scenarios, the UNSW-NB15 dataset was designed to contain many normal

and hostile observations for a new evaluation of a NIDS’s efficiency.

As the KDD99 dataset is most commonly used to evaluate NIDSs, another

comparison of it and the UNSW-NB15 dataset, with their numbers of sub-networks

and unique IPs, simulations, data formats, attack types, feature extraction tools

and numbers of extracted features, is provided in Table 3.18. The UNSW-NB15

dataset has the norm of current realistic network environments, including a larger

number of sub-networks and unique IP addresses than the KDD99 dataset. The

amount of data (around 100GB) generated during its 31-hour simulation is very

much greater than that from the 5-week one of the KDD99 dataset (less than 1

114

Table 3.18: Comparisons of KDD99 and UNSW-NB15 datasets
Parameter KDD99 dataset UNSW-NB15 dataset
Number of
sub-networks

2 3

Number of distinct
IPs

11 45

Simulation Yes Yes
Duration of
simulation

5 weeks 31 hours

Data formats Tcpdump, BSM and
data dump files

Pcap, BRO, Argus
and CSV files

Attack types Dos, Probe, U2R and
R2L

Fuzzers for malicious
activities, Analysis,
Backdoor, DoS,
Exploit, Generic,
Reconnaissance,
Shellcode and Worm

Feature extraction
tools

Bro-IDS Argus, Bro-IDS and
new scripts

Number of features
extracted

41 47

GB) which indicates that the UNSW-NB15 dataset can be considered a big data

problem, as described below. Also, its different file formats are provided to help

researchers use it to produce new features and mechanisms in the network security

field.

3.7. Big Data Properties in UNSW-NB15

Dataset

In this section, we discuss the UNSW-NB15 characteristics and how some chal-

lenges of security learning can be successfully evaluated using this dataset that

has the properties of the ‘big data’ principle (see Chapter 2- subsection 2.6.1).

Current Network datasets should have the big data terms of Volume, Velocity

115

and Variety (3Vs) to ensure their credibility for training and validating new DE

approaches installed over a real network with a large volume, high velocity and

variety of network flows.

In the UNSW-NB15 dataset, the volume of network traffic is approximately

100 Gigabytes which consists of more than 2 million observations that require

a large amount of storage and computing mechanisms with a high memory and

CPU for their effective processing. In this regard, different tools and platforms

are used to capture traces and extract the important features discussed above.

Secondly, the velocity of network flows between a source and destination is, on

average, 5-8.5 Megabytes per second, as stated in [43] and shown in Figure 3.6,

which demonstrates that this dataset has high data rates across the Ethernets

while sending and receiving traces which exactly mimic real network environments.

It is worth mentioning that collecting traces of current network traffic is a big

data problem for the design of a reliable NIDS because of the volume needed to

store more information about network traffic, the velocity of collective flows at

higher rates and the variety of information collected from different sources and

high dimensions.

This dataset also covers a wide range of segments collected from various pro-

tocols and services during the simulation periods and logged in pcap files which

were precisely determined to extract 47 features of several data types, i.e., nu-

meric, timestamp and categorical, which could distinguish between normal and

attack activities. Therefore, it has a wide variety of types with traces collected

from different systems and has high dimensionality. The CSV files of the dataset

were processed to ensure they contained clean data with no missing values or du-

plicated records in order to guarantee their veracity. Ultimately, as this dataset

has the characteristics of the big data available in real network environments, it

is valid for evaluating new NIDSs.

116

(A) 22nd January 2015

(B) 17th February 2015

Figure 3.6: Ethernet data rates transmitted and received over simulation periods

117

3.8. Dataset Splitting for Learning Techniques

In a learning methodology, splitting a dataset into training, validation and testing

sets is essential for the training and validation of its algorithms. A training set is

a set of instances for determining the learning classifier’s parameters, a validation

set is a set of instances used to adjust those parameters as much as possible and a

testing set is a set of observations for evaluating the classifier’s performance. Typ-

ically, when a dataset is separated into training and testing sets, most of the data

are used for training [186]. In this case, instead of manually designing a validation

set to correctly fit the parameters, cross-validation techniques are applied. Cross-

validation is a model validation mechanism for measuring the extent to which a

dataset is independent of observations, including in both its training and testing

sets. Its goal is to fit the parameters of a predictive model as well as estimate its

accuracy for validating new instances in the testing set [211].

In intrusion detection, a dataset is represented as a relational table (T) [182]

containing a set of observations with their class labels (normal or attack). DE

techniques train and validate these instances (I), each of which comprises features

(F) with multiple data types (i.e., ∀f ⊂ {R⋃
S}, where ∀f indicates each feature

in T , R real numbers and S strings). For this purpose, a portion of the UNSW-

NB15 dataset is divided into an almost 60:40 ratio of training and testing sets,

respectively. To avoid biasing the DE approaches and reflecting high FARs, these

sets do not contain any redundant observations which ensure the credibility of the

evaluations. The numbers of observations included in each category are listed in

Table 3.19 which shows that there are 175,341 and 82,332 records in the training

and testing sets, respectively, as reported in [43].

It is acknowledged that statistical approaches face the challenge of using dif-

ferent data types, i.e., numeric or nominal [212], and T can be represented as

118

Table 3.19: Distributions in portion of UNSW-NB15 dataset
Category Training set Testing set
Normal 56,000 37,000
Analysis 2,000 677
Backdoor 1,746 583
DoS 12,264 4089
Exploit 33,393 11,132
Fuzzers for malicious activities 18,184 6,062
Generic 40,000 18,871
Reconnaissance 10,491 3,496
Shellcode 1,133 378
Worm 130 44
Total Records 175,341 82,332

multivariate data, as stated in Definition 3.1.

Definition 3.1: Let I1:N ∈ T, I1:N) = {fij ∈ F}, Y1:N = {ci ∈ C}, where

i, j = 1, 2, N . Assume that F is independently and identically distributed

(i.i.d.), with I1:N and Y1:N defined as a column-vector matrix which indicates that

a network dataset has a feature set statistically treated as multivariate data as

I1:N =

 f11 f12 ..

f21 f22 ij

 , Y1:N =

 c1

ci

 (3.1)

where I is the observations of T , Y the class label (C) of each I, N the number

of observations and F the features of each I.

Proposition 3.1 is applied for multivariate data to transform all their feature

types into numeric values as required by classification techniques, particularly

statistical models.

Proposition 3.1: the same data type of numbers (∀F ⊂ {R}) for features

(F) is applied for ease of analysing and classifying network data. Each nominal

feature (S) is assigned to a sequence of numbers (∀S → R0:R), where {0 : R} is a

sequence of numbers) [213]; for example, the UNSW-NB15 dataset includes three

119

nominal features: protocols such as TCP and UPD; states such as CON and ACC;

and services such as HTTP and FTP. Each feature is replicated by a sequence of

numbers, for example, the protocol values of TCP=1 and UDP=2, and so on.

3.9. Complexity Analysis of UNSW-NB15

Dataset

The aim of analysing this dataset4 is to determine the extent to which its current

normal and malicious patterns are complex. To achieve this target, a statistical

analysis, feature correlations with and without class labels and evaluation of some

existing ML algorithms, are considered. Firstly, the statistical analysis inspects

the relationship between the records/observations and attributes/features which

can determine the statistical characteristics of normal and suspicious observations

and then the features that can precisely discriminate between them are obtained.

Finally, five existing techniques are used to evaluate their capabilities for classifying

these data in terms of accuracy and FARs. We use the proposed portion consisting

of the training and testing sets because it comprises the majority of security events

and malware as well as normal records in the dataset.

These sets are designed to be in the form of multivariate data, as in equation

(3.1), namely TRIN
for the training set and TSIN

for the testing set. The first

aspect is applied using three well-known statistical functions, the Kolmogorov-

Smirnov (K-S) test [214, 215], multivariate skewness and kurtosis functions [216,

217] to examine the relationships and distributions of the TRIN
and TSIN

obser-

vations and features. As the values of these observations are not in a particular

range that can help to interpret and exactly demonstrate the differences between

normal and malicious records, we use the z-score function [218] to normalise them
4The work of this study presented in this chapter has been published in:

Moustafa, Nour, and Jill Slay. "The evaluation of Network Anomaly Detection Systems: Sta-
tistical analysis of the UNSW-NB15 data set and the comparison with the KDD99 data set."
Information Security Journal: A Global Perspective (2016): 1-14.

120

within a specific interval, with the core theories and way of applying them on the

two sets discussed below.

3.9.1. Z-score Function

The features of the (TRIN
) and (TSIN

) have large differences between their max-

imum and minimum values. However, as it is difficult to efficiently estimate them

from the central trend of a normal distribution, this is expressed as a multivariate

problem for the various data distributions, as in Dilemma 3.1.

Dilemma 3.1: ∀f involved in IN consists of large-scale values such that

−∞ < max(fij)−min(fij) <∞, max(fij) ≫ min(fij) (3.2)

which shows that the attribute values are not specified in a particular range,

for example [−1, 1], while a feature’s (f) maximum value (Max(fij)) is signifi-

cantly greater than its minimum value (Min(fij)). This could cause noise while

fitting the data to any probability distribution as the smallest and largest values

dramatically deviate from their means (M) [219].

To address Dilemma 3.1, the following z-score function, which is a linear trans-

formation function for normalising the fij values in a specific format which facili-

tates comparing them in different probability distributions without modifying their

original distribution, is used.

zij=
fij −M

δ
(3.3)

where the normalised values (zij) of each feature (∀f) in I1:N are computed by

subtracting the values from the mean (M) and then dividing each by its standard

121

deviation (δ) of that feature to estimate how far away it is from itsM . The output

from this function could be positive or negative depending on whether the values

are above or below their means, respectively. It is acknowledged that this output

is designed to standardise these data with M = 0 and δ = 1.

3.9.2. Kolmogorov-Smirnov (K-S) Test

The K-S test is used to decide if a sample comes from a population with a par-

ticular distribution [214, 215]. While goodness-of-fit tests are often designed for

univariate distributions, network data have multivariate distributions (i.e., a set

of features) for determining the one that can precisely fit all the selected features.

This assists the use of the best probability distribution for establishing the DE with

the least noise, that is, if the normal profile is constructed by a Gaussian distribu-

tion which has its two parameters (the mean and standard deviation) estimated

from normal and malicious observations detected by considering any deviation

from the established normal model (i.e., profile) as an attack record. It is possible

that a Gaussian distribution cannot correctly fit the majority of normal records

because sophisticated attackers attempt to mimic normal behaviours which leads

to attack records overlapping normal observations. Therefore, it is necessary to

check the normality of network features before selecting a distribution that can fit

the network data with less noise.

The K-S model tests the values of the features in the (TRIN
) and (TSIN

) to

determine their normalities. Let ∀f have x1, x2,, xn values in an ascending

order and then the K-S test is as follows.

• H0 (null hypothesis): the data follow a particular distribution.

• Ha (alternative hypothesis): the data do not follow that particular dis-

tribution.

122

• Test function: the K-S test is defined by computing the empirical dis-

tribution function (Fn(x)) of the data points and Kolmogorov distribution

function (F (x)) which considers the proportion of feature values less than

or equal to a certain value (x) as

Fn(x) =

0 , x < x1

k/n , xk ≤ x < xk+1, k = 1, 2, .., n− 1

1 , x≥xn

(3.4)

where n is the number of observations and k a counter from 1 to n− 1.

The Kolmogorov distribution function is defined as

f(x) =
√

2π
x

∞∑
n=1

e−(2n−1)2π2/(8x2)) (3.5)

Based on equations (3.4) and (3.5), the formula for the K-S goodness-of-fit

statistics is calculated by maximising the absolute difference between the f(x)

and Fn(x) as

Dn = maxx|f(x)− Fn(x)| (3.6)

The well-known critical values provided in [220] are used to reject the hypoth-

esis if the test statistics (Dn,∝) are greater than those values. The significance

level (∝) is estimated via (P (Dn ≤ Dn,∝) = 1− ∝ .Dn) to determine whether a

feature follows a specified distribution. The best fitting of a feature has to satisfy

the condition of (maxx|f(x) − Fn(x)| ≤ Dn,∝)) as well as its confidence interval

123

(Fn(x)±Dn,∝)). The SPSS tool [221] is used to execute the K-S test with the cri-

terion that, if the significance value of the K-S test is greater or less than 0.05, the

data follow a Gaussian distribution or substantially deviate from it, respectively.

3.9.3. Multivariate Skewness and Kurtosis

Multivariate skewness and kurtosis measures are used to check the normality of

the data points and their shapes [216, 217]. Apart from applying the K-S test, it

is significant to analyse the skewness and kurtosis of features to estimate to what

extent they follow a particular distribution. The skewness function is defined as

an asymmetric measure of the probability distribution of a feature from its mean

(µ), where each feature consists of a set of values (x1, x2,, xn) and its formula

is

skewness =
∑n
i=1(xi − µ)3

nδ3 (3.7)

If the outcome is a positive or negative value, the distribution with an asym-

metric tail spreads to major positive values or more negative ones, respectively.

The kurtosis function is considered a peakiness measure of the probability

distribution for a feature which includes a set of values (x1, x2,, xn) and is

computed as

kurtosis =
∑n
i=1(xi − µ)4

nδ4 (3.8)

If the result is a positive value, this distribution is much higher than a Gaussian

distribution but, if negative, is in a flat shape. As stated in [70], if the skewness

124

and kurtosis of a feature tend to be 0, the distribution of this feature could follow

a Gaussian distribution.

3.10. Use of Statistical Measures on training

and testing sets

The aforementioned statistical measures are applied to the training (TRIN
) and

testing (TSIN
) sets to ascertain the normality of their features which, statisti-

cally speaking, can determine the norms of the current legitimate and malicious

patterns. If the findings from the K-S test, and multivariate skewness and kurto-

sis functions show that the network features follow a Gaussian distribution, a DE

should be designed according to the functionality of this distribution to distinguish

anomalous from normal behaviours. In contrast, if they do not follow a Gaussian

distribution, other non-Gaussian distributions, such as a Gaussian Mixture Model

(GMM), Beta Mixture Model (BMM) or Dirichlet distribution, should be used to

build an intelligent DE to precisely fit the normal data and identify any outliers

or rare events in them as anomalies.

The K-S test, and multivariate skewness and kurtosis functions are used on

the data in the (TRIN
) and (TSIN

) to check their normality and determine the

similarity of their results, as formulated in equations (3.9), (3.10) and (3.11). If

these sets are extremely different in terms of their probability distributions, DE

approaches will result in higher FARs because a DE model learns from particular

data in the training phase and is tested on different data in the testing phase which

is called an over-fitting problem in the ML field [222]. This problem means that a

classifier is biased towards learning some data from the training phase which are

not sufficient for efficiently building the model or do not represent the data in the

testing phase.

125

sigTRIN
≈ sigTSIN

(3.9)

skewnessTRIN
≈ skewnessTSIN

(3.10)

kurtosisTRIN
≈ kurtosisTSIN

(3.11)

Equation (3.9) checks whether the significance values (i.e., sig) of the features

estimated from the K-S test are approximately similar in both the training and

testing sets. If they are extremely dissimilar, this denotes that their probability

distributions are different which negatively affect the reliability of an ADS as do

different skewness and kurtosis values of these features obtained from equations

(3.10) and (3.11). Based on the above discussion, the features of the (TRIN
) and

(TSIN
) are statistically analysed in algorithm 3.10 to demonstrate the relationships

between them, with their results presented in Section 3.11.

3.10.1. Feature Correlations of (TRIN
) and (TSIN

)

A correlation analysis is another means of identifying the relationships between

features in the (TRIN
) and (TSIN

), and, as choosing the significant features is an

important step in building a lightweight ADS, two correlation techniques are used

for the UNSW-NB15 dataset. Firstly, Pearson’s correlation coefficient (PCC) [223,

224] estimates the correlations between features without the class label. Secondly,

a Gain Ratio (GR) [224] method computes the correlations between features with

126

Algorithm 3.10 Determining statistical relationship of training and testing sets

Input: the features of the (TRIN
) and (TSIN

)
Output: the relationships of the features of the (TRIN

) and (TSIN
)

1: for (∀f in the two sets) //for each feature involved in the training and testing
sets do

2: convert the values of the nominal features into numerical features, as ex-
plained in proposition 3.1

3: apply the z-score function, as discussed in subsection 3.9.1
4: apply the Kolmogorov-Smirnov test and skewness and kurtosis functions, as

discussed in subsections 3.9.2 and 3.9.3, respectively
5: compare the (TRIN

) and (TSIN
) results using equations (3.9), (3.10) and

(3.11), respectively
6: end for

the class label. These two approaches are the simplest feature selection models

and have lower processing times than others, as discussed below.

The aim of using them is to determine the correlation scores between these

features, either with or without the class label, to select the important features

which are then passed to a DE model for distinguishing between normal and attack

activities. To apply these techniques on a dataset, let a dataset (T) have a set

of features (f1, f2,, fd ∈ I1:N) with its class label (C) , where each feature

and its class label contain many values; for example, f1 = {x1, x2,, xN}, f2 =

{y1, y2,, yN} and C = {c, c2,, cw}, where d is the number of features, N is

the number of observations and w is the number of classes involved in T . These

two techniques are described below and their results provided in subsection 3.11.2.

A. Feature correlations without class label

PCC is one of the simplest linear correlation techniques for estimating the corre-

lation scores of features [223, 224], with that of two features (f1 and f2)

PCC(f1, f2) = cov(f1, f2)
σf1 .σf2

(3.12)

127

=
∑N
i=1(xi − µf1

)(yi − µf2
)√∑N

i=1(xi − µf1
)2.

√∑N
i=1(yi − µf2

)2

where cov is the covariance and σ the standard deviation of these features,

and µf1 = 1⁄N ∑N
i xi and µf2 = 1⁄N ∑N

i yi the means of f1 and f2, respectively.

The result obtained from equation (3.12) has to be in a certain range of [−1, 1]

which, if close to −1, indicates a strong correlation in an opposite direction, if close

to 1, a strong correlation in the same direction and, if close to 0, no correlation

between these features, that is, a positive or negative sign shows that these features

have the same or different trends, respectively. The important features are ranked

by computing the mean of each PCC feature (i.e., µfi
= 1⁄N ∑N

i pccfi
) which are

arranged in a descending order.

B. Feature correlations with class label

The GR technique computes the ratio of an Information Gain (IG) method to

the values of the features [224] which is then used to address the problem of the

IG when a feature contains a set of values by comparing those values. The IG

is a feature selection approach that relies on an entropy function which measures

the uncertainty of the features; for example, let I be a set of observations with w

distinct classes for which the entropy or expected IG are computed by

G(I) = −
m∑
i=1

pi log2(pi) (3.13)

where Pi is the probability of observation I belonging to class Ci and is esti-

mated by Ii⁄IN .

To divide Ii into subsets for each feature (f), the expected IG is defined as

128

E(f) = −
m∑
i=1

G(I)I1i + I2i + + Imi
IN

(3.14)

From equations (3.13) and (3.14), the encoding information gained to a feature

is given by

Gain(f) = G(I)− E(f) (3.15)

The splitting value of these subsets (Iir) is

Split(I) = −
r∑
i=1

(|Ii/IN |)log2(|Ii/IN |) (3.16)

In equation (3.16), the splitting value is used to divide the observations into

particular portions (r) for easy selection of the important features. From equations

(3.15) and (3.16), the GA is defined as GR(f) = Gain(f)/Split(I), where the

feature with the highest GR is used as the baseline to select the most highly

ranked features.

3.10.2. Evaluation of Five ML Techniques

ML techniques are those most commonly applied to analyse a network dataset

to detect malicious events, as previously explained in Section 3.4. Five existing

techniques, the NB [187], DT [188, 189], ANN [188, 189], EM clustering [190]

and Logistic Regression (LR) [225], are applied to the UNSW-NB15 dataset to

estimate its accuracy, FARs and ROC curve, as explained in Chapter 2, Section

2.4. Each technique has its own procedures for learning and validating the data

129

points in the (TRIN
) and (TSIN

). Firstly, the NB is a conditional probability

technique which classifies network observations as either normal (0) or abnormal

(1) and uses the maximum a posterior (MAP) function to compute the score of

each observation as

P (C|I) = argmaxw∈{1,2,..,N}P (Cw)
N∏
j=1

P (Ij|Cw) (3.17)

where C is the class label, I is the observation of each class, w is the class

number, P (C|I) is the probability of the class given a particular observation and∏N
j=1 P (Ij|Cw) used to multiply the probabilities of observations to obtain the

maximum output to determine whether an observation is normal or abnormal.

Secondly, the DT is a structure that looks like a flowchart which consists

of roots, nodes and branches that show the rules of classification. Each node

represents the rules or procedures of a feature, each branch the results of the rules

and each leaf node the class label. Thirdly, the ANN uses an activation function

which relies on a large number of input observations (I) to learn network patterns

and is

f(I) = τ(
∑
j

Wj.Ij) (3.18)

where f(I) is a predicted output of the class label, τ an activation function

(i.e., sigmoid) and Wj the weight of each feature (F). Fourthly, the LR constructs

the correlation between a dependent variable (i.e., the class label) and independent

variables (i.e., the important features) using the maximum likelihood function to

compute the regression parameters. Finally, the EM clustering technique depends

on maximising the probability density function (PDF) of a Gaussian distribution

to compute its parameters (the mean and covariance) of each feature in a dataset

130

and involves two steps (i.e., expectation (E) and maximisation (M)). The E step

estimates the likelihood of each observation occurring in the dataset while the

M step re-estimates the parameters from the E step to obtain the optimal set of

parameters for building the model.

The evaluation terms (accuracy, FAR and ROC curve) demonstrate the perfor-

mances of these techniques on the UNSW-NB15 dataset and the extent to which

this dataset contains sophisticated patterns of current security events and mal-

ware. The proposed training and testing sets are used to learn and validate the

five techniques which are then executed using the Visual Studio Business Intelli-

gence 2008 tool [75], with their results provided in subsection 3.11.2.

3.11. Empirical Results and Discussion

As discussed above, to estimate the complexity of the UNSW-NB15 dataset, mod-

els of statistical analyses and explanations, feature correlations and complexity

evaluations are applied on the proposed training and testing sets using the ML

techniques, as explained in Section 3.10, with the features used listed in Table

3.20.

3.11.1. Statistical Analyses and Explanations

The SPSS tool is used for statistical explanations and determining the distribution

norms of the training (TR) and testing (TS) sets, with the probabilities occurring

presented in Figure 3.7. The results demonstrate that the feature distributions are

non-linear and non-normal representations because the significance values of these

features are less than 0.05. When the two lines of the TR and TS sets appear to

be the same, the fitting percentages of these features are approximately 78% and,

131

Table 3.20: Features used for analyses of UNSW-NB15 dataset
Id Names Id Names
1 Dur 22 Synack
2 Spkts 23 Ackdat
3 Dpkts 24 Smean
4 Sbytes 25 Dmean
5 Dbytes 26 trans_depth
6 Rate 27 response_body_len
7 Sttl 28 ct_srv_src
8 Dttl 29 ct_state_ttl
9 Sload 30 ct_dst_ltm
10 Dload 31 ct_src_dport_ltm
11 Sloss 32 ct_dst_sport_ltm
12 Dloss 33 ct_dst_src_ltm
13 Sinpkt 34 is_ftp_logn
14 Dinpkt 35 ct_ftp_cmd
15 Sjit 36 ct_flw_http_mthd
16 Djit 37 ct_src_ltm
17 Swin 38 ct_srv_dst
18 Stcpb 39 is_sm_ips_ports
19 Dtcpb 40 Proto
20 Dwin 41 Service
21 Tcprtt 42 State

conversely, when the two lines are different, the non-fitting percentages are almost

22%.

As it is observed that the two are treated as if they are from the same distri-

bution (i.e., fitting percentages of 78%), when applying any DE approach, there

will be no over-fitting problem, as discussed in subsection 3.10.2. As these features

cannot correctly follow a Gaussian distribution, a non-Gaussian distribution, such

as the GMM, BMM or DMM, should be used to establish a new DE technique

for efficiently recognising current malicious activities. These observations are also

confirmed by computing the skewness and kurtosis values of these features.

The features’ asymmetries in the TR and TS sets are estimated using the

skewness (skw) function. In the TR set, the results for all the features, except

132

Figure 3.7: Probabilities of features being in training and testing sets

7, are positive. Therefore, most of these features are on the right-hand side and

their PDFs higher or shorter than those on the left-hand side. The TS is roughly

similar to the TR set, with most of these features, except 7, 17 and 20, positive.

The feature skewness values of these sets are presented in Figure 3.8 in which it

can be seen that the relationship percentage is approximately 82% when the two

lines are similar, with the highest skewed features 25, 26, 27 and 28, and the lowest

6, 7, 8, 17, 18, 19, 29, 30, 31, 32, 37, 38 and 42.

The feature peaks of the TR and TS sets are computed via the kurtosis func-

tion. In the former, the experimental findings demonstrate that seven features, 7,

8, 17, 18, 19, 20 and 40, have negative values which represent a flatter distribution

while the others have positive values. This means that the distribution of these

features is higher than a Gaussian distribution. As depicted in Figure 3.9, the

feature kurtosis values of the TR and TS sets clarify that their fitting percentage

133

Figure 3.8: Skewness values of features in training and testing sets

is approximately 76% while the two lines maintain the same trend. The kurtosis

of the TS set is higher than that of the TR in features 2-6, 10-12, 15-16, 25-28 and

35-37 while the others are relatively close to each other.

As, based on the above explanation, the features of the TR and TS sets are

statistically correlated and have the same characteristics of non-linearity and non-

normality, this part of the UNSW-NB15 dataset is credible for assessing NIDSs.

Finally, this statistical analysis and explanation indicate that this dataset could be

used to evaluate the performances of new DE approaches for effectively detecting

attacks.

134

Figure 3.9: Kurtosis values of features in training and testing sets

3.11.2. Feature Correlations

The feature correlations are calculated based on two aspects, without the label

by the PCC and with the label by the GR, for measuring the proportions of

dependence and independence between these features. The important features can

be considered when they are less independent as their statistical characteristics are

different [87]. Initially, the PCC computes the score of each feature and Figure

3.10 shows that those in the TR and TS sets have almost the same correlated

score. Then, these features are ranked in a certain range [-0.01, 0.11], with the

highest related features, 5, 3, 6, 12, 13, 29, 31, 32, 33, 34, 38 and 39, showing lower

dependencies with a less than 0.5 difference in their scores.

In contrast, the lowest correlated features are 7, 8, 10, 11, 14, 40 and 41 while

the other features fall into the middle of the range with lower dependencies. In

135

Figure 3.10: PCCs of features in training and testing sets

the two sets, the correlated features are categorised into high, middle and low, and

obtain probabilities of 12/42, 23/42 and 7/42, respectively. This indicates that,

as 87.5% of the high and middle features are adequately correlated, these sets are

appropriate for learning and validating new NIDSs.

Secondly, in the TR and TS sets, the GR computes the correlations of the

features with a class label, with Figure 3.11 showing that those of both sets are

similar. The scores for these features of between 0.01 and 0.56 are classified as

low, middle and high according to the ranges [0.01, 0.2], [0.21,0.3], [0.31,0.56],

respectively. The lowest correlated features are 1, 2, 3, 7, 12, 13, 14, 16, 17, 27,

28, 29 , 34, 35, 36, 37, 38 and 39, the middle 4, 5, 6, 10, 11, 15, 18, 19, 20, 21,

22, 23, 24, 25, 26, 31, 32 and 40, and the highest 8, 9, 30, 33, 41 and 42, with

their probabilities 18/42, 18/42 and, 6/42, respectively. Therefore, the appropriate

136

Figure 3.11: Gain ratios of features in training and testing sets

correlation rates for the high and middle correlated features are computed as 57.2%

which shows that these sets are adequate for learning and validating new NIDSs.

3.11.3. Complexity Evaluations using ML Techniques

The complexity of the UNSW-NB15 dataset in terms of its accuracy, FAR and

ROC curve estimated by applying the NB, DT, ANN, LR and EM clustering

techniques using the default parameters of the Visual Studio Business Intelligence

2008 tool on the TR and TS sets for the features listed in Table 3.20. As can

be seen in Table 3.21, the DT model obtains the highest accuracy of 85.56% and

lowest FAR of 15.78%. On the contrary, the EM clustering technique achieves

the lowest accuracy of 78.47% and highest FAR of 23.79%. Also, the ROC curves

137

0 20 40 60 80 100

0
20

40
60

80
10

0

False Positive Rate %

D
et

ec
tio

n
R

at
e

%

DT
LR
NB
ANN
EM

Figure 3.12: ROC curves of five techniques using two sets from UNSW-NB15
dataset

depicted in Figure 3.12, which represent the relationship between the TPR and

FPR, rank the five models based on a higher TPR (i.e., DR) and lower FPR.

Table 3.21 lists the comparative results obtained from the five techniques for

the KDD99 and UNSW-NB15 datasets. Generally, the accuracy and FAR of each

are better using the former than the latter dataset.

There are two aspects that demonstrate the complexity of the UNSW-NB15

dataset compared with that of the KDD99 dataset. Firstly, in terms of network

behaviour, the UNSW-NB15 dataset contains a variety of contemporary legitimate

138

Table 3.21: Comparison of results obtained for KDD99 and UNSW-NB15
datasets

Techniques
KDD99 dataset UNSW-NB15 dataset
Accuracy (%) FAR (%) Accuracy (%) FAR

(%)
DT [79] 94.74 6.85 85.56 15.78
LR [79] 92.75 8.95 83.15 18.48
NB [79] 95.3 5.03 82.07 18.56
ANN [79] 97.04 1.48 81.34 21.13
EM Clustering [79] 78.06 10.37 78.47 23.79

and abnormal behaviours while those in the KDD99 dataset are outdated. Also,

the similarity of its normal and attack observations is another factor that indicates

its complexity, that is, its variances between normal and abnormal observations

are very low.

Secondly, from a statistical perspective, as the features of the TR and TS sets

in the UNSW-NB15 dataset are closely correlated as they have quite similar skew-

ness and kurtosis scores, as shown in Figures 3.9, 3.10 and 3.11, these techniques

do not provide the highest DR and lowest FPR as they do for the KDD99 dataset.

This means that a single ML technique cannot distinguish between normal and

abnormal observations as it has a kernel function(s) for solving a particular prob-

lem. Therefore, it is clear that the UNSW-NB15 dataset is more complex than

the KDD99 dataset.

3.12. Chapter Conclusion

This chapter covers two new large-scale network datasets, DARPA-2009 and our

UNW-NB15. The former is one of the latest and we analysed its first 30 pcap

files, which contain most of its security events, using some existing techniques and

tools, such as a TCP trace tool, to generate features from its pcap files and label

this portion according to its ground truth using a SQL Server 2008 tool.

139

To select the important features, we proposed a statistical method which can

distinguish between normal and malicious observations, with some existing ML

techniques applied to evaluate the DARPA-2009 dataset’s credibility for detecting

abnormal activities. However, the results and analysis showed that its packets do

not have a payload for attack vectors and there are some problems in its ground-

truth table for correctly tagging its observations. Therefore, we provided a new

dataset, namely, the UNSW-NB15, to address these challenges.

The UNSW-NB15 dataset was created by establishing an authentic testbed

environment at the UNSW cyber security lab, with the IXIA tool used to simulate

current representations of normal and malicious network traffic. The IXIA tool

has the capability of logging the exact processing time in its ground truth report

while launching malware events. This is one of the key advantages of the tool

that cannot find in existing simulation network tools because it can exactly con-

trol the transnational time of sending and receiving network flows . The dataset

contains 9 types of security and malware events and 47 features with their class

labels generated using Argus and Bro-IDS tools and new scripts incorporating the

characteristics of network packets. Some comparisons of this and other network

datasets were conducted to demonstrate its credibility for evaluating new NIDSs.

The analyses and evaluations of this dataset were explained in detail. A por-

tion of it was used to train and test the ML techniques and examining this dataset.

The training and testing sets were determined based on statistical analyses, feature

correlations and complexity evaluations. Firstly, the features of the two sets were

transformed into numerical values for statistical processing and then normalised

using the z-score function to prevent any change in their original distributions. The

statistical results from the Kolmogorov-Smirnov test indicated that the two sets

had the same non-normal and non-linear distribution while their feature skewness

and kurtosis values were statistically similar.

140

The feature correlations of the training and testing sets were estimated using

either the PCC method with the class label or the GR technique without the label,

with the findings indicating that these features were almost independent of each

other. Finally, five techniques, DT, LR, NB, ANN and EM clustering, were used

to evaluate the complexity of the UNSW-NB15 dataset with a comparison of its

overall results and those for the KDD99 dataset showing that the former was more

complex than the latter which indicated that it could be used to reliably evaluate

new methods for NIDSs.

Chapter 4 discusses the relevant features which help to differentiate between

legitimate and malicious activities, and Chapter 5 explains the methodology for

building new statistical NADS with lightweight, adaptable and scalable character-

istics.

141

Chapter 4
Relevant Feature and observation

Methods and Their Impacts on Design
of Lightweight Network Anomaly

Detection System

4.1. Introduction

A ‘relevant feature and observation method’, which plays an important role in

an IDS methodology, is a new way of handling the attributes and observations of

network data by eliciting and generating relevant vectors from network traffic with

no duplication of flows, and with characteristics that can precisely differentiate

between legitimate and suspicious activities in DE methods. We classify these

techniques as feature creation, flow aggregation and feature reduction (FR) which

enhance the performances and reduce the processing times of DE methods.

In this chapter, we contribute to the data pre-processing module discussed in

Chapter 2, subsection 2.6.2, in terms of its feature creation and reduction pro-

cesses. The former constructs a proper feature set which has the properties of

normal and malicious observations while the latter eleminates irrelevant features

by selecting a suitable set in a small-dimensional space. If the features are not

properly generated with these properties, DE methods will not efficiently distin-

guish among their observations. Therefore, constructing these features requires

in-depth analyses of network protocols and services for use in the DE module to

detect abnormal events. In the previous chapter, we suggest new features for both

the DARPA-2009 and UNSW-NB15 datasets. In this study, firstly, we extend that

work by generating a new set of features via analysing protocols and services of

142

the OSI model [226], as explained in Section 4.4, and then choose the important

features using FR methods.

Secondly, we clarify the significant role of flow aggregation in analysing net-

work data and designing an effective and lightweight ADS. Flow aggregation has

become necessary for various applications, including network planning and moni-

toring, as well as security management [227, 228]. With a flow aggregation step,

applications, in particular an ADS, can use several statistical measures, such as

packet counts and sizes of flows through network traffic for each specific time win-

dow as features that are passed to the DE method. The importance of this step is

to mine only relevant observations with no duplicate or missing values to improve

the performance of an ADS. In it, we investigate the simple random sampling [229]

and Association Rule Mining (ARM) [89] techniques to demonstrate how they are

used to implement flow aggregation.

Finally, we describe the impact of FR on the design of an effective and efficient

ADS for achieving the main targets of this PhD research. For network data, this is

the process of removing unimportant or irrelevant features from a collection of data

to improve the detection accuracy and processing time of a DE method. While

an ADS should be lightweight, to successfully achieve a high detection rate (DR)

requires a huge effort. Whereas many studies have tried to develop a lightweight

ADS by choosing important features using only feature selection (FS) methods,

we propose the concept of ‘relevant feature and observation’ method. This concept

includes feature creation to extract and generate the relevant attributes of normal

and malicious activities, flow aggregation to accumulate appropriate network ob-

servations and FR to reduce the original feature set into a small set to build an

efficient online ADS.

The key contributions of this study presented in this chapter are as follows.

1. A novel aggregator module is designed based on the theory of flow-level

analysis using a random sampling technique or ARM algorithm to decrease

143

the computational resources required and tackle some limitations of existing

flow tools.

2. A new ARM technique for feature selection is proposed and its performance

compared with those of the PCA and ICA techniques using some ML algo-

rithms to improve the accuracy of detecting attacks with a low processing

time.

3. A set of features from the DNS and HTTP protocols and their data sources

are created from the UNSW-NB15 dataset to build an effective NIDS for

detecting attacks that breach network applications using a new Adaboost

ensemble method including the three classification techniques DT, ANN and

NB.

4. An in-depth statistical analysis and discussions of the techniques used in

this chapter on the NSL-KDD and UNSW-NB15 datasets are provided to

demonstrate the importance of using relevant feature methods to develop an

intelligent NIDS.

The rest of this chapter is organised as follows. Section 4.2 discusses a network

flow analysis and its tools. An aggregator module for an ADS, including sampling

and ARM techniques, is described in Section 4.3. In Section 4.4, network features

are created based on analyses of the protocols and services of the TCP/IP model.

Section 4.5 includes the role of FR techniques, in particular ARM, PCA and ICA,

to demonstrate how they improve the design of an online ADS. The experimental

results obtained from the techniques used to select the relevant observations and

features of network data are provided in Section 4.6. Finally, we conclude this

chapter and provide future research directions in Section 4.7.

144

4.2. Network Flow Analysis

As a NIDS demands a feature creation step in its pre-processing module in order

to extract relevant attributes from raw network packets. Since current network

systems are large and have high-speed flows, the data of each have a large volume,

velocity and variety related to the phenomenon of ‘big data’ described in Chapter

3, Section 3.7. Consequently, network data should be handled using big data

analysis techniques for sniffing, storing in a database and processing purposes,

such as network flow analyses and detection mechanisms.

A network flow analysis is a method for finding important information from

raw packets using statistical and machine learning (ML) techniques. It involves

capturing, collecting and logging network data, aggregating them for query and

analysis, and analysing them to generate important information to assist a DE

method to effectively discriminate between normal and abnormal activities. This

information is related mainly to network management, measurement and security.

There are two ways of analysing network data, a deep packet inspection or

flow-level analysis [227]. The former analyses the payload (i.e., data) of packets,

takes a long processing time and faces the encryption problem while the latter

collects statistical information about packets without analysing their actual data

and consumes far fewer computational resources. Therefore, it is vital to use a flow-

level analysis while establishing an online ADS and, given the current encryption

of network systems, it is helpful to analyse only packet headers, as discussed in

Section 4.4. Different tools are used to elicit flows from packets, including Argus

and Bro-IDS which are described in Chapter 3, subsection 3.4.3, and NetFlow,

sFlow and IPFIX which are explained in the following subsections.

145

4.2.1. NetFlow

This is a traffic monitoring tool developed by Darren and Barry in 1996 [230]. It

describes how an ingress router collects information and statistical observations of

network packets through routed sockets. Since it has become an industry standard,

it is a built-in feature of several routers and switches of multiple vendors, such

as Cisco and Juniper. Its functionality involves network appliances inspecting

any packet arriving at the interfaces, collecting traffic statistics per flow using

a particular configuration for filtering or sampling and then constructing a flow

cache to extract the network data within a UDP or Stream Control Transport

Protocol.

A NetFlow cache entry is established by the first packet of a flow, maintained

for similar flow properties and periodically exported to collectors using flow-cache

management or flow timers. The Sampled NetFlow is a variant provided by Cisco

to decrease the computational resources required by reducing the number of flows.

It can be configured to a specific number of packets or randomly selected intervals

[227, 231].

4.2.2. sFlow

This is packet sampling of a network flow designed by InMon Inc [232] which has

become an industry standard declared in RFC 3176. Its internal functionality

depends on the theory of simple random sampling (discussed in subsection 4.3.1)

and it is supported by several firms, such as HP, Alcatel and Extreme, which

embed it in routers and switches. It can be implemented in layer 2 of a network

and extract non-IP traffic information.

Its agent is a software process that combines flow samples, interface counters

into datagrams and immediately transmits them to collectors using a UDP with

respect to the instant forwarding of data which minimises CPU and memory usage.

146

Packets are usually sampled by application-specific integrated circuits to provide

better performance, with the data including packet headers and switching/routing

information for each minute of network traffic [227, 233].

4.2.3. IPFIX

The IP Flow Information Export (IPFIX) protocol is an IETF standard for ex-

tracting network flows using NetFlow version 9 and is specified in RFC 5101 for

information-transferring protocols, RFC 5103 for exporting bidirectional flows and

RFC 5102 for information modelling. It was developed to meet the fast-growing

need to effectively capture network traffic, and includes an extensible and elastic

data model which can be easily customised. It was also designed to support reli-

able and secure data transfer through UDP and TCP and is less restrictive than

traditional flow tools [227].

4.3. Aggregator Module for ADS

The massive flows of current networks require an aggregator module1 that starts

by sniffing packets which finally collects in a data source to build an online ADS.

Although the above tools for network flow analysis are designed for this purpose,

they only aggregate and characterise network traffic using one attribute at a time,

such as source/destination IP addresses or protocol types [234]. However, aggre-

gating flows based on many attributes could determine patterns of several types of

attacks and malware, such as DoS, DDoS, aggressive port scans, flash crowds and
1

• A part of the work in this chapter has been released in the following.
Moustafa, N., Creech, G. and J. Slay. “Flow aggregator module for analysing network
traffic”, the International Conference on Computing Analytics and Networking
(ICCAN 2017), KIIT University, Springer, 2017.

147

Data

collector
Network

traffic

MySQL

database

Big data analysis

approaches, e.g.,

sampling or ARM

 Send flows

to the DE

Figure 4.1: Proposed aggregator module

worm spread. Because these types generate large flows, they require careful analy-

sis to combine all similar flows based on the attributes of the flow identifiers [228].

It is acknowledged that no IDS can efficiently detect abnormal instances when

depending on only single attributes rather than generating additional features by

incorporating several attributes at a time [235].

We design a new aggregator module based on the theory of flow-level analysis

to reduce the computational times required by resources and address the afore-

mentioned limitations of existing network flow analysis tools. Figure 4.1 presents

the proposed aggregator module which consists of four main components. The

first is a data collector which gathers network packets at the choke points of a net-

work, for example, through switches or routers. These packets are then stored in

a MySQL database for handling structured big data which can easily be installed

on any platform.

We aggregate network flows using MySQL’s standard functions [236] which

group them based on more than one attribute of the flow identifiers rather than

on only one as do existing network flow aggregation tools. Extracting such flow

features offers more information about a network’s normal and attack activities,

148

and assists in improving the performance of DE. Grouping the data of source

and destination IP addresses provides a better indication of the number of flows

occurring between two hosts rather than focusing on only each side separately.

To accumulate all possible combinations of the flow identifiers to obtain the rele-

vant features, we apply the ‘count’ aggregate functions which have the following

properties of normal and abnormal flows:

• select COUNT(*) as flows, srcip, dstip from network_data group by

srcip, dstip;

• select COUNT(*) as flows, srcip, srcport from network_data group by

srcip, srcport;

• select COUNT(*) as flows, dstip, dsport from network_data group by

dstip, dsport;

• select COUNT(*) as flows, srcip, dstip, dsport from network_data group

by srcip, dstip, dsport; and

• select COUNT(*) as flows, srcip, proto from network_data group by

srcip, proto.

In the above queries, flows indicates the number of flows occurring between any

two attributes, srcip the source IP address, dstip the destination IP address, srcport

the source port address, dsport the destination port address and proto the protocol

type. Any of these queries returns the number of flows taking place between the

attributes of aggregation. However, as building a set of distinct flows is not easy,

many aspects should be considered, including the fields in the datagram header,

the timers and counters with parameters that rely on the header fields, resource

depletion and the time of day. A flexible flow discriminator is extremely necessary

because the properties of IP and internet traffic change over time. Developing a

149

dynamic aggregator module for determining distinct and updated flows is impor-

tant for tracking the non-stationary characteristics of IP traffic and deploying an

online ADS.

We use sampling and ARM techniques to select significant network flows be-

cause they have their own advantages, as detailed in subsections 4.3.1 and 4.3.2,

respectively. It is very important for the design of an online ADS to obtain ag-

gregated flows which do not have duplicated or missing values in order to improve

the performance of the ADS when processing in real networks. Finally, these flows

are sent to the DE method that can distinguish between abnormal and normal

instances.

4.3.1. Sampling Techniques

Techniques for sampling network flows, which decrease the burden of handling

large volumes of data flows during their collection, storage and analysis, are com-

monly chosen to reduce the data input to data mining and ML algorithms. Packet

sampling is considered a foundation for a broad range of network management,

monitoring and engineering applications. It provides a dynamic perception of

a network’s activities through an in-depth analysis of its packet headers. This

packet information can be clustered to establish different network traffic statis-

tics, aggregates, estimations and detection of attacks, for example, counts, sizes

and inter-arrival times of packets as well as protocol distributions. Sampling tech-

niques group packet information based on different metrics in order to form some

clusters with data significant for identifying certain network problems [237]. The

accuracy of packet sampling relies on its sampling rate, application and periodicity

of the measured criteria.

The key benefits of these techniques over complete enumeration are their lower

processing times and implementation costs. They have been used for aspects of

network management, for example, IDSs, traffic measurement and reporting, and

150

traffic characterisations [227, 234]. However, packet sampling techniques have the

limitation of data distortion as they sometimes omit relevant instances that could

help to generate patterns contained in the data collection [232].

To address this issue, Carela et al. [238] analysed their effects on the accuracy

of network traffic classification using ML algorithms and proposed a solution for

reducing their impact. The authors claimed that using packet sampling rather

than conventional packet analyses, such as port-based and DPI methods, to extract

network flows in the training phase of a ML algorithm would improve the accuracy

of detection. Zhang et al. [239] developed two methods for identifying a high-

rate flow which should have short processing times as well as low memory and

CPU costs. The first is a fixed sample size test which depends on a user-specified

accuracy to evaluate its efficiency and the second a truncated sequential probability

test which uses sequential sampling to eliminate low-rate flows.

Lee et al. [240] suggested a sampling method for network data in which flows

come from the same application session, with the experimental results showing that

its processing time and accuracy are better than those of the Sampled NetFlow.

Shirali-Shahreza et al. [241] proposed a simple random sample (SRS) method that

dynamically collects similar flows and depends on counting any received packets.

Ha et al. [242] suggested a traffic sampling mechanism for software-defined net-

working which inspects malicious traffic whereas maintaining aggregated flows of

sampled network traffic is outside the inspection capability of the IDS. In this

chapter, we investigate different sampling techniques to determine which could

improve the accuracy of DE with a lower processing time.

We discuss the main categories of sampling used in practice [229] and select the

most suitable for the proposed aggregator module based on the following points.

• Systematic Sampling – which is also called interval sampling, depends on

arranging the data points of a dataset according to a particular ordering of

151

intervals of equal size. It involves a random starting point and then proceeds

to select other elements from these intervals.

• Stratified Sampling - handles a collection of data by dividing it into inde-

pendent subsets called ‘strata’. It chooses a random element from a stratum

to create a stratified sample using a simple random sampling method.

• Cluster Sampling - groups a dataset based on the distances, periods or

probabilities between its data points with a set of clusters, the elements of

which are randomly selected according to a sampling rate of each cluster.

• Multi-stage Sampling - organises a dataset into groups. It arbitrarily

selects some groups and then chooses the same number of elements. This

technique is considered an extension of cluster sampling which arbitrarily

groups a data collection and then selects its observations.

• Simple Random Sampling (SRS) - randomly chooses a sample in which

no observations of a given size are included more than once and all subsets of

the observations have equal probabilities of selection. Moreover, any given

pair of values has the same probability of selection as any other pair which

minimises data bias and simplifies analysis. Because n samples are chosen

from N packets, it is sometimes called n-out-of-N sampling [237] and, when

applied to network data, each network packet has an equal probability of

being selected. This technique arbitrarily generates n dissimilar numbers

in the range of 1 to N and then selects all packets with a packet location

equal to one of these numbers, with this step repeated for every N packet.

Examples of this technique for network tools are sFlow and Netflow which

use 1-out-of-N sampling procedures.

Given the high speeds and large numbers of flows in current networks, choosing

only relevant flows is vital for developing a lightweight and scalable ADS. For

network data, we apply the SRS technique due to its advantages [229]. Firstly,

it can minimise data bias which simplifies its analysis, that is, when selecting a

152

subset of a data collection, the variances between the observations in this subset

indicate those in the whole collection. Secondly, it can reduce computational costs

because it selects only a portion of the data collection which could contain different

patterns. To use this technique, it is difficult to specify the number of observations

to be analysed each time, that is, the sample size.

For this technique, we adopt the sample size according to the mode (i.e., online

or offline) to monitor and analyse network data. In the online mode, we use the

concept of the sliding window [243] which selects the number of flows for each

particular time of network traffic; for example, the aggregator module collects and

analyses network flows every 1 or 2 minutes. In the offline mode, we select a specific

number of observations from a dataset to be analysed at a time; for example, the

aggregator module sequentially analyses every 100 records. A discussion of these

techniques and the results obtained from them are provided in subsection 4.6.1.

4.3.2. Association Rule Mining (ARM)

We also propose handling large flows of network data using the ARM technique [89]

to ensure that all possible observations are collected and address the limitation of

data distortion that occurs in sampling techniques. This is a data mining method

used to estimate the correlation between two or more variables in a dataset by

determining the strongest rules that occur between their values.

To describe the ARM methodology, let r = {f1, f2, f3, ..., fN} be a set of

variables/features and D be a dataset consisting of T transactions {t1, t2, t3, ...tN}.

Each transaction (tj, ∀1 ≤ j ≤ N) has a relationship between features, where

tj ⊆ r. The association rule (f1(antecdent) ⇒ f2(precedent)) subjects to the

constraints of (1) ∃tj, f1, f2 ∈ tj (2) f1 ⊆ r, f2 ⊆ r, and (3) f1 ∩ f2 = Φ.

There are two measures, namely, support and confidence, for applying ARM

on a data collection which are used to estimate the strongest association rules that

have different patterns in the data. The former computes the frequency of feature

153

values, that is, the proportion of association of each rule (equation (4.1)) while the

latter computes the frequency of a precedent if the antecedent has already taken

place (equation (4.2)).

sup(f1 ⇒ f2) = | #tj | f1, f2 ∈ tj |
N

(4.1)

conf(f1 ⇒ f2) = | #tj | f1, f2 ∈ tj |
| #tj | f1 ∈ tj |

(4.2)

The ARM technique discovers all the frequent itemsets and generates the

strongest rules in them, with the strongest rules in a data collection (D) defined

as: 1) the estimated support of a rule is greater than a user-specified minimum

support (sup ≥ minsup); and 2) the estimated confidence of a rule is greater than

a minimum confidence threshold (conf ≥ minconf). Similarly, in the sampling

technique, we select the sample size analysed using ARM according to the mode

of network data processing, either online or offline. In the online mode, we use

the sliding window to choose the number of flows for each specific time of network

traffic and, conversely, in the offline mode, we choose a particular number of ob-

servations from a dataset to be handled each time. We suggest a Central Point

(CP) function with ARM to correlate the most repeated values of each attribute

to reduce processing times. This function calculates the mode of each value, nu-

meric or categorical, in which the most frequent values of each attribute occur

in a dataset, as in Example 1 [244]. Then, ARM is used to create the highest

associated values of network flows.

Example 1: Computations of modes of attribute values

154

1. Numeric values
 X= {1, 2, 1, 1, 3.2, 1} > mode = {1}

--

2. Categorical values
 Y={‘tcp’, ‘udp’, ‘tcp’, ‘udp’,‘udp’} > mode = {‘udp’}

Algorithm 4.1 presents the CP of the attribute values (i.e., mode). In lines 1

and 2, loops are assigned to all the attribute values, lines 3 to 12 check whether

these values are categorical or numerical and then the mode for each data part

is computed. Lines 13 to 17 repeat these steps until all the sample sizes in the

data collection are dealt with. Line 18 retrieves the mode of the sample sizes for

input to calculate the ARM values using the Apriori algorithm 4.2 [95]. There are

two steps in this algorithm: the first iteratively discovers all the frequent itemsets

which satisfy sup ≥ minsup; and the second generates all the association rules

that satisfy conf ≥ minconf .

By applying these two algorithms, we can select only the relevant network

flows aggregated from the MySQL database which can reduce the computational

cost of resources as we employ the CP function to collect the flows with the most

repeated values from the flow identifiers. As it is easy to apply this technique

to collect these flows in the shape of association rules, we extend it to build a

new FS method that extracts relevant features, as discussed in subsection 4.5.1.

Then, these features are passed to the DE approach which distinguishes between

legitimate and suspicious observations. While these observations contain all the

information of the raw packets, the OSI model mines only the relevant features by

analysing its protocols and services.

155

Algorithm 4.1 Central points of attribute values

Input: d dataset, p
Output: centres

1: for (r =1 to length (row)) do
2: for (c= 1 to length (column)) do
3: if (d[r][c] != categorical) then
4: pre[r][c] =mode(d1:p)
5: else if (d[r][c] != 0) then
6: centres[r][c]= +pre[r][c]
7: else
8: pre[r][c]=count(d1:p)
9: if (pre[r][c] > pre[r][c+1]) then
10: centres[r][c] =+pre[r][c]
11: end if
12: p=p-1
13: row =row-(row/p)
14: end if
15: end for
16: end for
17: return (centres)

Algorithm 4.2 Steps of Apriori algorithm

Input: T transactions, α threshold of minsup, minconf
Output: LKfrequent itemset of size K

1: L1 ={large 1- itemsets}
2: k = 2
3: while (LK−1 6= Φ) do
4: CK =Generate (LK−1)
5: for (each condidate t ∈ T) do
6: Ct =subset (CK , t)
7: for (each condidate c ∈ Ct) do
8: count [C] =count [C]+1
9: end for
10: end for
11: LK ={c ∈ CK | count[C] ≥ α}
12: K = K + 1
13: end while
14: return (LK)

156

4.4. Network Feature Creation

To build an effective ADS, it is important to create relevant features from raw

network packets while sniffing them. These features should have the properties

of legitimate and suspicious activities occurring in a network system. To extract

them from network traffic, it is vital to collect network flows at the destination

nodes using ingress routers, gateways or switches to ensure that only relevant

packets, which include information about network protocols and services that can

be transmitted between network endpoints, are collected.

The performance of any ADS could be improved by analysing the protocols and

services used to mine only the important features with different patterns through

transmitting and receiving network flows. The relevant network features are col-

lected from network flows which have unidirectional or bidirectional sequences of

packets between any two endpoints (i.e., client-to-service or vice versa). The most

important fields in a flow are its source/destination IPs and ports, the first and

last times it is received, and its protocols, type of services and bytes transferred.

These fields are used to mine information about protocols and services based

on the potential analysis of the OSI model; for example, when we extract infor-

mation about any application protocol, such as FTP, and all services, our path for

obtaining them is (IP -> TCP -> FTP). Table 4.1 shows the new features added

to the 49 in the UNSW-NB15 dataset in Chapter 3 to provide a wide variety of

features regarding all the information included in the raw packets. They are gen-

erated from an in-depth analysis of the protocols and services of the application

layer of the OSI model, in particular HTTP, DNS, FTP, SMTP, SSH and SNMP,

which are commonly used to send and receive data between any two endpoints,

due to their significant functions in network systems, as discussed in Appendix

A. The aim of this analysis is to ensure that the important features in the FR

stage that can help DE approaches effectively and efficiently differentiate between

normal and abnormal patterns are selected.

157

Table 4.1: New features created from analysing application protocols of TCP/IP
model

No. Type Name Description
50 Integer len_httpurl Length of URL from HTTP protocol
51 Integer len_httphost Length of values of HTTP host header
52 Integer len_dnsquery Length of subject of DNS query
53 Integer len_dnsanswer Length of resource descriptions in

answer to query
54 Integer dns_qclass Length of qclass value specifying class

of query
55 Integer dns_qtype Length of qtype value specifying type

of query
56 Integer len_smtpsubject Length of SMTP contents of subject

header
57 Integer sshstatus Status of SSH - either running or not
58 Integer snmp_dur Record duration of SNMP protocol
59 Integer snmp_getrequest Length of Getting Request message of

SNMP protocol

Given the existence of ubiquitous computing, internet applications and dis-

tributed software systems, which are increasingly being installed to provide on-

line services, face massive risks from intrusive activities. Internet protocols are

currently convenient because they provide access to services and information any-

where, anytime [245] and have led to a substantial increase in the prevalence of

computing resources due to users’ dependence on these services and applications.

Internet application resources involve web client systems, web server devices and

database systems, and software interactions among them [246] occurring through

using the functionalities of specific protocols, such as FTP, DNS and HTTP.

In the OSI model [226], seven layers are included in a networking system,

each of which has a set of protocols that communicate with its counterparts in

other networks; for instance, network A connects to network B via transport and

internet layers. Internet protocols, particularly DNS and HTTP, interact directly

with back-end database systems and client-server applications to store user and

network activities. The DNS is a crucial protocol for most internet services and

158

the HTTP a staple data communication protocol for the World Wide Web [247].

Attackers breach users’ privacy by exploiting the vulnerabilities of these protocols

and, in the following subsection, because of their significant roles, we analyse these

protocols in depth and suggest new features that can help to identify the malicious

events they face.

4.4.1. Proposed DNS and HTTP Features

The DNS and HTTP are two fundamental protocols for internet applications which

interact directly with user data [247]. The former is a hierarchical distributed

system connected to the internet or a network which maps domain names that

can be simply memorised by users to numeric IP addresses using authoritative

name servers for each domain. The purpose of the DNS protocol is to prevent

any conflict among reserved domain names and facilitate computer services and

devices [248]. The HTTP is an application protocol that interchanges hyperlinks

of users between nodes, including structured text, with its functions dependent on

a request-response service which occurs in a client-server system. In other words,

a client submits a HTTP request message to its server which returns a response

to the client and provides resources such as HTML files [249].

Several research studies have been conducted to design features for the DNS

and HTTP to identify malicious events facing these protocols; for example, Mar-

chal et al. [250] developed a scalable distributed IDS based on collecting data from

honeypot and DNS data, HTTP traffic and IP-flow records. However, they did

not provide the features used for its implementation and the analysis of those data

was executed in an offline manner with other systems. Valdes et al. [251] linked

the alert actions of similar features in the DNS and HTTP by grouping their trig-

gering events to recognise similar attacks and raise different alerts. Then, in [252],

alarms from several NIDS are correlated in one system to accomplish high-level

159

explanations of attacks. Nonetheless, this technique does not provide a realis-

tic evaluation of the proposed NIDS as how those systems are correlated is not

described.

In contrast to a deep packet inspection, Nassar et al. [253] proposed a new

NIDS for monitoring a flow-based network in order to improve its attack detection.

The authors claimed that this system is more effective and secure for analysing

data sources although a flow-based inspection without inspecting the packet pay-

load does not provide complete information about the network traffic. Sitaram

et al. [254] stated that network-based IDS problems can be solved by large cloud

providers. They built a NIDS for handling big data network streams using exist-

ing big data analysis techniques, such as Hadoop, and network monitoring tools

called Packet-Pig [255] which can be used to inspect packets, analyse deep net-

works and even capture a full packet using the Hadoop tool. Although this study,

which primarily shows the efficacy of using clustering algorithms in DE, is related

to our work, specifically regarding extracting features from network traffic, our

research focuses mainly on extracting features from the DNS and HTTP due to

their effective roles in internet applications.

Attackers exploit the vulnerabilities of victims using various deceptive ap-

proaches [256–258], for example, they create untrustworthy accounts to target

users who have limited experience in registering their information about internet

applications. Internet assailants breach the weak points in websites and services

using a range of exploitation techniques, for instance, zero-day, polymorphic code,

DNS spoofing, DoS, exploits, URL interpretation and stealth attacks [259, 260].

An ADS detects malicious activities in network traffic using a set of features from

the seven layers of the OSI model [226], with an effective system acting as an

ongoing deterrent against spoofing and stealing information based on selecting

relevant features that affect the discrimination between normal and abnormal net-

work records.

160

Network Traffic

Flow-based Service-based

Transactional
Features

HTTP
Features

DNS
Features

Figure 4.2: Proposed features of DNS and HTTP

We propose a methodology for extracting and generating a set of features

from the DNS and HTTP to detect malicious observations using DE approaches.

The tools for capturing these features from network traffic are discussed below

while the features used to build an effective ADS that can detect attacks which

attempt to exploit the DNS and HTTP, including flow-based and service-based

features, are depicted in Figure 4.2. The flow-based features are extracted from

both protocols to carefully analyse their fundamental header information to select

important features. These features are widely used in online analyses of network

traffic and offer high accuracy using ML algorithms if their values for legitimate

observations differ from those for suspicious activities [250].

The flow-based features include the five flow identifiers of the source-destination

IPs/ports, protocol types and the flow statistics called transactional features. The

Tcpdump tool captures the header information of the packets to sequentially gen-

erate the flow identifiers, with the transactional features created from the interac-

tions of these identifiers with respect to the times of the packets. These features

depend on the consistency of the flow times (i.e., feature 6 ltime in Table 4.2)

161

for maintaining the online detection of attacks using the throughput of network

traffic.

The service-based features comprise intrinsic information extracted from the

application layer of the OSI model for dealing directly with the user information

stored in the DNS and HTTP. Firstly, DNS features are elicited from common

DNS query responses and domain names, with statistical features generated from

this protocol, for example, the lengths and means of the query and answer at-

tributes. Secondly, HTTP features are generated by analysing the HTTP requests

and responses from basic information of the interacting clients and servers, such

as the length and mean of the method and URL attributes. It is observed that the

statistical features, which define the core information of these protocols, help to

discriminate between normal and malicious instances and are easily created dur-

ing online processing when implementing ML techniques to recognise malicious

instances in network traffic.

A. Tools for generating DNS and HTTP Features

To create the features of the DNS and HTTP from network traffic, the three tools,

tcpdump, Bro-IDS and a new extractor module depicted in Figure 4.3, are used2

. Firstly, the tcpdump tool captures the network traffic in the format of pcap files

to analyse network flows. Secondly, the Bro-IDS tool analyses the pcap files to

extract the flow-based features and general information from the DNS and HTTP

stored in log files. The HTTP log file contains information of the HTTP request-

response pairs and all appropriate metadata about the protocol while the DNS log

file contains DNS queries and their associated responses. These files are stored
2

• A part of the study in this chapter has been submistted in.
Moustafa, N., Creech, G. and J. Slay. “Detecting Malicious Activity of DNS and HTTP
Protocols: An Ensemble Learning Framework using Proposed Statistical Features”, Jour-
nal of Computers & Security, ELSEVIER, 2017, “in press”.

162

Tcpdump

MySQL

database

Bro

Extractor Module

F
in

a
l

sh
a

p
e

M
a

tc
h

 a
tt

ri
b

u
te

s

Flow IPs

DNS

attributes

HTTP

attributes

Csv files

Pcap files

Figure 4.3: Tools used to create DNS and HTTP features

in a MySQL database for ease of generating additional statistical features and

labelling instances as either normal or anomalous.

Thirdly, the newly proposed extractor module simultaneously begins to create

additional statistical features from those extracted by the Bro-IDS tool and stored

in the MySQL database. Using this configuration, the proposed features can be

easily established through online processing without losing the packet information.

To illustrate the processes in the extractor module, given a data source with a set

of r records, each of which includes a set of features {f 1, f2, f2,, fN}, where N

is the number of features. The mean (f̄) and length (λ(f)) of feature values are

computed using equations (4.3) and (4.4), respectively.

f̄k =
∑k
i=0 ∀f
k

(4.3)

163

λ(f) =
r∑
i=0

C(f) (4.4)

where k is a certain number of rows and C(f) a count of the numbers or letters

of the feature values, with these two equations applied to create the proposed

statistical features.

Since statistical behaviours cannot be computed for only one record, we ap-

ply the statistics for every sequentially ordered 100 records with respect to the

session times of the packets. The connections between these 100 records identify

the patterns of normal and attack activities and efficiently define the records’ cor-

relations [42, 261]. Then, the classification techniques use the statistical feature

values to discriminate between legitimate and suspicious records. The steps for

constructing the extractor module are provided in Algorithm 4.3. For every 100

records stored in the database, the lengths, rates and/or means of the existing

feature values, especially categorical features, such as query, answer, method and

host, are computed to create the new statistical features.

Table 4.2 lists the proposed features elicited, with 7 to 11, 17 to 25 and 32

to 36 obtained from the new extractor module and the remainder mined by the

Bro-IDS tool.

To generate the DNS and HTTP features and observations, we analyse the

UNSW-NB15 dataset which contains 349,000 DNS and 319,000 HTTP records,

with the distributions of normal and attack vectors provided in Table 4.3. In

164

Algorithm 4.3 Generating statistical features of DNS and HTTP

Input: f [N][R], n=0, rate=0 // n is a counter of similar feature values
Output: f_n[], f_rate[] //arrays for storing feature

1: for (i to r) do
2: for (j to k) do
3: if (f[i][j] == f[i][j+1] then
4: n++
5: else
6: n=1
7: end if
8: end for
9: f_n[i]=n
10: j=m // m number of records (i.e., 100)
11: rate = n / m
12: f_rate [i]= rate
13: end for
14: return (f_n, f_rate)

order to detect abnormal observations, we apply some existing ML techniques to

evaluate the capabilities of the proposed features to detect attacks that expose

internet applications in the protocols.

4.4.2. Proposed Ensemble Method for detecting DNS

and HTTP Malicious Activities

In order to efficiently detect DNS and HTTP malicious observations, we propose

an ensemble method that consists of the three supervised ML algorithms, namely

Naïve Bayes (NB) [188], Decision Tree (DT) [187, 189] and Artificial Neural Net-

work (ANN) [187]. The algorithms are integrated as an ensemble method using the

Adaboost model [262, 263] for the design of an adaptable NIDS that can identify

malicious instances that breach DNS and HTTP network systems. Each algorithm

is considered a weak classifier with its findings not considered sufficiently high com-

pared with those of the ensemble method while the Adaboost model distributes

network instances that can be successfully classified by these algorithms.

165

Table 4.2: Proposed features of DNS and HTTP Protocols
No. Name Type Description

Flow Features
1 srcip N Source IP address
2 sport I Source port number
3 dstip N Destination IP address
4 dsport I Destination port number
5 proto N Protocol type
6 ltime T Last time of connection

Transactional Features
7 ct_dst_ltm I Number of connections to the same

destination (3) in 100 records according
to the last time (6)

8 ct_src_ ltm I Number of connections of the same
source (1) in 100 records according to
the last time (6)

9 ct_src_dport_ltm I Number of connections of the same
source address (1) and the destination
port (4) in 100 records according to the
last time (6)

10 ct_dst_sport_ltm I Number of connections to the same
destination (3) and the source port (2)
in 100 records according to the last time
(6)

11 ct_dst_src_ltm I Number of connections of the same
source (1) and the destination (3) in 100
records according to the last time (6)

To clarify why these classification algorithms are chosen for the proposed

ensemble method, the correlation measure and scatter plots are major factors.

According to the results discussed in subsection 4.6.2, the correlation measure

demonstrates that the proposed features are positively linearly interrelated and

the scatter plot represents a straight line with a positive trend between the fea-

tures of DNS and HTTP protocols. This led to deciding which of the classification

algorithms would be selected based on the potential procedures required to im-

plement them, such as distance- and probability-based learning; for example, let

there be two vectors (v1 (normal) and v2 (abnormal)) with the difference between

them very small, i.e., v1− v2 ' 0. As each algorithm is designed using a specific

kernel function, such as a probability, weight or feature value, we integrate these

166

DNS Features
12 query N Domain name subject of the query
13 q_class I Value specifying the query class
14 q_type I Value specifying the query type
15 answers N List of resource descriptions in answer

to the query
16 ttls I Caching intervals of the answers.
17 len_qry I Length of the query (12)
18 len_ans I Length of the answers (15)
19 mean_class F Mean of the class in 100 records

according to the last time (6)
20 mean_type F Mean of the type in 100 records

according to the last time (6)
21 ct_src_qry I Number of the srcip (1) and the query

(12) in 100 records according to the last
time (6)

22 avg_ttl_ltm F Average value of the ttls (16) values in
100 records according to the last time
(6)

23 ct_dm_src I Number of domains (12) to same srcip
(1) in each 100 records according to the
last time (6)

24 ct_dm_dstip I Number of domains to same dstip (3) in
each 100 records according to the last
time (6)

25 dm_ratio F The percentage of the domain in each
100 records according to the last time
(6)

three types of functions to classify network data with slight variances between its

normal and suspicious instances.

Therefore, we select the ANN, NB and DT because they can classify such

observations effectively. The ANN relies on weighting each feature to produce

accurate linear class bounds. The NB depends on computing the posterior proba-

bility that estimates all the possible data distributions to discover slight variances

between each class label in the training phase. Finally, as the DT uses the feature

values to divide the feature space into regions with mainly the same label, it can

simply find slight variances between feature observations.

167

HTTP Features
26 method N HTTP Request Method e.g., GET,

POST, HEAD
27 host N Value of the HOST header
28 trans_depth I Pipelined depth into the connection
29 url N URI used in the request
30 req_body_len I Actual uncompressed content size of the

data transferred from the client
31 res_body_len I Actual uncompressed content size of the

data transferred from the server
32 len_host I Length of the HOST header value
33 len_url I Length of the URL
34 ratio_mth_host F Percentage of the method (26) with

same the host (27) in each 100 records
according to the last time (6)

35 ratio_mth_url F The percentage of the method (26) with
same the url (29) in each 100 records
according to the last time (6)

36 ratio_host_url F Percentage of the host (27) with same
the url (29) in each 100 records
according to the last time (6)

Type- I: Integer, F: Float, N: Nominal, T: Timestamp

Table 4.3: Types of DNS and HTTP records
DNS HTTP

Normal 345561 295689
DoS 130 1814
Exploits 689 15804
Fuzzers 1008 1105
Generic 1563 1885
Reconnaissance 49 1983
Analysis NF 369
Backdoor NF 212
Worms NF 139
• NF denotes not found

168

subset-1

Dataset subset-2

subset-3

Update data
distribution

DT

ANN

NB

Weighted
majority
voting

Base learners

Normal or
Attack

Divide dataset
into N subsets

Step 1

Step 2

Step 3

W-1

W-2

W-3

Figure 4.4: Adaboost flowchart

To distribute network data among these algorithms, we apply the boosting con-

cept [262, 263] that establishes multiple base learners by consecutively reweighting

the instances in the training phase. Each instance incorrectly classified by the first

base learner obtains a higher weight in the next round in the training phase. The

main idea of boosting is to regularly use a base learner to change forms in the

training phase, thereby creating a sequence of base learners for a selected number

of iterations. In more detail, all the instances are initiated with equal weights

and then each iteration is used as a base learner for them. To distribute the

data, the weights of the correctly classified observations decrease while those of

the incorrectly classified observations increase. The final model attained by the

boosting concept is a linear combination of many base learners weighted by their

own performances.

In this chapter, we use the Adaboost technique [262, 263], which is the most

widely applied to ensemble learning methods, to distribute input data on the clas-

sification algorithms used. The flowchart and steps of the Adaboost technique

presented in Figure 4.4 and Algorithm 4.4, respectively, reveals how we can apply

it to the proposed DNS and HTTP data sources. The results from the proposed

method show better performances in terms of the DR and FPR than each algo-

rithm used, as detailed in subsection 4.6.3.

169

Algorithm 4.4 Steps of Adaboost model

Input: Dataset D = {(x1, y1), (x2, y2), ..., (xm, ym)}, base learning techniques L,
Number of iterations I

1: Di(j) = 1/m // intialise the weight distribution
2: for (i to T) do
3: hi = L(D,Di) // train a base learner hi fromD using distributionDi

4: εi = Pi,Di
[hi(xi 6= yi)] // estimate the hi error

5: wi = 1
2 ln 1−εi

εi
// determine the hi weight

6: Di+1(j) = Di(j)
Qi
∗

{
exp(−wi) ifh(xi) = yi
exp(wi)ifhi(xi) 6= yi

}
//update the the distribution,

where Qi is computed by (6)
7: Qi = Di(j) exp(−w,yi,hi(xi))

QI
// normalisation factor which enables Di+1to be a

distribution end
8: end for
9: return (H(x) = sign

∑I
i=1 wihi(x))

4.5. Role of Feature Reduction (FR)

FR, which is defined as a means of removing unimportant or noisy features from

a data collection, is of two types, FS and feature extraction (FE) [44]. Firstly, FS

eliminates irrelevant or redundant features from a given dataset and then FE con-

verts the high-dimensional space data into a lower-dimensional space. FS methods

have been used in the field of NIDS to eliminate unnecessary features. Their goal

is to decrease the computational cost of DE methods, remove redundant informa-

tion, improve the accuracy of DE and help to analyse the norm of network data

[26, 264], and can be categorised as filter, wrapper and hybrid methods. The filter

method does not apply any classifier to filter out irrelevant and duplicated features

but uses the underlying characteristics of the training data to evaluate the best

features using some independent measures, such as of distance and correlation,

and does not require a long execution phase. A wrapper method employs a clas-

sifier to assess the goodness of features while a hybrid technique combines filter

170

and wrapper approaches. However, as both require a long execution time [88], we

focus on filter methods for building an online ADS.

4.5.1. ARM Feature Selection Method

Because network systems contain a great deal of information provided by their

protocols and services, network flows have many features, some of which are re-

dundant or irrelevant. It can be seen that redundant features are a major reason

for increases in the false alarm rate (FAR) and decreases in the DR. We propose an

ARM FS method that generates the strongest itemsets of features by computing

the support of confidence of the rules, as explained in subsection 4.3.2.

We suggest using Algorithm 4.5 to select the important features using the ARM

methodology3. Line 1 executes Algorithm 4.2 which generates all the possible rules

in a data collection. From lines 2 to 13, if the rules do not satisfy the constraints,

they are removed, otherwise the support and confidence measures are computed

using equations 4.1 and 4.2, respectively. In lines 12 and 13, the rules are chosen

using the estimated support and confidence. In line 16, all the rules are ranked

in descending order based on the estimated support and confidence measures.

From lines 17 to 22, the significant features are selected when the constraints of

sup ≥ minsup and conf ≥ minconf are achieved with respect to the number

of features [265].

3

• A portion of the study provided in this chapter has been released in the following.
Moustafa, N., & Slay, J. (2015). A hybrid feature selection for network intrusion detec-
tion systems: central points and association rules, Proceedings of the 16th Australian
Information Warfare Conference (IWAR 2015), Perth, Australia, November 2015.

• Moustafa, N., & Slay, J. (2015). The significant features of the UNSW-NB15 and the
KDD99 Data sets for Network Intrusion Detection Systems. Proceedings of the 4th Inter-
national Workshop on Building Analysis Datasets and Gathering Experience Returns for
Security (BADGERS 2015), collocated with RAID2015, Kyoto, Japan, November 2015.

171

Algorithm 4.5 Proposed ARM feature selection method

Input: D (training set), minsup (minimum support threshold), minconf (mini-
mum confidence threshold) , C (class label), X (number of required features)

Output: F (feature subset)
1: R = Apriori(D, minsup, minconf, C)
2: for (i=1 to length(R)) do
3: if (R[i]==R[i+1]) then
4: count[i] = count[i] + 1
5: else
6: count[i]=1
7: end if
8: filter_R[i]= R- R[i]
9: end for
10: for ((j=1 to length(filter_R)) do
11: if (count[j]<=1 || R[j] /∈C) then
12: sup[j] = count[j] / length(filter_R)
13: conf[j] = count[j] / length (D[j])
14: end if
15: end for
16: Sort (filter_R, sup, conf)
17: for (m=1 to X) do
18: if ((sup >= minsup && conf >= minconf) then
19: F =F + (extracted_features (r) ,C)
20: end if
21: end for
22: return (F)

Figure 4.5 presents an example that illustrates the execution of Algorithm 4.3

using the UNSW-NB15 dataset. In the rule-set, the values of Minconf and Minconf

are set to 0.4, with only the rules that satisfy these values selected. Then, in the

feature-set, only two features (X = 2) are selected for each class type in the dataset

based on the setting parameters. If a set of features is selected for all types in the

dataset, we sort all the ranked features and base the cut-off on only the number

of features (X).

172

 Minconf 0.4

 Minsup 0.4

 No of rules 100

No Sup Conf Rules

1 0.8 0.7 state, dbytes, sttl -> attack_cat= Generic

2 0.8 0.6 sttl, ct_srv_src, dintpkt -> attack_cat= Exploits

3 0.70 0.62 dbytes, dttl, sloss -> attack_cat= Generic

4 0.5 0.49 dttl, synack, dwin -> attack_cat= Normal

. . . .

. . . .

. . . .

100 0.48 0.47 dwin, swin, dttl -> attack_cat= Normal

 X=2

Extracted_features C

State, dbytes Generic

Sttl, ct_srv_src Exploits

Dttl, synack Normal

Rule-Set

Feature-Set

Figure 4.5: Example of ARM FS method using UNSW-NB15 dataset

4.5.2. Principal Component Analysis (PCA)

The PCA ranks a set of variables/features based on the highest variance for each

variable and creates a new dimensional space of uncorrelated variables by remov-

ing those with low variances [90] which works well for data that are Gaussian

distributed [91]. The first principal component of a transformation is the linear

combination of the original variables with the highest variances while the other

components with the lowest are sequentially omitted [90, 266]. To describe the

PCA methodology, let a dataset (X) be a set of records (x1, x2,, xd) with nx1

vectors such that each record has a vector of length n. The mean for each variable

is defined by µ = 1/d∑d
i=1 xi and a deviation from it denoted by ϕi = xi − µ.

covdxd = 1
n

n∑
i=1

ϕiϕ
T
i = 1

n

n∑
i=1

(xi − µ)T (xi − µ) (4.5)

173

In equation (4.3), the covariance matrix (cov()) is computed to measure the

score of the linear correlation between two variables, where ϕTi is the transposed

matrix of ϕi. A detailed description of covariance can be found in [90].

To reduce high dimensions using PCA, the eigenvalues and corresponding

eigenvectors of the cov are always computed using SVD [90, 91]; for example,

assume that (k1, q1), . . . , (kg, qg), . . . , (kl, ql) are l eigenvalue-eigenvector pairs of

the cov. Then, the g eigenvectors corresponding to the largest eigenvalue, where

g refers to the internal dimensions of the feature subspace, can be represented as

k1 + k2 + ...+ kg∑l
i=1 ki

≥ w (4.6)

where W is the ratio of the variance in the subspace to the total variance in

the original space and the lxg matrix (N) in which the variables contain g. The

projection of the principal components (Fi) from the original feature is

Fi = NTϕi = NT (xi − µ) (4.7)

The input to learning techniques in DE is the original features (xi) or principal

components (Fi) selected. The steps for applying the PCA technique to select

the most important features of network data and their principal components are

provided in Algorithm 4.6.

4.5.3. Independent Component Analysis (ICA)

The ICA is a generative model which generalises the PCA technique [91]. It mines

unidentified hidden components from multivariate data, that is, linear mixtures of

174

Algorithm 4.6 Steps for applying PCA to reduce features

Input: feature set (F)
Output: subset of features (F ’), principal components (FC)

1: compute covariance matrix of F
2: compute eigenvectors and eigenvalues from covariance matrix
3: sort eigenvalues in descending order and choose k eigenvectors that correspond

to k largest eigenvalues, where k number of dimensions of new feature subspace
(k ≤ d)

4: construct projection matrix (W) from selected k eigenvectors
5: transform original dataset (X) viaW to obtain k-dimensional feature subspace

6: select highest-ranked N of F ’ and their principal components (FC)

some latent variables, using only the assumption that the unknown components

are mutually independent and non-Gaussian from a statistical perspective. Inde-

pendence, which indicates that the information carried by one component cannot

be derived from any others [267], is broadly used in several applications, such as

data compression and data analysis. It converts original features into a set of

independent attributes by maximising the non-Gaussian data of new components.

While it is acknowledged that PCA does not work well for data that is not

Gaussian distributed, ICA fits non-Gaussian data, which is the norm for network

data, very well [91, 267], as explained in Chapter 2, Section 3.9. Therefore, we

use ICA to select relevant features and compare its results with those obtained

from PCA to decide which will be effective for the design of an online and scalable

ADS.

The general ICA technique is given as

x = As+ n (4.8)

where x is a m-dimensional feature observation, s the vector of assumed n-

dimensional independent components, A a constant m × n mixing matrix with

175

m ≥ n and n a noise term. As, in an ADS, we assume that network traffic is logged

and labelled in a noise-free environment, the ICA model can be reformulated as

x = As (4.9)

and

s = Wx (4.10)

where W is the un-mixing matrix, called a mapping function, for projecting x

to s.

ICA makes the best guesses of A and s given x with the constraint of max-

imising the non-Gaussian data so that these independent components are suitable

representations of the data. To solve equation (4.8), we describe the constraint of

maximising the non-Gaussian data as minimising the mutual information between

n variables (si), where i = {1, ..., n}, as

MI(s1, s2, ..., sm) =
∑
i

H(si)−H(sd) (4.11)

whereH is the differential entropy. Although the mutual information is usually

non-negative, if it is zero, equation (4.9) is expressed as

∑
i

H(si) = H(so)⇒ (4.12)

∑
i

∫
p(si) log p(si)dsi =

∫
p(so) log p(so)dso

176

and

p(sd) = p(s1)p(s1)...p(sm) (4.13)

This means that the selected features are statistically independent. Because

mutual information is the normal way of estimating the independence of variables,

it could be used as the standard for determining the appropriate ICA transfor-

mation. The steps for applying the ICA technique to choose the most relevant

features of network data and their components are presented in Algorithm 4.7.

Algorithm 4.7 Steps for applying fast-ICA to reduce features

Input: feature set (F)
Output: subset of features (F ’), principal components (FC)

1: set initial weight vector (W) to generate each FC
2: Compute w+ = Exg(wTx)–Eg′(wTx)w
3: Compute derivatives of contrast functions (G) for steps 4 and 5
4: g1(u) = tanh(a1.u)
5: g2(u) = u. exp(−u2/2)
6: Compute w = w+/||w+||(normalisation step)
7: If not converged, go to step 2
8: (converged if norm (wnew–wold) > ξ or norm (wold − wnew) > ξ, where ξ =

0.0001)
9: Apply above steps to generate N features of F ’ and their components (FC)

of W

4.6. Experimental Results and Discussion

In this section, the empirical results for the two main aspects considered in this

chapter are discussed. Firstly, those obtained from the aggregator module, i.e., the

177

sampling and ARM techniques that show the relevant observations in a dataset,

are described in subsection 4.6.1. Secondly, the important features selected using

ARM, PCA and ICA as well as their evaluations using some ML techniques are

explained in subsection 4.6.2.

4.6.1. Aggregator Module

As current networks send and receive many flows, the aggregator module is im-

portant for the design of an online ADS. As the sequences in a flow often relate

to different activities, such as retrieving a web page or chatting, although uncor-

related to each other, they might still belong to the same user. While monitoring

network traffic, as an ADS cannot observe all flows due to the high speeds and

large sizes of current networks, this leads to many packets which could contain ma-

licious information being dropped. Therefore, we propose selecting only relevant

observations, which do not have duplications or inappropriate activities, using the

SRS and ARM techniques, and demonstrate their influence on the design of an

online ADS.

Table 4.4 presents an example of a data sample with 10 observations, 5 normal

(0) and 5 attack (1), taken from the UNSW-NB15 dataset for applying the SRS

and ARM techniques. It shows the flow identifiers (i.e., srcip, sport, dstip, dsport

and proto) and the label for each instance which describe the results obtained from

these techniques for selecting relevant flows in real networks.

For the SRS technique, we select half the observations that could have suitable

information about network flows, as listed in Table 4.5. Although, by selecting

only half, relevant information that has some suspicious instances may be omitted,

given the large number of flows, selecting only distinct observations will improve

the performance of an online ADS because the statistical characteristics of the

data sample and selected sample shown in Figures 4.6 and 4.7, respectively, are

approximately similar.

178

Table 4.4: Example of data sample for applying SRS and ARM techniques
No. Srcip Sport Dstip dsport Proto Label
1 149.171.126.14 179 175.45.176.3 33159 Tcp 0
2 175.45.176.3 22592 149.171.126.16 143 Tcp 0
3 175.45.176.2 61809 149.171.126.19 161 Udp 0
4 175.45.176.0 45235 149.171.126.16 21 Tcp 0
5 175.45.176.0 15816 149.171.126.10 5060 Udp 0
6 175.45.176.0 3716 149.171.126.15 80 Tcp 1
7 175.45.176.2 7434 149.171.126.16 80 Tcp 1
8 175.45.176.0 16495 149.171.126.10 80 Tcp 1
9 175.45.176.2 9710 149.171.126.15 32780 Udp 1
10 175.45.176.1 15982 149.171.126.14 5060 Udp 1

Table 4.5: Selected sample using SRS technique
srcip Sport Dstip Dsport proto label
175.45.176.0 16495 149.171.126.10 80 tcp 1
175.45.176.2 61809 149.171.126.19 161 udp 0
175.45.176.1 15982 149.171.126.14 5060 udp 0
149.171.126.14 179 175.45.176.3 33159 tcp 0
175.45.176.0 3716 149.171.126.15 80 tcp 1

The scatterplot matrices presented in these two figures demonstrate the sta-

tistical properties of the samples and their selected parts using the SRS technique

which is a good way of determining if there are many linear correlations among

features. This is particularly helpful for analysing specific features that could have

similar correlations. In each figure, the features are written in a diagonal line from

top left to bottom right and then plotted against each other, with the plots on the

lower left-hand side mirror images of those on the upper right-hand side.

The SRS technique is very effective for summarising network data to determine

their patterns and active protocols, services and source/destination IP addresses.

However, as it can be observed that there are small differences between the features

in the two figures, it could remove important flows that have information about

malicious activities. Therefore, for the design of an effective ADS, it is better to

179

Figure 4.6: Scatterplot matrix analysis of data sample

use correlation methods to collect relevant observations occurring in networks in

order to not miss any distinct observations. The aim when using such approaches

is to collect all the appropriate flows in a network without losing any between two

different endpoints and then aggregate them to ensure a full analysis of network

traffic with a low processing time, as described in Section 4.3.

In flow sampling, a subset of all incoming packets is chosen to detect suspi-

cious events which, it is observed, leads to imprecise traffic analysis because some

malicious instances could be neglected. Moreover, using sampling makes the exe-

cution of protocol analysis and DPI difficult as not all protocols and servers can

be identified. To address the problem of missing important information, we apply

the ARM technique using the CPs of attributes to select all observations that have

pair values repeated more than once; for example, Table 4.6 lists all such itemsets

180

Figure 4.7: Scatterplot matrix analysis of selected sample

Table 4.6: Example of ARM technique for selecting relevant observations
CP >= 2 Itemset No.
3 dstip=149.171.126.16, proto= tcp 2, 7
3 dsport=80, proto= tcp 6, 7, 8
2 dsport= 5060, proto= udp 5, 10
2 srcip= 175.45.176.0, proto=tcp 4, 6, 8
2 srcip= 175.45.176.0 , dstip= 149.171.126.10 5, 9
2 srcip= 175.45.176.2, proto= udp 3, 9

in Table 4.4 with CPs >=2, i.e., selected to ensure the appropriate collection of

observations and reduce the processing time of an ADS for the same activities

occurring between the same two endpoints. We use only the observations from

these itemsets while running the DE method which achieves a better performance

for collecting observations for a particular time period because it depends on their

frequent values and, if these values are the same for consecutive observations, only

one is selected.

181

A. Evaluation of aggregator module

As previously mentioned, in the proposed aggregator module, the SRS technique

can be used to select relevant observations to monitor network activities, such as

capacity and performance, and the ARM technique to aggregate all the distinct

flows across network traffic to establish an effective IDS. These two techniques are

developed using the ‘R programming language’ on Linux Ubuntu 14.04 with 16 GB

RAM and an i7 CPU processor. To conduct the experiments, we select random

samples from the CSV files in the UNSW-NB15 dataset with different sizes of

between 50,000 and 250,000 to ensure that only relevant records are chosen. We

evaluate the performances of these techniques in terms of their processing delays

and distinct records identified (defined below), and then compare them with those

of some existing techniques.

• Processing delay – a data analysis normally waits for a flow aggregator to

finish handling the flow data and, the shorter the processing delay, the more

timely the activities in the data analysis phase.

• Distinct records – are the flow records for which a technique is capable of

excluding duplicates in a data collection as the result of a flow being pro-

cessed at many network points. Duplications of flow records lead to increases

in computational time and the difficulty of achieving online protection.

We aggregate the flows based on the five flow identifiers of the source/destina-

tion IPs/ports, protocol types and transactional features. If these identifiers are

duplicated, the techniques should retrieve only the distinct records and thereby

improve the processing time of any security application, such as an IDS and net-

work monitoring system. In Table 4.7, the experimental results show that the

overall processing delays of the SRS technique are approximately half those of the

ARM mechanism. However, the latter can find the majority of duplicated records

without losing any observation, which might be an anomalous record, while the

182

Table 4.7: Comparison of performances of ARM and SRS techniques
No. of records ARM technique SRS technique

Processing
delay
(seconds)

Distinct
records

Processing
delay
(seconds)

Distinct
records

50,000 0.43 22,543 0.24 18,654
100,000 0.82 63,639 0.47 54,273
150,000 1.21 89,876 0.71 63,876
200,000 2.83 124,701 1.13 76,554
250,000 3.23 163,854 1.56 93,376

SRS method drops several observations which have to be analysed to determine if

they are abnormal.

Although the ARM technique takes a slightly longer processing time than the

SRS technique, it can precisely find different patterns in network data which helps

the IDS efficiently discriminate between normal and abnormal instances. The

time required for online processing can be reduced using the sample size to select

n samples at a time, a method which can improve the establishment of an effective

IDS by analysing the incoming network flows one by one and determining if there

are abnormal instances in them.

The experimental results obtained from the ARM and SRS techniques demon-

strate that our aggregator module performs better than the NetFlow, sFlow and

IPFIX tools in terms of the processing time and generation of distinct records as

most relevant flows are generated with relatively low processing times, as shown in

Figure 4.8. This is because the first step in our module aggregates the flows using

five flow identifiers whereas the other tools aggregate using only one attribute.

Moreover, we use the MySQL database to store these flows for easy processing by

other applications, specifically an ADS, which is the main focus of our research. In

conclusion, we recommend using the ARM technique with the aggregator module

to detect abnormal events to ensure that all the observed records are analysed,

183

1 2 3 4

50
00

0
10

00
00

15
00

00
20

00
00

25
00

00

processing time

R
ec

or
d

flo
w

s

NetFlow

sFlow

IPFIX

ARM

SRS

Figure 4.8: Comparison of flow aggregator mechanisms

and the SRS technique if only monitoring a network’s activities, such as capacity

and user events.

4.6.2. Evaluation of Proposed Features of DNS and

HTTP

The proposed features of the DNS and HTTP in the UNSW-NB15 dataset listed in

Table 4.2 are used to evaluate the performances of some existing ML algorithms for

detecting suspicious observations facing these protocols. To determine the impor-

tance of these features, firstly, they are analysed using the correlation coefficient

technique to estimate the strongest correlations between them and, secondly, the

184

evaluation of the proposed ensemble method including DT, NB and ANN is to

estimate the performance in terms of accuracy, DR and FAR.

Firstly, the correlation coefficient estimates the strength and direction of a

linear relationship between features. If it is close to 1 or -1, the features are

positively or negatively linearly correlated, respectively, and the scatter plots show

straight lines with positive and negative trends, respectively while, if it is close to

0, there is a weak linear correlation between the features. Features are considered

useful in DE for detecting abnormal instances if they are uncorrelated to each

other but correlated to the predictor (i.e., a normal or attack class label) [268].

We determine the correlation coefficients for the DNS and HTTP data ex-

tracted from the UNSW-NB15 dataset using the R programming language and

plot them in a correlation matrix to demonstrate the relationship between two

features in a range of [-1, 1]. As shown in Figure 4.9, those between the numeric

features of the DNS and HTTP are grouped in three clusters to estimate their

correlation scores. From top to bottom, the clusters range from the strongest to

weakest relationships and it is clear that the features are not related to each other

because their correlation scores are low. Therefore, the proposed features are rele-

vant for classifying normal and attack records of both protocols. Also, the higher

DRs of the ML techniques reflect the significance of these features for building an

ADS which can efficiently detect both DNS and HTTP attacks.

4.6.3. Evaluation of proposed ensemble method and

discussion

The overall performance assessment of the DT, NB, ANN and proposed ensem-

ble method in terms of accuracy, DR and FPR is explained using the DNS and

HTTP data sources described in Table 4.8, with the ROC curves representing the

relationships between the DR and FPR depicted in Figures 4.10 and 4.11.

185

Figure 4.9: Correlations of proposed features

On the one hand as, using the DNS data source, the ensemble method’s ac-

curacy and DR are 99.54% and 98.93%, respectively, and its FPR 1.38%, it out-

performs the DT, NB and ANN algorithms. The DT technique achieves a 95.32%

accuracy, 91.15% DR and 5.22% FPR, the ANN algorithm a 92.61% accuracy,

91.48% DR and 7.87% FPR, and the NB technique a 91.17% accuracy, 90.78%

DR and 8.27% FPR.

On the other hand, using the HTTP data source, the ensemble method out-

performs each classification algorithm separately, producing a 98.97% accuracy,

97.02% DR and 2.58% FPR. The DT algorithm is the second best with a 97.13%

accuracy, 96.34% DR and 3.43% FPR, the ANN technique next with a 96.27%

accuracy, 95.53% DR and 4.26% FPR, and the NB technique last with a 97.13%

accuracy, 96.43% DR and 3.43% FPR.

186

Table 4.8: Comparison of overall performances

Technique
DNS data source HTTP data source
Accuracy DR FPR Accuracy DR FPR
(%) (%) (%) (%) (%) (%)

DT 95.32 94.15 5.22 97.13 96.34 3.43
NB 91.17 90.78 8.25 95.91 95.25 4.18
ANN 92.61 91.48 7.87 96.27 95.53 4.26
Ensemble method 99.54 98.93 1.38 98.97 97.02 2.58

0 20 40 60 80 100

0
20

40
60

80
10

0

DNS data source

False Positive Rate %

D
et

ec
tio

n
R

at
e

%

DT
NB
ANN
Ensemble method

Figure 4.10: ROC curves of classification algorithms using DNS data source

The results obtained from the ensemble method for the different record types

using both data sources are presented in Table 4.9 in which it is clear that the

DR and FPR are generally between 95.25% and 99.86%, and 0.01% and 0.61%,

respectively. These rates demonstrate that this method using the proposed fea-

tures can efficiently identify the attack types that attempt to breach networks via

the DNS and HTTP protocols. Also, the DRs of the normal data using the two

data sources are more than 99% which reflect the lowest false negative rates when

187

0 20 40 60 80 100

0
20

40
60

80
10

0

HTTP data source

False Positive Rate %

D
et

ec
tio

n
R

at
e

%

DT
NB
ANN
Ensemble method

Figure 4.11: ROC curves of classification algorithms using HTTP data source

Table 4.9: Comparisons of DRs (%) and FPRs (%) using ensemble method

Record type DNS data source HTTP data source
DR FPR DR FPR

Normal 99.53 0.24 99.01 0.15
DoS 98.22 0.31 98.54 0.42
Exploits 96.57 0.52 95.25 0.57
Fuzzers 99.86 0.01 99.23 0.02
Generic 99.43 0.13 96.63 0.72
Reconnaissance 99.78 0.04 98.57 0.24
Analysis NA NA 99.2 0.38
Backdoor NA NA 95.25 0.61
Worms NA NA 99.62 0.05

detecting normal instances.

There are two major reasons that the proposed features and ensemble method

can easily recognise suspicious activities that try to expose network applications

188

within the DNS and HTTP protocols. Firstly, the proposed features are generated

using statistical analysis measures, in particular, the mean, length and number of

occurrences of event, which can accurately detect small variations between nor-

mal and malicious instances. As previously discussed, the scatter matrix plots

and correlation coefficient measure, which are used to estimate the similarity and

strength of the proposed features, demonstrate that these features can significantly

distinguish between the normal and malicious patterns of both protocols using DE

methods.

Secondly, using the Adaboost model enhances the performance of the proposed

ensemble method compared with those of each algorithm involved in the method.

The ensemble method was built based on the Adaboost model, which distributes

the input data to process the base learners with an error function. This function

computes the error value of each observation to decide which of the base learners

can successfully classify this observation. This is because the adaptive boosting

can deal with small variations in the feature observations by computing the error

function and, if one classifier cannot correctly recognise a specific instance, another

one is applied to do so. As modern malicious activities attempt to mimic legitimate

behaviours, there are slight differences between these types of behaviour in the

UNSW-NB 15 dataset. Therefore, the proposed ensemble method can effectively

identify malicious observations from these data sources.

The classification algorithms in the ensemble method are selected based on

statistical interpretations of the network data which indicate that the DT can

recognise data observations with their corresponding class labels using the most

information to decide whether a vector is an anomaly. Then, the ANN can weigh

slight differences in features to discover malicious observations using an activation

function. Finally, the NB can take the decision that a vector is either normal or

attack depending on the posterior of that vector with a particular baseline. By

integrating these techniques and distributing the network data sources of the DNS

and HTTP protocols using the Adaboost model, the NIDS’ performance can be

189

enhanced in terms of accuracy, DR and FPR without affecting the processing time

compared with that of each classification algorithm.

4.6.4. Feature Reduction and Evaluation

A. Measuring relevant features

It is necessary to determine the extracted features are relevant, that is, have the

characteristics of normal and malicious observations, for improving the perfor-

mance of DE approaches for establishing an ADS. To ensure that the features

of the UNSW-NB15 dataset are relevant, we previously applied some statistical

measures and ML algorithms. Here, we create the same features of the UNSW-

NB15 dataset from the tcpdump files of the KDD99 dataset to estimate to what

extent they include different patterns of normal and malicious observations using

the ARM technique. We use the second week of the KDD99 data as it includes

different abnormal activities.

The ARM FS technique is developed using the Visual Studio C# 2008 - Busi-

ness Intelligence package. Its parameters (i.e., minsup and minconf) are set to

three different values (0.4, 0.6 and 0.8) to select the strongest rules from which the

highest-ranked are chosen. Random sample sizes of between 100,000 and 250,000,

which have all the normal and attack types in the datasets, are chosen with a

10-fold cross-validation used to select the relevant features and measure perfor-

mances. Tables 4.10 and 4.11 present the most important features selected from

the original and UNSW-NB15 features in the KDD99 and UNSW-NB15 datasets,

respectively, which are ranked to select eleven significant features to each class of

data as either normal or abnormal. The original features of the KDD99/NSL-KDD

used in these comparisons are provided in Appendix B.

190

Table 4.10: Original and UNSW-NB15 features in KDD99 dataset using ARM
Type Feature numbers in original

KDD
Feature numbers in
UNSW-NB15

Normal 3, 37, 36, 30, 38, 12, 22, 39, 16,
20, 15

37, 13, 46, 12, 36, 26, 5, 35, 33,
16, 22

DoS 30, 4, 39, 25, 26, 38, 5, 32, 2, 3,
37

45, 23, 20, 43, 31, 15, 46, 18, 22,
38, 12

Probes 36, 23, 24, 12, 6, 39, 8, 10, 16, 7,
11

20, 19, 5, 12, 37, 13, 46, 42, 33,
45, 17

R2L 1, 10, 7, 6, 21, 38, 9, 8, 3, 27, 31 11, 17, 10, 14, 42, 39, 19, 12, 20,
5, 46

U2R 13, 17, 14, 10, 15, 14, 30, 33, 31,
36, 3

9, 46, 42, 14, 22, 24, 34, 37, 32,
13, 6

Table 4.11: UNSW-NB15 features using ARM
Type Feature numbers
Normal 11, 34, 19, 20, 21, 37, 6, 10, 11, 36, 47
DoS 6, 11, 15, 16, 36, 37, 39, 40, 42, 44, 45
Fuzzers 6, 11, 14, 15, 16, 36, 37, 39, 40, 41, 42
Backdoors 6, 10, 11, 14, 15, 16, 37, 41, 42, 44, 45
Exploits 10, 41, 42, 6, 37, 46, 11, 19, 36, 5, 45
Analysis 6, 10, 11, 12, 13, 14, 15, 16, 34, 35, 37
Generic 6, 9, 10, 11, 12, 13, 15, 16, 17, 18, 20
Reconnaissance 10, 14, 37, 41, 42, 43, 44, 9, 16, 17, 28
Shellcode 6, 9, 10, 12, 13, 14, 15, 16, 17, 18, 23
Worms 41, 37, 9, 11, 10, 46, 23, 17, 14, 5, 13

We use the features provided in Tables 4.10 and 4.11 to evaluate the perfor-

mances of the two ML algorithms NB and EM clustering. The evaluation criteria

are the accuracy and FAR of each that demonstrate the extent to which generating

relevant features could improve the performances of DE algorithms. Table 4.12

shows the accuracy and FAR of each algorithm for the original and UNSW-NB15

features in the KDD99 dataset. For the original features, the performance of the

NB is better than that of the EM clustering as it achieves a 92.1% accuracy and

8.5% FAR while, on average, those of the EM clustering are 88.9% and 9.5%,

respectively. Similarly, for the features in the UNSW-NB15 dataset, the NB per-

forms better than the EM clustering, achieving a 93.4% accuracy and 6.7% FAR

compared with the EM clustering’s 90.5% accuracy and 10.4 FAR. Comparing the

191

Table 4.12: Performance evaluations of original and UNSW-NB15 features on
KDD99 dataset

Type
Original features (KDD99) UNSW-NB15 features
NB EM NB EM
Accuracy
(%)

FAR
(%)

Accuracy
(%)

FAR
(%)

Accuracy
(%)

FAR
(%)

Accuracy
(%)

FAR
(%)

Normal 96.7 3.2 93.2 7.5 97.4 3.1 94.7 6.2
R2L 91.1 8.7 91.3 8.3 92.1 7.8 90.6 10.5
DoS 95.7 5.3 93.7 7.2 95.9 5 93.5 8.8
Probes 92.8 8.2 90.8 9.1 93.2 6.4 93.1 7.6
U2R 83.8 17.1 75.8 15.6 88.7 11.6 80.6 18.8
Average 92.1 8.5 88.9 9.5 93.4 6.7 90.5 10.4

two feature sets, firstly, the accuracy of the normal and attack types is greater than

80% and the FAR less than 19% and, secondly, the UNSW-NB15 features perform

better than the original features as the first are generated by analysing different

protocols and services to exactly determine some attributes that can differentiate

between normal and attack observations.

In Table 4.13, the performance evaluation of each type of attack in the UNSW-

NB15 dataset is presented. The experimental results obtained from the NB al-

gorithm, a 72.2% accuracy and 25.3% FAR, are better than those from the EM

algorithm of a 67.2% accuracy and 32.9% FAR. They demonstrate that these al-

gorithms cannot recognise some record types with a high accuracy and low FAR

but detect generic records better while the others are not high, with between a

50% and 82% accuracy.

The above results illustrate that the proposed ARM FS method can be used

to generate the highest-ranked features of the KDD99 and UNSW-NB15 datasets,

with those of the UNSW-NB15 dataset generated from the KDD99 dataset reflect-

ing both contemporary normal and attack records, an improvement on the original

192

Table 4.13: Performance evaluation of UNSW-NB15 dataset

Type
UNSW-NB15 features
NB EM
Accuracy (%) FAR (%) Accuracy (%) FAR (%)

Normal 82.1 17.5 77.6 32.9
Analysis 60.2 38.5 57.3 42.5
Backdoor 77.6 12.5 70.5 29.1
DoS 73.1 12.6 65.3 33.3
Exploits 65.6 35.2 74.5 24.3
Fuzzers 76.2 22.9 60.5 37.5
Generic 95.3 6.3 93.1 7.5
Reconnaissance 78.9 20.6 71.6 26.9
Shellcode 60.5 40.2 50.2 47.3
Worms 52.5 47.6 51.1 48.3
Average 72.2 25.3 67.2 32.9

features. Nonetheless, the ML algorithm used on the UNSW-NB15 dataset can-

not efficiently discriminate between normal and suspicious instances because of

the similarity of their relative values. As the variations between these instances

are low, there is interference between them which leads to limited detection as the

UNSW-NB15 dataset is very complex due to its wide variety of recent normal and

abnormal activities, as discussed in Chapter 3, subsection 3.9.3.

B. ARM evaluation

The ARM FS technique is applied on the NSL-KDD and UNSW-NB15 datasets to

select the important features appropriate for all their normal and anomalous types.

We choose the NSL-KDD dataset and our UNSW-NB15 dataset because it does

not contain repeated instances and handles the problem of imbalances between

observations in each class, as explained in Chapter 2, Section 2.6. From the two

datasets, we select random sample sizes of between 100,000 and 250,000 which

have all the normal and suspicious types in the datasets, with a 10-fold cross-

validation used to choose the relevant features and estimate the performances of

some existing ML algorithms.

193

Figure 4.12: Portions of association rules using both datasets

This technique is developed using the Visual Studio C# 2008 - Business Intel-

ligence package, the parameters (i.e., minsup and minconf) of which are adjusted

with three different values (0.4, 0.6 and 0.8) to select the strongest rules from

which the highest-ranked features are selected. The reason for choosing these val-

ues is that their probabilities are divided into three degrees: low (0 - 0.4); medium

(0.4 - 0.6); and high (0.61- 1). Some rules and their importance (i.e., an average of

each rule’s support and confidence) for the NSL-KDD and UNSW-NB15 datasets

are presented in Figure 4.12. Each rule contains a set of features for each class,

either normal (0) or attack (1).

The most important features are selected from the rules with higher levels of

importance. We select the eleven features for each dataset listed in Table 4.14

to reduce the processing time while applying DE as, for less than this number,

DE evaluations provide lower accuracies and higher FARs. The processing time is

194

Table 4.14: Features selected from both datasets
Dataset Selected features
NSL-KDD dst_bytes, dst_host_srv_diff_host_rate,

srv_diff_host_rate, Land,
dst_host_same_src_port_rate, Count,
src_bytes, logged_in, protocol_type,
num_root, srv_rerror_rate

UNSW-NB15 State, Dttl, Synack, Swin, Dwin,
ct_state_ttl, ct_src_ltm, ct_srv_dst, Sttl,
ct_dst_sport_ltm, Djit

short as we apply the CP function to generate the rules from the most frequent

values of the features which include all possible patterns in each dataset as there

are strong associations between the datasets’ feature vectors.

To assess performances using the features selected from the two datasets, three

ML algorithms, namely, EM clustering, Logistic Regression (LR) and NB, are

used. The evaluation criteria are estimated in terms of the accuracy and FAR to

assess the effects of these features and how they could improve performance at a

lower computational cost of resources. The evaluation results obtained from these

algorithms are provided in Table 4.15, with the relationships between their DRs

and FPRs represented by the ROC curves in Figure 4.13 to demonstrate their

potential performances using the ARM technique.

In the NSL-KDD dataset, the LR algorithm achieves the best output of a

90.3% accuracy and 9.2% FAR, followed by the NB with a 93.8% accuracy and

6.5% FAR and, finally, the EM clustering with a 90.3% and 9.2% FAR. Similarly,

in the UNSW-NB15 dataset, the LR algorithm achieves the best results, a 88.2%

accuracy and 12.6% FAR, NB the second best, a 90.7% accuracy and 9.7% FAR,

and the EM clustering the worst, a 88.2% accuracy and 12.6% FAR.

195

Table 4.15: Performance evaluation using both datasets

Techniques
NSL-KDD UNSW-NB15
Accuracy FAR Accuracy FAR
(%) (%) (%) (%)

EM 90.3 9.2 88.2 12.6
LR 95.1 5.6 90.7 9.7
NB 93.8 6.5 85.5 16.3

0 20 40 60 80 100

0
20

40
60

80
10

0

NSLKDD

False Positive Rate %

D
et

ec
tio

n
R

at
e

%

EM

LR

NB

0 20 40 60 80 100

0
20

40
60

80
10

0

UNSW-NB15

False Positive Rate %

D
et

ec
tio

n
R

at
e

%

EM

LR

NB

Figure 4.13: ROC curves of three ML algorithms using ARM

C. PCA and ICA evaluations

The significant features adopted from the two datasets to generate their compo-

nents using the PCA and ICA are based on their higher variances, as explained

in subsections 4.5.2 and 4.5.3, respectively. We select eleven features from the

NSL-KDD and UNSW-NB15 datasets for applying the ML techniques to reduce

the processing time and provide a fair comparison of the three FS methods, as

196

Table 4.16: Features selected from datasets
Dataset Selected features
NSL-KDD srv_count, dst_host_srv_count, count,

dst_host_same_srv_rate, dst_host_count, hot,
srv_diff_host_rate, rerror_rate, srv_error_rate,
dst_host_srv_error_rate, dst_host_rerror_rat

UNSW-NB15 ct_dst_sport_ltm, tcprtt, dwin,
ct_src_dport_ltm, ct_dst_src_ltm,
ct_dst_ltm, smean, dmean, service, proto, dtcpb

shown in Table 4.16.

To evaluate performances using the features adopted from the two datasets,

the same ML algorithms used for the ARM technique, EM clustering, LR and NB,

are applied. Table 4.17 presents their results using the component features of both

the PCA and ICA techniques. Firstly, using ICA technique, for the NSL-KDD

dataset, the LR algorithm produces the highest accuracy of 95.1% and lowest FAR

of 5.2%, the NB the second ranking, a 94.9% accuracy and 5.8% FAR, and the EM

clustering the lowest, a 93.4% accuracy and 7.8% FAR. Similarly, for the UNSW-

NB15 dataset, the LR algorithm achieves the best performance, a 92.4% accuracy

and 8.7% FAR, the NB a 90.2% accuracy and 11.4% FAR, and the EM clustering

a 89.3% accuracy and 12.4% FAR.

Secondly, using the PCA technique , for the NSL-KDD dataset, the LR al-

gorithm achieves the best performance of a 95.7% accuracy and 4.9% FAR, the

NB the second best, a 93.5% accuracy and 6.9% FAR, and the EM clustering the

worst, a 93.4% accuracy and 7.8% FAR. Similarly, for the UNSW-NB15 dataset,

the LR algorithm attains the best results of a 95.6% accuracy and 5.8% FAR, the

NB a 93.7% accuracy and 7.5% FAR, and the EM clustering a 90.7% accuracy

and 11.8% FAR.

197

Table 4.17: Performance evaluation using both datasets

Techniques

ICA PCA
NSL-KDD UNSW-NB15 NSL-KDD UNSW-NB15
Accuracy FAR Accuracy FAR Accuracy FAR Accuracy FAR
(%) (%) (%) (%) (%) (%) (%) (%)

EM 93.4 7.8 89.3 12.4 92.6 8.8 90.7 11.8
LR 95.1 5.2 92.4 8.7 95.7 4.9 95.6 5.8
NB 94.9 5.8 90.2 11.4 93.5 6.9 93.7 7.5

There are two reasons for the ML algorithms performing better on the NSL-

KDD than UNSW-NB15 dataset. Firstly, the latter has many values of normal

and suspicious instances that are almost the same while the former does not.

Secondly, the data distributions of the NSL-KDD dataset’s training and testing

sets are different due to the insertion of new attacks into the testing set which

clearly distinguish between its normal and abnormal instances while executing

ML algorithms. However, these data distributions in the UNSW-NB15 dataset are

approximately the same because its normal and abnormal instances were created

from the same network.

To compare the results obtained from the three FS methods, ARM, PCA and

ICA, we observe that the last two often provide better evaluation results than the

ARM using ML algorithms, as evidenced by the ROC curves of these algorithms

in Figures 4.14 and 4.15, respectively. This is because the ARM technique deals

directly with the values of features while the others transform the feature space into

another space based on the highest variances between features which can greatly

help DE techniques to find differences between normal and suspicious instances.

However, the ARM method can provide promising results when selecting relevant

observations, as explained above.

Regarding the PCA and ICA techniques, there are only small differences in

the evaluation performances of the ML algorithms as their internal methodologies

198

0 20 40 60 80 100

0
20

40
60

80
10

0
NSLKDD

False Positive Rate %

D
et

ec
tio

n
R

at
e

%

EM

LR

NB

0 20 40 60 80 100

0
20

40
60

80
10

0

UNSW-NB15

False Positive Rate %

D
et

ec
tio

n
R

at
e

%

EM

LR

NB

Figure 4.14: ROC curves of three ML algorithms using ICA

appear to be similar based on variances. It can be observed that more evaluation

algorithms use the ICA than PCA technique. In the next chapter, we will use

the PCA in the feature reduction model due to its simplicity of execution and the

improved performances on the existing ML algorithms. We will use it with the

new ADS techniques and will describe their effects on each type of attacks in both

datasets, showing their efficiency for designing a scalable, lightweight and adaptive

ADS.

4.7. Chapter Conclusion

This chapter covers the importance of the two steps of feature creation and re-

duction in a data pre-processing module for the design of an effective online ADS.

199

0 20 40 60 80 100

0
20

40
60

80
10

0
NSLKDD

False Positive Rate %

D
et

ec
tio

n
R

at
e

%

EM

LR

NB

0 20 40 60 80 100

0
20

40
60

80
10

0

UNSW-NB15

False Positive Rate %

D
et

ec
tio

n
R

at
e

%

EM

LR

NB

Figure 4.15: ROC curves of three ML algorithms using PCA

Firstly, feature creation is a significant step in constructing suitable attributes that

include patterns of legitimate and suspicious activities for improving the perfor-

mance of the DE technique. Consequently, common protocols and services need to

be analysed carefully to generate all the feature sets that could contain informa-

tion about normal and attack activities. Then, the values of these features should

be aggregated to select only relevant and distinct observations, thereby reducing

the computational costs of the DE technique used.

With the high speeds and large sizes of current network systems, flow aggrega-

tion methods are important for several applications, such as network monitoring

and security management. However, as existing tools cannot ensure the aggre-

gation of flows based on more than one attribute, many observations could be

repeated which increases an ADS’ overhead processing. Therefore, we propose

two significant methods that involve only relevant observations. The first is the

200

SRS technique that selects a subset from all observations, including the majority

of statistical characteristics of all the observations, and is effective for summarising

network traffic. The second is the ARM technique with CP values which selects

all observations that have a pair of duplicated values of more than one feature.

This is a data mining method used to compute the association between two or

more features in a dataset that finds the strongest rules occurring between their

values while the CP function determines the most frequent values using a/the

mode measure. This approach is very effective for implementing an online ADS.

Finally, the importance of a FR method for the design of a lightweight ADS is

discussed. FR is the process of eliminating unsuitable features from network data

to enhance the detection accuracy and processing time of a DE method, with three

FR techniques, ARM, PCA and ICA, used and evaluated by some ML algorithms.

The PCA technique extracts a set of features based on the highest variance for

each feature and constructs a new dimensional space of uncorrelated features by

eliminating low variance ones while the ICA technique elicits unknown components

from multivariate data, the components of which are mutually independent and

non-Gaussian data.

The experimental results obtained from these techniques show that the PCA

and ICA often offer better performances than ARM using some ML algorithms

although ARM can provide good results when choosing significant observations.

There are small differences between the evaluation performances of the ML algo-

rithms in the PCA and ICA techniques, with a slight improvement on the per-

formances of ML algorithms using the PCA technique. If the network features

are not carefully generated for finding clear differences between normal and sus-

picious observations, the feature selection techniques cannot efficiently select the

important network features.

In the next chapter, we discuss the methodology for constructing a new sta-

tistical NADS using the PCA technique which has the characteristics of being

201

lightweight, adaptable and scalable, and demonstrates the influence of each type

of attack.

202

Chapter 5
Novel Statistical Decision Engines for
Anomaly Detection System based on
analysing Potential Characteristics of

Network Features

5.1. Introduction

Providing a defence against the current sophisticated methodologies of attackers

has become one of the most significant challenges in the cyber security field, with

its principle defined as a strategy for identifying malicious activities and prevent-

ing them breaching computer and network systems. To successfully achieve this

aim, different layers of defence should be deployed throughout these systems and,

since hacker methodologies attempt to dynamically change by mimicking normal

activities, a so-called defence-in-depth approach for protecting against any of them

using multiple security techniques and tools has appeared [269].

These layers of defence can be grouped into two types, signature and anomaly,

depending on their procedures for designing security mechanisms. Most existing

solutions, including firewalls, access control, authentication and misuse intrusion

detection systems, were designed based on the signature concept in which a system

matches patterns occurring in hosts or networks with a well-known blacklist of

suspicious rules. However, as they cannot identify any zero-day attacks, that is,

new malicious behaviours, the anomaly methodology recently appeared as a second

type of defence. It constructs a profile of normal observations, any deviation from

which is considered an anomaly, in order to detect new attacks.

203

A complete layered strategy can be designed by integrating the two types to

ensure a far more comprehensive defence against existing and new anomalous ac-

tivities, the purpose of which is to try to breach the principles of Confidentiality,

Integrity and Availability (CIA) in computer systems [42, 270]. Each attack type

has its own sophisticated methodology that poses a serious challenge for its suc-

cessful detection, for instance, a DoS attack corrupts computer resources which

breaches the availability principle whereas malware codes hijack the execution flow

of programs, thereby breaking the integrity principle [8]. To achieve a complete

layered defence strategy against low-footprint attacks, many research studies have

proposed new or improved security mechanisms based on the concepts of signa-

ture/misuse and anomaly.

When designing the architecture of an ADS methodology for large-scale ap-

plications in industry, there are two challenges. The first relates to constructing

a full profile from the majority of normal activities which is a very difficult task

because of the large sizes and high speeds of current networks that dynamically

change their behaviours. The second concerns adopting a suitable methodology

for establishing an adaptable, scalable and lightweight DE approach which can ef-

ficiently distinguish between normal and malicious observations, an arduous task

when dealing with large, high-speed network environments. Current networks in-

clude several interconnected devices, programs and platforms for offering services

to users and organisations any time, anywhere. A promising ADS should moni-

tor and analyse these services, and effectively and efficiently detect any malicious

flows in a network with large volumes, high-velocity transmissions and high di-

mensionalities (i.e., variety). The properties of volume, velocity and variety of

network traffic are considered the phenomena of big data that a proficient ADS

should be capable of handling to address which we propose statistical solutions in

this chapter.

The key reason for using statistical models in this PhD thesis is that they can

effectively determine and inspect the intrinsic potential characteristics of normal

204

and abnormal network activities for both attributes/features and observations/in-

stances, as fully explained in later section. However, developing an efficient DE

requires an accurate analysis to identify normal and abnormal network character-

istics and specify a particular baseline/threshold. To achieve this, we focus mainly

on the DE module discussed in Chapter 3, Section 2.7 which is obviously the main

task in the design of an intelligent IDS for detecting known and unknown attacks

in real time. Choosing a DE approach and its training and testing phases essen-

tially contributes to evaluating the efficacy of an ADS by determining whether it

is correctly trained and validated for identifying normal patterns (i.e., building an

accurate profile from diverse normal instances) and treating any instance outside

this profile as an anomaly.

In this chapter, for the first time in this field, we suggest two novel scalable

ADS frameworks for effectively detecting known and unknown anomalous activities

based on the statistical approaches described in Sections 5.3 and 5.4, respectively.

These frameworks have three major modules, namely, data sniffing and storing,

data pre-processing and a DE. The first two, which are similar in the two frame-

works, capture and store network data, and analyse and filter them, respectively,

while the novel DE techniques that efficiently define different malicious behaviours

are different. The performances of these frameworks are appraised based on two

well-known datasets, the NSL-KDD, which is an upgraded version of the KDD99

and widely used to evaluate new ADSs, and our UNSW-NB15 which includes a

broad range of contemporary legitimate, security and malware observations.

The key contributions of this chapter are as follows.

1. We use statistical approaches that can define the potential properties of

network data, i.e., data normality and linearity, in order to decide on the

best scalable, adaptive and lightweight DE approach for successfully handling

large-scale networks.

205

2. We suggest two new scalable and adaptable ADS frameworks, GAA-ADS

and DMM-ADS, each of which has three modules that capture, process and

recognise attacks, for effectively identifying suspicious observations, designed

based on the anomaly methodology, each DE module creates a normal profile

in the training phase and estimates the patterns in the testing phase using

the same parameters. To identify abnormal observations, we suggest new

decision methods that check each tested observation which, if it falls within

the legitimate profile, is considered legitimate, otherwise anomalous.

3. Discussions of the in-depth mathematical analyses of these frameworks assist

in ascertaining their use in other domains. Moreover, their computational

complexities and processing times reveal that they can be deployed simply

for online processing.

4. Performance evaluations of these frameworks are carried out using two NIDS

datasets: the NSL-KDD which is an improved version of the KDD99; and

UNSW-NB15. Although the KDD99 dataset is outdated and does not con-

tain modern patterns of malicious activities, it is still widely used to assess

NIDSs while the UNSW-NB15 dataset is capable of detecting modern mali-

cious activities.

The remainder of this chapter is organised as follows. Section 5.2 discusses network

data analytics used for the design of an effective DE. The newly proposed GAA-

ADS and DMM-ADS methods are described in Sections 5.3 and 5.4, respectively,

and their frameworks for identifying known and zero-day attacks explained in

Section 5.5. Then, the empirical results obtained from the new DE techniques are

discussed in Section 5.6 and the chapter concluded in Section 5.7.

206

5.2. Network Data Analytics for Design of

Effective DE

Given the large sizes and high speeds of current networks, monitoring and analysing

their data have become significant for several reasons. Firstly, a network data

analysis increases visibility to users, systems and programs by accumulating net-

work flows which assist in tracking the network bandwidths of users and systems,

and ensuring robust service delivery. Secondly, it can measure performance bot-

tlenecks and reduce bandwidth consumption. Thirdly, an IDS technology which

monitors and analyses network traffic using a protocol analysis can identify po-

tential attacks, for example, UDP spikes. Finally, a network data analysis also

helps to monitor the abusive use of unusual protocols for a particular device to

uncover potential data stealing. More specifically, it can identify abnormal events

and unauthorised access to sensitive data via analysing peer-to-peer protocols and

information in the different layers of the OSI model [271].

Several mechanisms and technologies for gathering, handling, analysing and

visualising large-scale networks, which are multi-disciplinary in nature and de-

rive from the domains of mathematics, statistics and information technology, have

been designed. Some have origins in academia while others were developed by cor-

porations using online business techniques to analyse data, including statistically

based methods and data mining approaches, MySQL CGE and Hadoop technolo-

gies, and visualisation tools, for example, NetFlow and spatial information flows

[272].

As discussed in Chapter 3, the UNSW-NB15 dataset consists of a huge num-

ber of feature vectors and includes the potential characteristics of normal and

anomalous observations. These features are both packet- and flow-based, with the

former helping to examine the packet payload and headers, and the latter col-

lecting significant information from the packet headers, for example, the number

207

Pcap files
MySQL

Database

Feature Extraction

Extract basic network

attributes using BRO-

IDS and Argus tools

An aggregator module

Generate new attributes from

the flow identifiers (source /

destination IPs and ports,

timestamps, and protocols) for

a specific interval time

Figure 5.1: Feature vectors for mining and gathering in UNSW-NB15 dataset

of source/destination IPs for a specific time window, and an inter-packet length,

packet direction and inter-arrival times of packets.

As shown in Figure 5.1, the pcap files of the UNSW-NB15 dataset were pro-

cessed by the BRO-IDS and Argus tools to extract the fundamental features from

raw packets. Then, we proposed a new aggregator module for correlating network

flows, as explained in Chapter 4, Section 4.3, to remove redundant and irrelevant

observations to improve the performance of an ADS and network analysis tool.

These flows are combined for each 100 network observations, with packets with

the same source/destination IP addresses and ports, timestamps and protocols

gathered in one observation. It is observed that this module can effectively anal-

yse and determine a network’s properties, for example, its capacity, bandwidth,

and normal and suspicious patterns.

A statistical analysis of network observations helps to determine the choice and

design of the type of modelling that accurately fits the network data in order to

identify data outliers as anomalies. Some statistical measures are the Kolmogorov-

Smirnov (K-S) test, the results obtained from which are discussed in Chapter

3, Q-Q plots for defining data normality and density, and correntropy plots for

recognising data linearity. Ascertaining the normality and linearity of network

data can help to determine which learning models can precisely fit these data and

208

improve the performance of an ADS for detecting suspicious instances in a low

processing time. These measures are discussed in the following two subsections.

5.2.1. Normality measures

In order to validate the normality or non-normality of network data, the K-S test

and Q-Q plots are used. A normality test is a statistical measure for assessing

whether particular data follow a Gaussian/normal distribution. The major reason

for using it is that it can perfectly estimate the goodness of fit of data by defining

the potential statistical parameters that can specify to what extent these data

vary from a normal distribution in terms of skewness and kurtosis, as described in

Chapter 3, Section 3.8.

Firstly, the K-S test, one of the most common techniques for this purpose, is

applied. It is acknowledged that, if the network data do not accurately fit a Gaus-

sian distribution, mixture models, specifically a Gaussian Mixture Model (GMM),

BMM and DMM, are used to precisely recognise outliers. Secondly, Q-Q plots

are applied to represent the network data that do not fit a Gaussian distribution.

A Q-Q plot is a graphical representation designed to draw two data samples of

quantiles against each other. If these samples are from the same distribution, their

points are almost in a straight line, with those not located close to or on the line

considered outliers/anomalies [101].

These measures assist in identifying network patterns of normal and attack

instances as well as choosing and designing the best DE model for recognising

abnormal instances as outliers, as discussed in the experimental results in sub-

section 5.6.2. Ultimately, statistical analysis mechanisms are quite significant for

determining potential procedures for making decisions regarding the recognition

and prevention of suspicious activities in network data.

209

5.2.2. Linearity measures

In order to check the linearity or non-linearity of network data, their density and

correntropy plots are used, primarily because they can estimate the similarities

between normal and suspicious feature vectors. The mathematical function of a

density plot computes the probability densities of normal and attack observations

to determine the difference between them while that of a correntropy plot cal-

culates the mean difference between two kernel density functions of given feature

observations. These functions are fundamental means of smoothing and specifying

the boundaries of feature values to clearly demonstrate both their dissimilarities

and similarities [273].

Firstly, the density plot is obtained by computing the probability distribu-

tions of normal and abnormal instances to measure the extent to which they vary

from each other in either a linear or non-linear representation. Then, we apply

the correntropy measure [274] to compute the similarities between the proposed

feature vectors and accurately define variations between legitimate and suspicious

observations. If there are clear differences, this is statistical evidence of the signifi-

cance of these features for recognising abnormal activities. This measure, which is

one of second-order statistics and a non-linear similarity technique for describing

the relationships among given feature vectors, is less sensitive to outliers than the

Mean Square Error (MSE) and is widely used [57, 274].

The mathematical procedure for calculating the correntropy of two random

variables (f1 and f2) is

Vσ(f1, f2) = E[κσ(f1−f2)] (5.1)

where E[.] is the mathematical expectation of the features andKσ(.) the Gaus-

sian kernel function, where σ is the kernel size represented by

210

Kσ(.) = 1√
2Πσ

exp(− (.)2

2σ2) (5.2)

Mathematically speaking, the joint probability density function (PF1,F2(f1, f2))

is usually unknown whereas a finite number of vectors ({fi, fj}Mi,j=1) is accessible.

Therefore, the correntropy is computed by

V̂M,σ(A,B) = 1
M

M∑
i,j=1

Kσ(fi − fj) (5.3)

To use the correntropy measure for multivariate network data, as provided in

equation (5.4), we compute it for both normal and suspicious feature observations

as

I1:N =

 f11 f12 ..

f21 f22 fij

 , Y1:N =

 c1

c2

 (5.4)

where I indicates the vectors of network data, Y the class label (C) of each

vector, N the number of vectors and F the set of network features.

If the results reveal that there is a difference between the values of the legit-

imate and malicious observations, this is vital evidence that confirms the signifi-

cance of the proposed network features in the UNSW-NB15 dataset for identifying

suspicious instances, as discussed in subsection 5.5.2.

211

5.3. Novel Geometric Area Analysis

(GAA-ADS) Technique

The theory behind the new GAA-ADS technique1 is accurately modelling network

data by computing the area for each network observation that includes a set of

features using the TAEmethod estimated from the BMM parameters and distances

of observations. It depends on the anomaly methodology and constructs a profile

from legitmate areas in the training phase, with areas of attacks in the decision-

making method considered when they deviate from this profile.

In the training phase, a profile is established from normal network observations

by integrating the BMM parameter estimations and distances between the mean

of normal observations and each observation. Then, in the testing phase, these

computed parameters are used to estimate the area for each upcoming observation.

In both phases, the TAE is calculated from the findings obtained by integrating the

BMM and distances between observations for each individual record, as discussed

in subsection 5.3.3.

In the decision-making method, the areas in the legitimate profile are divided

into a number of ordered intervals to identify anomalous observations and decrease

the processing time compared with that required to determine the area of each

testing observation. If the area of a testing vector is located within well-known

normal ranges, this vector is an anomaly. Since the decision-making method relies

on the anomaly methodology, it is possible to recognise an attack vector with-

out requiring any prior or relevant information about attack types. Moreover, the
1

• A Part of this study has been released in:
Moustafa, N., J. Slay, and Creech, G. “Novel Geometric Area Analysis Technique
for Anomaly Detection using Trapezoidal Area Estimation on Large-Scale Net-
works”, IEEE transactions on Big Data, 2017.
Moustafa, N., Creech, G. and J. Slay. “Anomaly Detection System using Beta
Mixture Models”, the International Conference on Computing Analytics and Net-
working (ICCAN 2017), KIIT University, Springer, 2017.

212

proposed GAA-ADS technique does not need frequent updates of the attack signa-

tures, as does misuse-based detection, but regular updates of the normal threshold

like anomaly-based detection. However, its powerful performance depends on the

number of ranges of legitimate areas that prevents overlapping between normal

and abnormal areas, as explained in subsection 5.3.4.

5.3.1. Beta Mixture Model (BMM)

Although a GMM can model any random distribution with appropriate mixture

components, some of these components do not correctly specify edges when the

observed data are semi-bounded or bounded [275]. The features of network data

cannot precisely fit a normal distribution because they do not follow its symmetric

and unbounded boundary (i.e.,]−∞,∞[). We observe that, in the NSL-KDD and

UNSW-NB15 datasets, they are in the semi-bounded [0, N] range, where N refers

to an asymmetric integer or real number. A powerful distribution that can model

semi-bounded data is a beta distribution as it has a more flexible shape than

a normal distribution [275–277] and represents arbitrary variables that have a

finite range (i.e., [a, b], a, b ∈ R), particularly [0, 1], as described in the following

subsection.

The PDF of a beta distribution can be computed by

Beta(x; υ, ω) = 1
beta(υ, ω)x

υ−ω(1− x)ω−1, υ, ω > 0 (5.5)

where x is the normalised network features, υ and ω the shape parame-

ters that model the beta distribution, beta(υ, ω) the beta function which equals

(Γ (υ)Γ (ω)/Γ (υ+ω)) and Γ (.) the gamma function with Γ (c) =
∫∞

0 exp(−t)tc−1dt.

If x is an arbitrary variable in the beta distribution computed by equation (5.5),

its mean can be calculated by

213

µ = υ

(υ + ω) (5.6)

Because network data have sets of features that include patterns of normal and

attack observations, these features should be fitted by a mixture model designed

to model data with more than one variable. A mixture model can be defined as a

flexible probabilistic technique for representing and determining multivariate data

[278]. Mathematically speaking, the features of network datasets are multivariate

as they consist of more than two variables [47], with each denoted as a component

in the mixture model. In [275, 279], the bounded property data are proficiently

fitted by the BMM with less model complexity than the GMM.

In the GAA-ADS technique, the BMM is the first step in calculating the

PDFs of the network features. Although it is perceived that network observations

are independent and identically distributed (i.i.d) [36, 47], multivariate data are,

in many cases, statistically dependent. However, for any random variable (x)

involving L elements, the dependence between elements x1,, xL is signified by a

mixture model even if each particular component can only represent an observation

with independent elements. A multivariate BMM for these observations is defined

as a PDF computed by

f(x; π, v, ω) =
I∑
i=1

ΠiBeta(X, vi, ωi) (5.7)

=
I∑
i=1

Πi

L∏
l=1

Beta(xl, vli, ωli)

where I indicates the number of mixture components (X = {x1, ..., xL},
∏ =

{Π1, ..,ΠI}, υ = {υ1, ..., υI}, ω = {ω1, ..., ωI}), Πi the mixing component (∑I
i=1 Πi =

214

1, 0 < π < 1), {υi, ωi} the parameter vectors of the ith mixture component, Beta

(X; υi, ωi) the component-conditional parameters, and {υlI , . . . , ωlI} the parame-

ters of the beta distribution for feature xl.

A. Parameter estimation for BMM

The Maximum Likelihood Estimation (MLE) method used to estimate the pa-

rameters of the BMM in equation (5.7) models the observed data. Based on its

process, the best parameters (θ = {ν1, . . . , υI , ω1, . . . , ωI , π1, . . . , πI}) maximise

the log-likelihood function as

L(θ | X) =
N∑
n

log[
I∑
i

ΠiBeta(xn; υi, ωi)] (5.8)

=
N∑
n

log[
I∑
i

Πi

L∏
i=1

Beta(xn; υi, ωi)]

The MLE finds the optimal value of θ by handling xn as ‘incomplete’ data. The

latent variables (zn = (zn1, . . . , znI)T) indicate an observation that has one element

with a value of 1 and the rest (xn.xn and zn) values of 0 which are considered

‘complete’ data, with the likelihood function reformulated as

L(θ | X,Z) =
N∑
n

I∑
i=1

zni[log Πi + logBeta(xn; υi, ωi)] (5.9)

=
N∑
n

I∑
i=1

zni[log Πni +
L∑
l=1

logBeta(xln; υli, ωli)]

To iteratively compute θ, the Expectation-maximisation (EM) technique is

used. In the ‘E step’, the expected value of zn is calculated as the posterior

probability of xn being computed from the ith component which refers to the

currently appraised parameters by

215

z̄ni = E[zni] = ΠiBeta(xn; υ̂i, ω̂i)∑I
m=1 ΠiBeta(xn; υ̂m, ω̂m)

(5.10)

In the ‘M step’, the probability (πi) and parameters (θ = {ν1, . . . , υI , ω1, . . . , ωI})

are re-computed given the expected values of the latent variables for maximising

their log-likelihoods, with the updated mixture weight computed by

πi = 1
N

N∑
n=1

E[zni] (5.11)

To calculate the two independent parameters (υ̂li, ω̂li), their log-likelihoods are

simultaneously maximised by

∂E[LC(θ | X,Z)]
∂υli

=
N∑
n=1

∂ logBeta(xln; υli, ωli)
∂υli

(5.12)

=
N∑
n=1

z̄ni{log xln − [ψ(υli)− ψ(υli + ωli)]}

where ψ(.) denotes the digamma function calculated by

ψ(x) = ∂ logΓ (x)
∂x

(5.13)

Symmetrically,

∂E[LC(θ | X,Z)]
∂ωli

=
N∑
n=1

z̄ni
∂ logBeta(xln; υli, ωli)

∂ωli
(5.14)

216

=
N∑
n=1

z̄ni{log(1− xln)− [ψ(ωli)− ψ(υli + ωli)]}

To compute the local curvature of E[LC(θ | X,Z)], the Hessian matrix (H) is

used [279] via

H{E[LC(θ | X,Z)]} =

∂2E[LC(θ|X,Z)]

∂υli.∂υli

∂2E[LC(θ|X,Z)]
∂υli.∂ωli

∂2E[LC(θ|X,Z)]
∂ωli.∂υli

∂2E[LC(θ|X,Z)]
∂ωli.∂ωli

 (5.15)

=

 ψ
′(υli + ωli)− ψ

′(υli) ψ
′(υli + ωli)

ψ
′(υli + ωli) ψ

′(υli + ωli)− ψ
′(ωli)

where ψ′(x) = dψ(x)/dx . Because ψ′(υli + ωli)− ψ
′(υli) < 0 , as the indicator

|H{E[LC(θ | X,Z)]}| < 0 demonstrates that the Hessian matrix is a negative

definite one with a local maximum at ({υ̂li, ω̂li}) declared by

∂2E[LC(θ|X,Z)]

∂υli

∂2E[LC(θ|X,Z)]
∂ωli

 = 0 (5.16)

The two equations for the BMM parameters (υli, ωli) updated from equation

(5.12), which are described in [279], can be computed by

ψ(υ̂li)− ψ(υ̂li + ω̂li) =
∑N
n=1 z̄ni log xln∑N

n=1 z̄ni
(5.17)

217

Figure 5.2: BMM for two arbitrary variables

ψ(ω̂li)− ψ(υ̂li + ω̂li) =
∑N
n=1 z̄ni log(1− xln)∑N

n=1 z̄ni

To illustrate the modelling of the BMM, its parameters are calculated using the

EM technique for two given random variables (x1 and x2). In Figure 5.2, let the

parameters of x1 (π, v, ω) be 0.55, 30 and 10, respectively and those of x2 (π, v, ω),

0.45, 10 and 30, respectively. Then, the parameters of the BMM are estimated for

the features of the network datasets described in Table 5.2 which is the first step

in the proposed GAA-ADS technique for efficiently modelling network data.

218

Figure 5.3: Composite trapezoidal rule

5.3.2. Trapezoidal Area Estimation (TAE)

The aim of the GAA-ADS technique is to identify the area of each vector as either

normal or abnormal. To achieve record-by-record detection in the decision-making

method, the TAE computes the area for each record (r) so that it has some features

(x1:D, r1:n={x1, x2, . . . , xD}) and tends to be very precise for measuring unequally

spaced points. Each PDF of the BMM (i.e., an area under the curve) denotes the

area of each network feature which is considered f(x) in the TAE.

The trapezoidal rule belongs to one of the numerical integration families called

‘Newton-Cotes formulas’ [280]. Its purpose is to appraise Vn =
∫ b
a f(x1:d)dx, where

a and b refer to the lower and upper boundaries of each feature/variable (x),

respectively, f(x) the PDF computed by equation (5.7) and D the number of

features created from the feature reduction method.

219

When a trapezoidal rule is applied to multivariate data, it is called a ‘composite

trapezoidal rule’, as depicted in Figure 5.3. It is obtained by integrating each sub-

interval ([xd−1, xd], where d = 1, 2, . . . , D) considering the interval points a = x1 <

x2 < < xD = b as

∫ b

a
f(x)dx =

∑d

i=1

∫ xd

xd−1
f(x)dx (5.18)

≈ 1
2

∑d

i=1(xd − xd−1)[f(xd−1) + f(xd)]

In Figure 5.3, as the variables are assumed to be from a uniform grid [281],

they are considered to be of equal length. Therefore, the total geometric area of

each observation used in the construction of the normal profile and testing phase

is calculated by

area(V) =
∫ b

a
f(x)dx (5.19)

= b− a
D

[f(x1) + 2
D−1∑
i=1

f(xi) + f(xD)]

5.3.3. Construction of Normal Profile of GAA-ADS

Technique

Constructing a normal profile that has information from only normal observations

is an essential step in applying the anomaly methodology. The validity of a purely

220

legitimate profile can be ascertained by providing secure normal traffic which en-

sures the credibility of detection. Given a set of normal vectors (rnormal1:n) in which

each vector involves a set of features, where rnormal1:n = {x1, x2, . . . , xD}normal, the

normal profile includes only statistical information from these vectors, that is,

the estimated parameters of the BMM and distances between the means of both

the BMM and trapezoidal area. The distance between each vector and the mean

of the BMM (distancen) refers to the absolute distance between the mean of all

normal vectors (µ = 1/N ∑N
i=1 υi/(υi + ωi)) and that of each legitimate vector

(µn = 1/D∑D
d=1 υnd/(υnd + ωnd)) which is computed by

distancen = |µ− µn| (5.20)

While the absolute distance is effectively used in cluster and outlier detection

techniques, in the proposed GAA-ADS one, it detects dissimilarities between nor-

mal and anomalous observations because, as stated in [274], a distance measure

can accurately estimate dissimilarities between different PDFs. It is practically

proven that, if the areas of normal vectors are roughly similar to those of at-

tack vectors, the sum of each PDF (f(xnD)) and absolute distance (distancen)

distinguishes between them.

Algorithm 5.1 presents the suggested steps for constructing a normal profile

(prof), with the parameters of the BMM (π, υ, ω) computed for all the normal vec-

tors (rnormal1:n) using equations (5.8) to (5.17) and then used to calculate the PDFs

of the features (x1:D) using equations (5.5) to (5.7). To make a clear distinction be-

tween normal and abnormal records, the sum of the PDFs and absolute distances,

namely (filtersetn), is estimated and the TAE of each observation (areanormaln)

computed by it using equation (5.19).

221

Algorithm 5.1 Construction of normal profile of GAA-ADS technique

Input: normal records (rnormal1:n)
Output: normal profile (prof)

1: for (all rnormal1:n) do
2: [Πd, υnd, ωnd]←estimate the parameters (π, υ, ω) of the BMM using equations

(5.8) to (5.19).
3: f(xnd)←compute the PDFs using equations (5.5) to (5.7) based on the pa-

rameters estimated in Step 2.
4: µn = 1/D∑D

d=1 υnd/(υnd + ωnd) using equation (5.6)
5: end for
6: µ = 1/N ∑N

i=1 υi/(υi + ωi) using (5.6)
7: distancen = |µ− µn| using (5.20)
8: filtersetn ←(f(xnd) + distancen)
9: areanormaln ← compute the TAE for the filtersetn using (5.19)
10: sort areanormaln and divide them into K ranges ([minKi,maxKi])
11: prof ←(Πd, υnd, ωnd, µn, [minKi,maxKi])
12: return (prof)

Step 10 in Algorithm 5.1 takes a long processing time as it compares each

area of a testing record with all the estimated legitimate areas (areanormaln). In

order to significantly reduce this time, the areanormaln are sorted and divided into

Ki ranges, with each Ki referring to a minimum and maximum value (minKi and

maxKi, respectively). Mathematically speaking, all the possible values of ranges

(i.e.,Kvalues) of N observations in a dataset are computed by

Kvalues = {bN/2c, b(N − 1)/2c, b(N − 2)/2c, ..., b4/2c} (5.21)

Subject to, K > 1, N ≥ 4

In equation (5.21), the upper and lower values of K are (bN/2c) and (b4/2c),

respectively, and, as the values following after the lower one are 1 (i.e., K = 1),

they are excluded as they denote the same original interval; for example, in Ta-

ble 5.1, we have N = 6 normal areas with their Kvalues = {b6/2c = 3, b5/2c =

222

2, b4/2c = 2} = {2, 3}, computed using from equation (5.21), and these Kvalues

are used to generate Ki ranges. These ranges reduce the number of areas of at-

tack falling into normal areas, particularly if normal and attack areas are closed.

As a result, normal records can be detected easily at real time if their areas

fall into a Ki range, i.e., between minKi and maxKi, otherwise they are con-

sidered attack records, as detailed in Algorithm 5.2. The estimated parameters

(Π, υnd, ωnd, µn, [minKi,maxKi]) are stored in the normal profile (prof) for the

testing phase and decision-making method for detecting attacks.

5.3.4. Testing Phase and Decision-making Method of

GAA-ADS Technique

In the testing phase, the testing area (areatestingn) of each observed record (rtesting)

is calculated using the estimated parameters of the legitimate profile (prof). Al-

gorithm 5.2 presents the steps in this phase and the decision-making method for

detecting the areas of attack records. Steps 1 to 4 estimate the (areatestingn) using

the stored normal parameters (Πd, υnd, ωnd, µn).

The decision method is presented in steps 5 to 15 in which each area of a

testing record (areatestingn) is compared with the area ranges of the normal pro-

file [minKi,maxKi]. If (areatestingn) falls within any [minKi,maxKi] range, it is

considered a normal record, otherwise an attack one.

Table 5.1 presents examples of suspicious observations identified based on the

areas estimated using the TAE. The training phase consists of 6 areas of normal

observations and the testing phase 3 of normal and 3 of attack observations. The

ranges in the training phase are divided into K=2 and K=3 and called ‘Case 1’ and

‘Case 2’, respectively. Case 1 has 2 ranges, (0.3, 0.5) and (0.55, 0.82), labelled ‘11’

223

Algorithm 5.2 Anomaly detection using TAE area estimation of GAA-ADS tech-
nique

Input: observed record (rtesting), normal profile
(Πd, υnd, ωnd, µn, [minKi,maxKi]), flag=1 // a record is normal or not

Output: normal or attack record
1: distancetesting = |µn − µtesting|
2: compute f(xtesting) using the parameters Πd, υnd, ωnd
3: filtersettesting ←(f(xtesting) + distancetesting)
4: areatesting ← compute the TAE for the filtersettesting
5: for (i to length (K ranges)) do
6: if (areatesting ≥ minKi && areatesting ≤ maxKi) then
7: flag = 0
8: break
9: end if
10: end for
11: if (flag==0) then
12: return (normal)
13: else
14: return (attack)
15: end if

and ‘12’, respectively, and Case 2 has 3 ranges, (0.3, 0.35), (0.5, 0.55) and (0.73,

0.82), labelled ‘21’, ‘22’ and ‘23’, respectively. In steps 5 to 15 in Algorithm 5.2,

the detection of attack observations indicates that all the records in Case 1 except

‘0.72’ and all those in Case 2 are correctly classified. Therefore, the K ranges have

a great impact on the DR of the GAA-ADS technique. With a gradual increase in

K from 2 to 3, the DR increases and successfully detects all the suspicious areas.

Although the proposed GAA-ADS technique produces promising results using

the NSL-KDD and UNSW-NB15 datasets, there are some abnormal areas which

might fall into normal ones due to their close area estimates and reflect overlapping

between these areas, as presented in the proposed framework and experimental

results in Section 5.5. We propose a new ADS technique based on the DMM and

interquartile range (IQR) approaches for detecting existing and zero-day attacks

with slight differences between normal and suspicious observations in the following

section.

224

Table 5.1: Examples of identifying attacks using estimated areas

Training phase 0.3 0.35 0.5 0.55 0.73 0.82

Testing phase

0.55 0.79 0.34 0.1 0.72 0.9

Case 1 K=2

Ranges label Min Max

11 0.3 0.5

12 0.55 0.82

Record areas 0.55 0.79 0.34 0.1 0.72 0.9

Ranges label 12 12 11 0 12 0

detection normal normal normal attack normal(false) attack

Case 2 k=3

Ranges label min max

21 0.3 0.35

22 0.5 0.55

23 0.73 0.82

Record areas 0.55 0.79 0.34 0.1 0.72 0.9

Ranges label 22 23 21 0 0 0

detection normal normal normal attack attack attack

normal areas attack areas

decision making

decision making

5.4. Novel Dirichlet Mixture Model–based

ADS (DMM-ADS) Technique

This section discusses the mathematical aspects of estimating and modelling net-

work data using the DMM and explains the proposed methodology for developing

an intelligent ADS for effectively handling large-scale networks.

5.4.1. Finite DMM

Since a finite mixture model can be considered a convex combination of two or more

PDFs, the joint characteristics of which can estimate any random distribution, it

is a powerful probabilistic modelling tool for multivariate data, such as network

data [161]. Its graphical model parameters are depicted in Figure 5.4 in which

225

k

Positive mixing coefficients

positive parameters

Binary random vector

The components of
Dirichlet distribution

Data inputs of features

Figure 5.4: Parameters of finite DMM

the symbols in circles refer to the arbitrary variables and model parameters that

demonstrate the conditional dependencies between variables2.

A finite mixture of Dirichlet distributions with K components is computed by

[162, 278]

p(X|π, α) =
K∑
i=1

πiDir(X|αi) (5.22)

where π = (π1, ..., πK) indicates the mixing coefficients, which are usually

positive, with their summation 1, ∑K
i=1 πi,α = (α1, ..., αK), and Dir(X|αi) refers

to the Dirichlet distribution of component i with its own positive parameters

(α = (αi1, ..., αiS)) computed by
2

• A Part of this study has been released in:
Moustafa, N., Creech, G and J. Slay. "Big Data Analytics for Intrusion Detection
System: Statistical Decision-Making Using Finite Dirichlet Mixture Models." Data
Analytics and Decision Support for Cybersecurity. Springer, 2017. 127-156.

226

Dir(X|αi) = Γ(
∑S
s=1 αis)∏S

s=1 Γ(αis)

S∏
s=1

Xαis−1
s (5.23)

where X = (X1, ..., XS), S is the dimensionality of X and ∑S
s=1 xs = 1, 0 ≤

Xs ≥ 1 for s = 1, ..., S. It is worth noting that a Dirichlet distribution is used as a

posterior one to directly model the data rather than as a prior one for multinomial

data.

Considering a set of N independent identically distributed (i.i.d) observations

(X = {X1, ..., XN}) assumed to be shaped from the mixture distribution in equa-

tion (5.23), the probability function of the DMM is

p(X|π, α) =
N∏
l=1
{
K∑
i=1

ΠiDir(Xl|αi)} (5.24)

It is important to understand that, as the finite mixture model in equation

(5.24) is a latent flexible one, for each observation (Xi), a D-dimensional binary

random vector (Zi = {Z, ..., ZiD}) is defined, where Zis ∈ {0, 1},
∑D
i=1 and Zis = 1

if Xi follows component i, else 0. The latent variables (Z = {Z1, ..., ZN}), which

are actually concealed and do not appear clearly in the model, and its conditional

distribution can be given by the mixing coefficients (π) and calculated by

p(Z|π) =
N∏
l=1

K∏
i=1

πZli
i (5.25)

The likelihood function of the latent variables, which represents the conditional

distribution of a dataset (X) given the class labels (Z), can be formulated as

p(X|π, α) =
N∏
l=1

K∏
i=1

Dir(Xl|αi) (5.26)

227

Given a dataset (X), a significant problem is determining the learning theory

for the mixture parameters, that is, both computing the parameters and specifying

the number of components (K). Firstly, to estimate the parameters of the finite

DMM, we use the variational inference presented in [64]. Secondly, we use the

number of components based on the principal components of the PCA technique

that generate the highest variations of features to find the differences between

normal and malicious features, as described in subsection 5.6.3.

In summary, the three main DMM parameters (π, α, Z) are estimated using

the variational learning theory to build an intelligent ADS that can efficiently

detect known and zero-day attacks. They are used to model network data in a

novel technique called DMM-ADS which is proposed for the first time in this PhD

thesis and includes training and testing phases for learning and testing network

data. In the training phase, these parameters and the IQR are estimated to

establish a legitimate profile, with anomalous observations detected in the testing

phase, as elaborated in the following two subsections.

5.4.2. Training Phase of Normal Observations of

DMM-ADS Technique

The proposed methodology for correctly applying anomaly detection depends

mainly on training normal data in the training phase while constructing a normal

profile and treating any variation from it as an attack in the testing phase. This

can be achieved by considering a set of normal observations (rnormal1:n) in which each

observation includes a set of features, such that rnormal1:n = {x1, x2, . . . , xD}normal,

with the normal profile involving only statistical characteristics about legitimate

observations of (rnormal1:n). In this methodology, the normal profile contains the es-

timated parameters (π, α, Z) of the DMM for estimating the PDF of the Dirichlet

distribution (Dir(X|π, α, Z)) for each feature vector in the training set.

228

The suggested steps for constructing a legitimate profile (prof), with the

parameters of the DMM (π, α, Z) estimated for all the legitimate observations

(rnormal1:n) using the equations presented in [162], are described in Algorithm 5.3.

Then, the PDFs of the network features (X1:D) are computed using equations

(5.22) to (5.26). Following that, the IQR is estimated by subtracting the first

from the third quartile of the PDFs [161] in order to specify a dynamic threshold

for distinguishing suspicious observations in the testing phase. It is acknowledged

that quartiles can divide data into adjacent intervals with equal probabilities for

easily specifying data boundaries [282].

Algorithm 5.3 Establishment of normal profile of DMM-ADS technique

Input: normal instances (rnormal1:n)
Output: normal profile (prof)

1: for (each record i in (rnormal1:n)) do
2: estimate the parameters (πi, αi, Zi) of the DMM as in [162]
3: calculate the PDFs using equations (5.22) to (5.26) based on the estimated

parameters of Step 2
4: end for
5: compute lower = quartile(PDFs, 1)
6: compute upper = quartile(PDFs, 3)
7: compute IQR = upper − lower
8: pro ←((π, αi, Zi),(lower, upper, IQR))
9: return (pro)

5.4.3. Testing Phase and Decision-making Method in

DMM-ADS Technique

In the testing phase, the Dirichlet PDF (PDF testing) of each testing observa-

tion (rtesting) is calculated based on the same parameters computed for the le-

gitimate profile (prof). Algorithm 5.4 presents the steps in this phase and the

229

decision-making method for recognising the Dirichlet PDFs of suspicious observa-

tions, with step 1 estimating the PDF of each rtesting using the same legitimate

parameters(πi, αi, Zi) stored in the normal profile.

Algorithm 5.4 Testing phase and decision-making method in DMM-ADS tech-
nique

Input: observed instance (rtesting), pro
Output: normal or attack

1: calculate the PDF testing using equations using the parameters (πi, αi, Zi)

2: if ((PDF testing < (lower–w ∗ (IQR)) || (PDF testing >(upper + w ∗ (IQR)))
then

3: return (attack)
4: else
5: return (normal)
6: end if

Steps 2 to 6 are the fundamental steps in the decision-making method. More

specifically, the IQR of the legitimate observations is calculated to discover the

outliers/anomalies of any (rtesting) in the testing phase. This is achieved by treating

the observations below the lower baseline (i.e., lower–w ∗ (IQR)) or above the

upper baseline (i.e., upper + w ∗ (IQR)), where w refers to the interval values

between 1.5 and 3 [282]. This interval mathematically proves that any data from

the same distribution can be varied in this particular range, with any data points

located outside this range considered outliers [282]. Similarly, in network anomaly

detection, we consider that the detection decision relies on handling any PDF testing

located outside this range as an anomalous instance which produces the promising

results discussed in subsection 5.6.3.

230

5.5. Two Proposed Scalable Frameworks for

ADS

In this section, we propose two scalable frameworks for designing an adaptive and

lightweight ADS that can reliably recognise malicious observations in large-scale

networks. Each framework involves three modules: data sniffing and storing; data

pre-processing; and a novel technique. The main difference between these two

frameworks is their DE modules, with those in Figures 5.5 and 5.6 the new GAA-

ADS and DMM-ADS techniques discussed in Sections 5.3 and 5.4, respectively.

In the first module, a set of features is extracted and generated from network

ingress traffic with existing secure servers used to elicit network connections for

a well-defined time window. The second module determines and filters network

data in three steps. Firstly, feature conversion replaces the symbolic features with

numeric ones because the proposed ADS technqiues can process only numeric

features. Secondly, feature reduction uses the PCA technique to select a small

number of uncorrelated original features and their principal components to improve

the ADS’s performance and accuracy. Finally, feature normalisation converts the

original subset of features or their principal components into a fixed range of

[0, 1], an essential step in computing the beta distribution used in the two new

ADS techniques.

The third module consists of the two new DE techniques (i.e., GAA-ADS and

DMM-ADS) discussed above which detect suspicious instances based on carefully

analysing a network’s normal and suspicious data. In their training phases, normal

observations are computed using some statistical parameters based on the potential

231

N
e

tw
o

rk

tr
a

ff
ic

F
e

a
tu

re

R
e

d
u

c
ti
o

n

O
ri

gi
n

al
 s

u
b

se
t

fe
at

u
re

P
ri

n
ci

p
al

co

m
p

o
n

en
ts

N
o

rm
a

l
P

ro
fi
le

 C
re

a
ti
o

n
 u

s
in

g

th
e

 c
o

m
b

in
a

ti
o

n
 o

f
B

e
ta

M
ix

tu
re

 m
o

d
e

l
a

n
d

 r
e

c
o

rd

d
is

ta
n

c
e

s

T
e

s
ti
n

g
 p

ro
fi
le

 r
e

c
o

rd
 b

y

re
c
o

rd
 u

s
in

g
 t
h

e
 e

s
ti
m

a
te

d

p
a

ra
m

e
te

rs
 o

f
th

e
 N

o
rm

a
l

P
ro

fi
le

T
ra

p
e

z
o

id
 A

re
a

E
s
ti
m

a
ti
o

n

D
e

te
c
ti
o

n

m
e

th
o

d

F
e

a
tu

re
 R

e
d

u
c

ti
o

n

N
o

rm
a

l

re
c
o

rd

A
tt
a

c
k

re
c
o

rd

Tr
ai

n
in

g
p

h
as

e

Te
st

in
g

p
h

as
e

OR

parameters

G
e

o
m

e
tr

ic
 A

re
a

 A
n

a
ly

s
is N

o
rm

al
 p

ro
fi

le

Te
st

in
g

p
h

as
e

F
e

a
tu

re

c
o

n
v
e

rs
io

n

F
e

a
tu

re

N
o

rm
a

lis
a

ti
o

n

D
a

ta
 p

re
-p

ro
c

e
s

s
in

g

D
a

ta
 s

n
if

fi
n

g
 a

n
d

 s
to

ri
n

g

S
n

if
fi
n

g

to
o

ls
F

e
a

tu
re

 s
e

t
N

o
rm

a
lit

y
 t
e

s
t

L
in

e
a

ri
ty

 t
e

s
t

S
ta

ti
s

ti
c

a
l

m
e

a
s

u
re

s

F
ig

ur
e

5.
5:

Pr
op

os
ed

fr
am

ew
or
k
fo
r
es
ta
bl
ish

in
g
sc
al
ab

le
,a

da
pt
iv
e
an

d
lig

ht
w
ei
gh

t
G
A
A
-A

D
S

232

N
e

tw
o

rk

tr
a

ff
ic

 D
e

c
is

io
n

-m
a

k
in

g
 m

e
th

o
d

F
e

a
tu

re

R
e

d
u

c
ti
o

n

N
o

rm
a

l
p

ro
fi
le

 g
e

n
e

ra
ti
o

n
 u

s
in

g

th
e

 d
e

n
s
it
y
 o

f
th

e
 D

M
M

T
e

s
ti
n

g
 s

e
t
fo

r
e

a
c
h

 i
n

s
ta

n
c
e

u
s
in

g
 t
h

e
 e

s
ti
m

a
te

d
 p

a
ra

m
e

te
rs

o
f
th

e
 N

o
rm

a
l
P

ro
fi
le

IQ
R

 t
h

re
s
h

o
ld

fo
r

o
u

tl
ie

rs

N
o

rm
a

l

in
s
ta

n
c
e

a
b

n
o

rm
a

l

in
s
ta

n
c
e

Tr
ai

n
in

g
p

h
as

e

Te
st

in
g

p
h

as
e

parameters

D
ir

ic
h

le
t

M
ix

tu
re

 M
o

d
el

 (
D

M
M

)-
 b

a
se

d
 A

n
o

m
a
ly

 D
et

ec
ti

o
n

 S
y
st

em

P
ar

am
et

er
s

o
f

D
M

M

an
d

 In
te

rq
u

ar
ti

le

R
an

ge
(I

Q
R

)

Te
st

in
g

p
h

as
e

F
e

a
tu

re

c
o

n
v
e

rs
io

n

F
e

a
tu

re

N
o

rm
a

lis
a

ti
o

n

P
re

-p
ro

c
e

s
s

in
g

C
a

p
tu

ri
n

g
 a

n
d

 l
o

g
g

in
g

S
n

if
fi
n

g

to
o

ls
D

a
ta

 S
o

u
rc

e
S

ta
ti

s
ti

c
a

l
a

n
a

ly
ti

c
s

 N

o
rm

a
lit

y
 t
e

s
t

 L

in
e

a
ri
ty

 t
e

s
t

F
e

a
tu

re

c
re

a
ti
o

n

D
e

c
is

io
n

 E
n

g
in

e
 (

D
E

)

T
o

 s
p

e
c

if
y

 t
h

e
 b

e
s

t

s
ta

ti
s

ti
c

a
l
D

E

D
e

c
is

io
n

-m
a

k
in

g
 m

e
th

o
d

F
ig

ur
e

5.
6:

Pr
op

os
ed

sc
al
ab

le
fr
am

ew
or
k
fo
r
de

sig
n
of

in
te
lli
ge
nt

D
M
M
-A

D
S

233

process of each technique for building a normal profile from them. Then, the same

parameters are used to compute the testing observations while considering any

variation from normal areas an anomaly based on the proposed decision-making

methods. The first two modules in these frameworks are detailed in the following

two sections.

5.5.1. Data Sniffing and Storing Module

As discussed in Chapter 3, the IXIA PerfectStorm tool [193] is used to simulate

current realistic legitimate and malicious network traffic, with its testbed config-

ured to handle a large-scale network [42, 43]. The Tcpdump tool is used to sniff

raw packets from the network interface while the Bro and Argus tools as well

as some new scripts are applied to extract and generate a set of features from

these packets. To accumulate network flows in network systems, it is vital that

ingress devices, such as routers and switches, are used to obtain these features.

These flows are collected at the destination nodes of each network with respect to

their source/destination IPs and protocols (i.e., flow identifiers) for a specific time

window using the new aggregator module presented in Chapter 4, Section 4.3 to

decrease the overhead incurred in identifying suspicious activities. We create the

features for the UNSW-NB15 dataset by developing an extractor module which

aggregates packets using the flow identifiers for each 100 connection records for

the easy analysis, determination and classification of network data [42, 43].

This module comprises steps for sniffing network data and logging them for

processing by the DE module which are similar to those for the design of the

UNSW-NB15 dataset. An IXIA PerfectStorm tool [193], which has the capability

to determine a broad range of network segments and extract traffic from several

web applications, for example, Facebook, Skype, YouTube and Google, is used

to mimic modern realistic normal and suspicious events, as depicted in Figures

5.5 and 5.6, respectively. Moreover, it simulates the majority of security events

and malicious scripts which are difficult to find using other existing tools. The

234

configuration of the UNSW-NB15 testbed is used to simulate a large-scale network

and the Tcpdump tool to sniff raw packets from the network’s interface while the

Bro, Argus tools and other scripts elicit a set of features from network traffic for

evaluating the new IDS methodologies.

These features are logged using the MySQL Cluster CGE technology [57] which

has a highly scalable and real-time database, that enables a distributed architec-

ture to read and write intensive workloads for access by SQL or NoSQL APIs.

It can also handle memory-optimised and disk-based tables as well as automatic

data partitioning with load balancing, and insert nodes into a running cluster to

process online big data. Although this technology has a similar architecture to

the Hadoop tools [283] that are the most common for handling big offline data,

our target in this PhD research is to develop a scalable, adaptive and online ADS

that identifies malicious behaviours. Therefore, the MySQL Cluster CGE tech-

nology for an ADS is used to store network data which are then passed to the

pre-processing module for analysis and filtering.

5.5.2. Data Pre-processing Module

The sets of features in the NSL-KDD [39, 80] and UNSW-NB15 [42, 43] datasets

are used to process compatible input to the proposed GAA-ADS and DMM-ADS

techniques through the three steps of feature conversion, feature reduction and

feature normalisation.

A. Feature conversion

Although these datasets include both quantitative and qualitative attributes, the

proposed DE techniques can process only quantitative features because, as they are

statistical models, they can handle only numeric values. Consequently, a unified

format for the features (X) is used to convert a symbolic feature into a numeric one;

for instance, the UNSW-NB15 dataset contains three symbolic features, protocol

235

TCP, UDP, ICMP

HTTP, FTP, SMTP

INT, FIN, CON

Protocols

Services

States

Categorical features

1, 2, 3

1, 2, 3

1, 2, 3

Protocols

Services

States

Numerical features

Mapping

Mapping

Mapping

Figure 5.7: Example of converting categorical features into numerical features
using UNSW-NB15 dataset

types (e.g., TCP and UPD), states (e.g., CON and ACC) and services (e.g., HTTP

and FTP), as shown in Figure 5.7. In each dataset, this function replaces the values

in the features with ordered numbers, such as CON=1 and ACC=2.

B. Feature reduction (FR)

Feature reduction is a method for removing inappropriate, redundant and/or noisy

features. In [44], it is divided into feature selection, which discovers a subset of the

original features, and feature extraction which transforms the data from a high-

dimensional space into a lower-dimensional one. In [90, 284, 285], the PCA, which

is one of the best-known linear FR techniques, has the advantages of requiring

less memory storage, data transfer and processing time, and has better detec-

tion accuracy than other methods [23, 90, 133, 286]. Therefore, after extracting

features from network data, the first phase in establishing a lightweight ADS is

feature reduction for which the PCA technique is used, as explained in Chapter

4, subsection 4.5.2. This technique ranks network features based on the highest

variance of each and generates a new dimensional space of uncorrelated features

by eliminating low-variance features [90, 286]. The input to the GAA-ADS and

236

DMM-ADS techniques is the original features or principal components adopted

(Table 5.2).

C. Feature normalisation

After reducing the feature set, a necessary step in the data pre-processing module

is feature normalisation which is a method for scaling the value of each feature

into a particular range, with its key advantage removing the bias from raw data

without modifying their statistical properties. The beta distributions used in the

proposed DE techniques are designed to model data in a certain range, such as

[0, 1], for the features (xi) input to the DE techniques which are normalised into

that range by the linear transformation computed as

xnormalisedi = (xi −min(x)/(max(x)−min(x)) (5.27)

5.6. Experimental Results and Analysis

This section discusses the experimental results and statistical analyses related to

the proposed DE techniques and compares them with those obtained from recent

peer mechanisms to demonstrate their efficiency and effectiveness for designing an

intelligent ADS for a large-scale network.

A. Pre-processing Phase

The two novel DE techniques (i.e., GAA-ADS and DMM-ADS) are evaluated

using 15 original features and their principal components from the NSL-KDD and

UNSW-NB15 datasets selected using the PCA mechanism, as listed in Table 5.2.

The largest number of features with higher variances is selected to reveal that each

237

Table 5.2: Features selected from NSL-KDD and UNSW-NB15 datasets
Datasets Selected features
NSL-KDD srv_count, dst_host_srv_count, count, src_bytes,

dst_host_same_srv_rate, dst_host_count,
srv_diff_host_rate, srv_error_rate,
dst_host_srv_error_rate, diff_srv_rate
dst_host_rerror_rate, rerror_rate, is_guest_login,
num_outbound_cmds, dst_host_srv_diff_host_rate

UNSW-
NB15

ct_dst_sport_ltm, tcprtt, dwin, sjit, ct_state_ttl
ct_src_dport_ltm, dbytes, ct_dst_src_ltm,
ct_dst_ltm, smean, dmean, service, proto, dtcpb,
ct_src_ltm

feature can affect the performances of the DE techniques. To correctly apply the

learning theory, these features do not depend on each other but on the predictor

(i.e., class label) to improve the efficacy of developing a ML technique.

The new DE techniques are developed using the ‘R programming language’

on Linux Ubuntu 14.04 with 16 GB RAM and an i7 CPU processor. In order

to carry out experiments on each dataset, we select random samples from the

‘full’ NSL-KDD dataset [39] and the CSV files of the UNSW-NB15 dataset with

diverse sample sizes of between 100,000 and 300,000 (s). Each legitimate sample is

approximately 60 to 75% of the total sample size, with some used to construct the

legitimate profile in the training phase and others employed in the testing phase.

The performances of the GAA- and DMM-ADS techniques are assessed using a

10-fold cross–validation of the sample sizes to determine their impacts with no

bias towards some samples.

5.6.1. Statistical Analysis and Decision Support

A statistical analysis has a great impact as it interprets network data patterns and

reveals to what extent suspicious observations are different from normal observa-

tions. Three statistical measures, Q-Q, density and correntropy plots, are applied

238

to the network data to find these differences.

Firstly, a Q-Q plot is a graphical representation that determines if a set of data

comes from a normal theoretical distribution. Network features are considered to

be from a normal distribution if their values are located on the same theoretical

distribution line, as shown in Figure 5.8 in which (A) and (B) indicate that the

selected features of the two datasets do not follow the theoretical distribution lines

(i.e., red ones) and there are much greater differences between them than in their

feature value lines.

Therefore, these network features do not properly fit a Gaussian distribution,

as also proven using the K-S test in Chapter 3. Since the BMM and DMM are two

of the best models for fitting non-normal distributions because they model more

than one feature by accurately specifying their boundaries, they are used in the

GAA-ADS and BMM-ADS techniques, respectively.

Secondly, the density probabilities of normal and malicious observations are

estimated using some samples from the NSL-KDD and UNSW-NB15 datasets to

reveal to what extent these observations vary, as shown in Figure 5.9. As, in the

NSL-KDD dataset, those of the normal instances vary between 0 and 0.20, with

their values specified as between -50 and 0, and those of the abnormal instances

between 0 and 0.5, with their values ranging from -30 to 0. It is acknowledged that

they are somewhat different. Similarly, in the UNSW-NB15 dataset, the density

probabilities of the normal and suspicious observations also vary slightly. These

findings emphasise that the proposed statistical decision-making methods in the

two DE techniques can dramatically recognise malicious observations due to the

differences between them and legitimate observations in the two datasets.

239

-100 0 100 200

0
50

10
0

15
0

20
0

25
0

Q
ua

nt
ile

s
of

 n
or

m
al

 N
S

LK
D

D

-100 0 50 100 150 200

0
50

10
0

15
0

20
0

25
0

Q
ua

nt
ile

s
of

 a
bn

or
m

al
 N

S
LK

D
D

(A)

-100 0 50 100 150 200

0
50

10
0

15
0

20
0

25
0

Q
ua

nt
ile

s
of

 n
or

m
al

 U
N

S
W

-N
B

15

-200 -100 0 100 200 300

0
20

0
40

0
60

0
80

0

Q
ua

nt
ile

s
of

 a
bn

or
m

al
 U

N
S

W
-N

B
15

(B)

Figure 5.8: Q-Q plots of feature vectors adopted from NSL-KDD and
UNSW-NB15 datasets

240

Density of NSL−KDD Normal

Values

D
en

si
ty

−50 −40 −30 −20 −10 0

0.
00

0.
05

0.
10

0.
15

0.
20

Density of NSL−KDD Abnormal

Values

D
en

si
ty

−30 −25 −20 −15 −10 −5 0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

(A)

Density of UNSW−NB15 Normal

Values

D
en

si
ty

−35 −30 −25 −20 −15 −10 −5 0

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

Density of UNSW−NB15 Abnormal

Values

D
en

si
ty

−60 −50 −40 −30 −20 −10 0

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

(B)

Figure 5.9: Normal and suspicious density probabilities for some instances in
both datasets

241

Thirdly, the correntropy plots in Figure 5.10 also statistically illustrate the

small differences between the values of normal and suspicious features for 100 in-

stances in both datasets which simplifies the role of the two novel DE techniques

for successfully recognising abnormal observations. The key reason for identi-

fying variations between normal and malicious instances is that most of the fea-

tures in both datasets were generated based on analysing their potential statistical

properties, such as their interracial times and packet counts from header packets.

These properties lead to enabling clear distinctions to be made between normal

and attack observations, thereby improving the performances of the proposed DE

techniques.

Overall, the above statistical measures demonstrate that network features can-

not be plotted in a linear representation and modelled in a Gaussian distribution

because recent anomalous activities attempt to mimic normal ones. Thereby, they

highlight the need to choose decision-making methods that can satisfy these statis-

tical constraints in order to establish an intelligent NADS that can identify small

variations between legitimate and suspicious observations with respect to the high

speeds and large sizes of current networks.

5.6.2. Performance Evaluation of GAA-ADS Technique

This subsection explains the performance evaluation of the proposed GAA-ADS

technique on the original features and their principal components selected by the

PCA technique which uses some criteria, in particular, the accuracy, DR and FPR,

to assess efficiency and effectiveness.

A. Performance of GAA-ADS technique on original features

In order to provide a better overview of the performance of the GAA-ADS tech-

nique on the original features, the overall FPR, accuracy and DR are shown in

242

0 50 100 150 200

-1
.0

-0
.5

0.
0

Correntropy of NSLKDD

Feature vectors

V
al

ue
s

Normal instances

Attack instances

(A)

0 50 100 150 200

-2
.0

-1
.5

-1
.0

-0
.5

0.
0

Correntropy of UNSW-NB15

Feature vectors

V
al

ue
s

Normal instances

Attack instances

(B)

Figure 5.10: Correntropy plots of some instances in both datasets

243

Table 5.3: Evaluation of overall performances of GAA-ADS technique on
original features

NSL-KDD UNSW-NB15
K value DR Accuracy FPR DR Accuracy FPR

2 92.1% 92.3% 3.0% 75.1% 77.4% 8.3%
4 92.9% 93.6% 2.6% 81.3% 82.1% 7.4%
6 95.3% 95.5% 0.8% 85.2% 85.7% 7.0%
8 95.4% 95. 6 % 0.7% 89.8% 90.2% 6.9%
10 98.1% 98.8% 0.4% 91.2% 91. 8% 5.8%

Table 5.3 while, in Figure 5.11, the Receiver Operating Characteristics (ROC)

curves represent the relationships between the DR and FPR with several K val-

ues. It is observed that the gradual rise in the K value from 2 to 10 with even

numbers enhances the overall DR and accuracy and reduces the overall FPR. In

the NSL-KDD dataset, the overall DR and accuracy increase from 92.1% to 98.1%

and 92.3% to 98.8%, respectively, while the overall FPR decreases from 3.0% to

0.4%. Likewise, in the UNSW-NB15 dataset, the overall DR and accuracy increase

from 75.1% to 91.2% and 77.4% and 91.8%, respectively, while the overall FPR

decreases from 8.3% to 5.8%.

B. Performance of GAA-ADS technique on principal components

A summary of the performances of the GAA-ADS technique on the 15 principal

components in terms of the overall FPR, accuracy and DR is presented in Table

5.4 while Figure 5.12 shows the ROC curves for the DR and FPR with different

K values. Its overall performance on the principal components outperforms that

on the original features by 1-2% as the former are generated based on the highest

variations between the areas of normal and suspicious observations. In the NSL-

KDD dataset, when the K value gradually increases from 2 to 10, the overall

DR and accuracy increase from 94.2% to 99.6% and 95.0% to 99.7%, respectively,

244

0 20 40 60 80 100

0
20

40
60

80
10

0
Original NSLKDD (GAA-ADS)

False positive Rate (%)

D
et

ec
tio

n
R

at
e

(%
)

K=2
K=4
K=6
K=8
K=10

(A)

0 20 40 60 80 100

0
20

40
60

80
10

0

Original UNSW-NB15 (GAA-ADS)

False positive Rate (%)

D
et

ec
tio

n
R

at
e

(%
)

K=2
K=4
K=6
K=8
K=10

(B)

Figure 5.11: ROC curves for original features in two datasets obtained by
GAA-ADS technique for different K values

245

Table 5.4: Estimations of overall performances of GAA-ADS technique on
principal components

NSL-KDD UNSW-NB15
K value DR Accuracy FPR DR Accuracy FPR
2 94.2% 95.0% 1.1% 75.4% 77.6% 8.2%
4 95.1% 95.3% 0.7% 85.2% 86.0% 6.3%
6 96.4% 97.7% 0.2% 87.1% 88.2% 6.1%
8 98.7% 98.8% 0.2% 91.2 % 92.7% 5.9%
10 99.6% 99.7% 0.2% 91.3% 92.8% 5.1%

while the overall FPR decreases from 1.1% to 0.2%. Similarly, in the UNSW-NB15

dataset, the overall DR and accuracy increase from 75.4% to 91.3% and 76.6 % to

92.8%, respectively, while the overall FPR decreases from 8.2% to 5.1%.

C. Performance comparisons of GAA-ADS technique

In Figure 5.13 (A), the ROC curves obtained from the above five evaluations of

the two datasets indicate that the performances of the GAA-ADS technique on

the principal components of the NSL-KDD dataset, which increasingly improve

the DRs from 94.2% to 99.6%, are superior to those on the original features which

increase the DRs from 92.1% to 98.1% whereas the areas of the FPRs under the

ROC curves for the principal components (i.e., [0.4% - 3.0%]) are approximately

50% of those for the original features (i.e., [0.2% - 1.1 %]). On the other hand,

Figure 5.13 (B) shows that the differences between the ROC curves for the origi-

nal features and principal components in the UNSW-NB15 dataset are low, with

changes in their DRs and FPRs approximately 0.2 % and 0.7%, respectively.

Tables 5.5 and 5.6 present comparisons of the DRs of the record types with the

K values on the components of the NSL-KDD and UNSW-N15 datasets, respec-

tively, which indicate that, as the K value increases, the DR gradually improves,

246

0 20 40 60 80 100

0
20

40
60

80
10

0
Components NSLKDD (GAA-ADS)

False positive Rate (%)

D
et

ec
tio

n
R

at
e

(%
)

K=2
K=4
K=6
K=8
K=10

(A)

0 20 40 60 80 100

0
20

40
60

80
10

0

Components UNSW-NB15 (GAA-ADS)

False positive Rate (%)

D
et

ec
tio

n
R

at
e

(%
)

K=2
K=4
K=6
K=8
K=10

(B)

Figure 5.12: ROC curves obtained from GAA-ADS technique for components in
both datasets with different K values

247

0.0 0.5 1.0 1.5 2.0 2.5 3.0

90
92

94
96

98
10

0
GAA-ADS

False Positive Rate %

D
et

ec
tio

n
R

at
e

%

Orignal NSL-KDD
Components NSL-KDD
Orignal NSL-KDD
Components NSL-KDD

(A)

5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5

75
80

85
90

95
10

0

GAA-ADS

False Positive Rate %

D
et

ec
tio

n
R

at
e

%

Orignal UNSW-NB15
Components UNSW-NB15

(B)

Figure 5.13: ROC curves obtained from GAA-ADS technique for both datasets

248

Table 5.5: Comparison of DRs (%) obtained by GAA-ADS technique for
principal components in NSL-KDD dataset

K values
Record type 2 4 6 8 10
Normal 95.5% 96.2% 98.1% 99.3% 99.4%
Probe 93.2% 94.7% 96.2% 98.8% 99.6%
DoS 98.1% 98.3% 98.6% 100% 100%
U2R 93.7% 93.7% 95.1% 97.9% 98.4%
R2L 94.2% 94.3% 95.3% 96.7% 98.9%

as illustrated in Figure 5.14. Table 5.5 reveals that the GAA-ADS technique can

identify the majority of record types in the NSL-KDD dataset with DRs varying

between 93.2% and 100% whereas the DRs of normal observations increase from

95.5 % to 99.2%, with the lowest FNRs observed as the K value gradually increases

from 2 to 10. Likewise, the DRs of malicious types (i.e., Probe, DoS, U2R and

R2L) slowly increase from, on average, 93.2% to 98.5%.

Table 5.6 shows that the GAA-ADS technique recognises record types in the

UNSW-NB15 dataset, with DRs moderately increasing from 42.0% to 93.0% while

the DRs of normal records increase from 79.3% to 93.0% when the K value increases

from 2 to 10. However, the DRs of anomalous types do not always progressively

increase; for instance, the Analysis, Backdoor, Fuzzers, Reconnaissance and Shell-

code attacks do not receive the highest DRs with the highest K values and their

differences from previous values are low (approximately 1-2%) while the DRs of

the other types of suspicious instances, DoS, Exploits, Generic and Worms, in-

crease with increases in the K values. Since it can be seen that, for these types of

observations, the variances of their components are close, their areas sometimes

fall into each other when identifying areas of abnormal instances.

249

2 4 6 8 10

80
85

90
95

10
0

NSLKDD (GAA-ADS)

K Value

D
et

ec
tio

n
R

at
e

%

Normal
Probe
DoS
U2R
R2L

(A)

2 4 6 8 10

0
20

40
60

80
10

0

UNSW-NB15 (GAA-ADS)

K Value

D
et

ec
tio

n
R

at
e

%

Normal
Analysis
Backdoor
DoS
Exploits
Fuzzers
Generic
Reconnaissance
Shellcode
Worms

(B)

Figure 5.14: Comparison of DRs (%) obtained by GAA-ADS technique for both
datasets with increasing K values

250

Table 5.6: Comparison of DRs (%) obtained by GAA-ADS technique for
components of UNSW-NB15 dataset

K values
Record type 2 4 6 8 10
Normal 79.3% 81.2% 82.3% 89.7% 93.0%
Analysis 73.1% 74.3% 74.3% 79.2% 79.4%
Backdoor 63.2% 63.7% 64.6% 64.8% 64.8%
DoS 57.6% 75.7% 76.4% 80.3% 84.3%
Exploits 52.2% 53.2% 57.6% 60.7% 65.4%
Fuzzers 50.1% 51.4% 54.3% 54.0% 58.6%
Generic 86.8% 89.6% 90.1% 90.1% 90.3%
Reconnaissance 42.0% 43.9% 44.3% 45.1% 45.6%
Shellcode 62.6% 65.4% 72.6% 73.6% 73.8%
Worms 44.5% 46.8% 53.1% 55.1% 56.2%

Although this technique generally performs better on the NSL-KDD than

UNSW-NB15 dataset, in some cases, some malicious observations in the UNSW-

NB15 dataset are not high because of the lower variances between them and normal

observations. As this dataset was simulated using a sophisticated network archi-

tecture to include a modern range of suspicious activities, the GAA-ADS technique

can protect current networks because it could find all the malicious activities in

real networks by synchronously monitoring their different nodes. In [205], it is

claimed that deploying a framework in which each ADS collaborates with the oth-

ers could efficiently protect network nodes. Therefore, the GAA-ADS technique

could be a reasonable solution for detecting abnormal activities in real networks.

Estimating the performances of the GAA-ADS technique is carried out using

two measures of the variances of its features/principal components and K values.

Firstly, if the former are very high, the DR will be higher and the FPR lower.

According to the experimental results, the principal components have the higher

possible variances and always produce better detection accuracy than the origi-

nal features because their variations between normal and anomalous observations

make their computed areas different based on accurate estimations of their TAEs.

Because the TAE estimates the precise areas of features, we use it to calculate the

total area of each observation using the estimated BMM and distances between

251

observations because it can identify slight differences between the areas of the

vector types.

Secondly, as gradual increases in the K value enhance the performance of the

GAA-ADS technique, we test all the possible K values calculated using equation

(5.21) on the two datasets. We observe that, for each two consecutive intervals

(i.e., even and odd), when K equals even numbers from 2 to 10, the DR ranges

are moderately higher than those of the odd ones, as depicted in Figure 5.15 in

which the DRs and 20 K values are compared. Because these even ranges contain

different dissimilarities of legitimate areas in small intervals, they significantly

decrease the overlapping between normal and malicious areas. However as, by

using K values greater than 10, the DRs do not improve, we should use only those

from 2 to 10 to reduce the processing time and provide the best DRs and lowest

FPRs.

D. Advantages and limitations of GAA-ADS technique

The GAA-ADS technique has some advantages and limitations. On the one hand,

it depends on recognising the precise areas of normal instances computed using

the TAE and considering any deviation from them as an anomalous instance. The

statistical approach for building this technique confirms its capability to effectively

recognise known and zero-day attacks in large-scale networks because its normal

profile includes only estimated parameters from the network data which can be

automatically modified by adapting a particular K value. Also, as it does not

require any prior information about malicious instances, it can be effectively de-

ployed in real network environments without any effort expended in the training

phase.

252

5 10 15 20

65
70

75
80

85
90

95
10

0
GAA-ADS

K Value

D
et

ec
tio

n
R

at
e

%

Orignal NSLKDD
Orignal UNSW-NB15

(A)

5 10 15 20

65
70

75
80

85
90

95
10

0

GAA-ADS

K Value

D
et

ec
tio

n
R

at
e

%

Components NSLKDD
Components UNSW-NB15

(B)

Figure 5.15: Comparison of DRs (%) obtained by GAA-ADS technique with 20
K values

253

Conversely, selecting the appropriate K value requires a careful analysis of

the relevant network data. In current networks, some types of malicious activ-

ities, such as stealth and spy attacks, try to mimic legitimate behaviours [287].

Firstly, we design the GAA-ADS technique to identify small variations between

normal and suspicious areas but as, in current sophisticated attacks, these areas

sometimes overlap, it is necessary to select a K value that distinguishes between

them. Then, we develop the new DMM-ADS technique for substantially address-

ing this challenge. It can identify attacks without defining their types as it does

not require any attack information in the training phase but, if it is necessary to

identify these types, they should be labelled by estimating their areas. Also, as

it can handle only numeric features, a feature conversion step is implemented in

the pre-processing module. Finally, because the performance of this technique will

slightly decrease if the variances between the selected features are not high, we

use the PCA to adopt the most highly varied features by testing the features and

their principal components.

5.6.3. Performance Evaluation of DMM-ADS Technique

This subsection explains the performance evaluation of the efficiency and efficacy

of the novel DMM-ADS technique on the original features and their principal

components chosen by the PCA using different evaluation criteria, in particular,

the accuracy, DR and FPR.

A. Performance of DMM-based ADS technique on original features

The performance evaluation of the DMM-based ADS technique is conducted on

the original features adopted from the two datasets by the PCA mechanism, with

the overall DR, accuracy and FPR presented in Table 5.7. Figure 5.16 shows

the ROC curves which demonstrate the relationships between the DRs and FPRs

254

Table 5.7: Performance evaluation of DMM-ADS technique on original features
adopted from both datasets

NSL-KDD UNSW-NB15
w value DR Accuracy FPR DR Accuracy FPR
1.5 93.0% 93.1% 3.0% 86.1% 88.2% 8.2%
2 94.2% 93.8% 0.8% 89.3% 89.8% 7.3%
2.5 97.9% 97.8% 0.6% 93.6% 94.1% 5.6%
3 98.9% 99.2% 0.2% 95.5% 95.8% 4.7%

using the w value. It can be seen that the stable increase in this value between 1.5

and 3 improves the overall DR and accuracy while decreasing the overall FPR.

In more detail, when the w value gradually increases from 1.5 to 3, the overall

DR and accuracy improve from 93.0% to 98.9% and 93.1% to 99.2%, respectively,

and from 86.1% to 95.8% and 88.2% to 95.8%, respectively, while the overall FPR

decreases from 3.0% to 0.2% and 8.2% to 4.7%, in the NSL-KDD and UNSW-NB15

datasets, respectively.

B. Performance of DMM-based ADS technique on principal

components

In order to provide an overall evaluation of the performances of the DMM-ADS

technique on the 15 principal components in terms of the overall FPR, accuracy

and DR, the results are presented in Table 5.8 while Figure 5.17 depicts the ROC

curves for the DR and FPR with different w values. Similarly, as the w value

gradually increases from 1.5 to 3, the performance of this technique on the original

features increases the overall DR and accuracy and reduces the overall FPR.

Nonetheless, the overall performance on the principal components is better

than that on the original features by 1.5-2.5% as the principal components in-

crease on the basis of the highest variations which reveal the highest variances in

255

0 20 40 60 80 100

0
20

40
60

80
10

0
Original NSLKDD (DMM-ADS)

False positive Rate (%)

D
et

ec
tio

n
R

at
e

(%
)

w=1.5

w=2

w=2.5

w=3

(A)

0 20 40 60 80 100

0
20

40
60

80
10

0

Original UNSW-NB15 (DMM-ADS)

False positive Rate (%)

D
et

ec
tio

n
R

at
e

(%
)

w=1.5

w=2

w=2.5

w=3

(B)

Figure 5.16: ROC curves obtained from DMM-ADS technique for both datasets
with different w values

256

Table 5.8: Evaluation of overall performances of DMM-ADS technique on
principal components

NSL-KDD UNSW-NB15
w value DR Accuracy FPR DR Accuracy FPR
1.5 94.6% 95.4% 0.9% 90.2% 91.6% 7.4%
2 96.4% 96.7% 0.6% 93.4% 93.9% 6.2%
2.5 98.2% 98.8% 0.3% 94.8% 95.3% 5.1%
3 99.8% 99.9% 0.1% 96.2% 97.5% 3.4%

the estimated densities of legitimate and malicious instances. While the w value

regularly increases from 1.5 to 3, the overall DR and accuracy increase from 94.6%

to 99.8% and 95.4% to 99.9%, respectively, and from 90.2% to 96.2% and 91.6%

to 97.5%, respectively, while the overall FPR decreases from 0.9% to 0.1% and

from 7.4% to 3.4% for the NSL-KDD and UNSW-NB15 datasets, respectively.

C. Performance comparisons of DMM-ADS technique

The performances of the DMM-ADS technique are illustrated using the above five

evaluations on the two datasets. Figure 5.18 (A) shows that those on the principal

components progressively enhance the DRs from 94.6% to 99.8% which are better

than those on the original features which steadily increase the DRs from 93.0% to

98.8% while the FPRs of the principal components vary between 0.2% and 0.9%,

nearly 65% of those of the original features (i.e., [0.3% - 3.0 %]). Figure 5.18

(B) displays the ROC curves for the original features and principal components

in the UNSW-NB15 dataset which demonstrate that there is a clear difference

between them as changes in their DRs and FPRs are approximately 0.6% and

0.9%, respectively.

257

0 20 40 60 80 100

0
20

40
60

80
10

0
Components NSLKDD (DMM-ADS)

False positive Rate (%)

D
et

ec
tio

n
R

at
e

(%
)

w=1.5

w=2

w=2.5

w=3

(A)

0 20 40 60 80 100

0
20

40
60

80
10

0

Components UNSW-NB15 (DMM-ADS)

False positive Rate (%)

D
et

ec
tio

n
R

at
e

(%
)

w=1.5

w=2

w=2.5

w=3

(B)

Figure 5.17: ROC curves obtained from DMM-ADS technique for components
in both datasets with different w values

258

0.0 0.5 1.0 1.5 2.0 2.5 3.0

90
92

94
96

98
10

0
DMM-ADS

False Positive Rate %

D
et

ec
tio

n
R

at
e

%

Orignal NSL-KDD
Components NSL-KDD

(A)

5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5

75
80

85
90

95
10

0

DMM-ADS

False Positive Rate %

D
et

ec
tio

n
R

at
e

%

Orignal UNSW-NB15
Components UNSW-NB15

(B)

Figure 5.18: ROC curves using both datasets of DMM-ADS technique

259

Table 5.9: Comparison of DRs (%) obtained by DMM-ADS technique for
NSL-KDD dataset
w values

Instance type 1.5 2 2.5 3
Normal 96.7% 97.2% 97.3% 99.80%
DoS 97.0% 98.0% 98.8% 99.7%
Probe 92.6% 93.7% 95.3% 97.8%
R2L 95.1% 93.1% 95.1% 95.8%
U2R 92.6% 90.8% 93.2% 94.0%

Tables 5.9 and 5.10 present comparisons of the DRs of the record types in

the NSL-KDD and UNSW-N15 datasets, respectively, which increasingly improve

with gradual increases in the w values from 1.5 to 3. It is obvious in Table 5.9

that the DMM-ADS technique can identify the majority of record types in the

NSL-KDD dataset with a normal DR fluctuating between 96.7% and 99.8%, and

the lowest FNR when the w value varies between 1.5 and 3. Likewise, the DRs of

the malicious types steadily improve from an average of 94.3% to one of 98.4%.

Table 5.10 demonstrates that the DMM-ADS technique recognises observa-

tions types in the UNSW-NB15 dataset, with normal DRs varying between 83.4%

and 94.0% while the w value gradually increases from 1.5 to 3. Similarly, the DRs

of the attack types gradually increase from an average of 78.9% to one of 94.5%.

The Shellcode, Fuzzers, Reconnaissance and Backdoor attacks do not attain

the highest DRs with gradual increases in the w values between 1.5 and 3 while the

DRs of the other types of attacks, Generic, DoS, Exploits and Worms, are better

because of the small similarities between their malicious and normal observations.

It can be observed that the variances in the features selected for these instances

from the UNSW-NB15 dataset are sometimes close to their probability densities,

260

Table 5.10: Comparison of DRs (%) obtained by DMM-ADS technique for
UNSW-NB15 dataset
w values

Instance type 1.5 2 2.5 3
Normal 83.4% 83.0% 89.70% 94.0%
DoS 89.1% 89.0% 90.2% 99.5%
Backdoor 63.1% 72.2% 74.2% 71.1%
Exploits 42.3% 78.2% 82.1% 81.0%
Analysis 73.8% 76.3% 80.0% 84.1%
Generic 78.1% 89.4% 88.5% 87.4%
Fuzzers 43.1% 49.1% 50.8% 52.8%
Shellcode 42.2% 51.6% 52.0% 52.2%
Reconnaissance 56.1% 54.10% 57.5% 67.2%
Worms 37.0% 45.2% 47.20% 50.3%

especially with the recent sophisticated attacks that try to mimic normal obser-

vations. Therefore, the probability densities in some instances overlap each other

while before reaching the threshold of the proposed decsion-making method.

The major reason for the DMM-ADS technique performing better than the

others, including the GAA-ADS technique, is that the DMM can accurately fit

the bounds of each feature. This is because its modelling includes a set of proba-

bility distributions, including prior, likelihood and posterior, of the network data in

order to precisely calculate the probability density of each feature vector. Also, the

lower-upper IQR approach can effectively specify the baseline boundaries between

normal and anomalous observations. However, despite the DMM-ADS technique

achieving the highest DRs and lowest FPRs for the NSL-KDD dataset, its perfor-

mance for the UNSW-NB15 dataset is somewhat worse due to the small variations

between normal and abnormal observations which indicate the complex patterns

of contemporary attacks that almost mimic normal ones. Overall, the DMM-ADS

technique slightly outperforms the GAA-ADS technique because it can model net-

work data using some probability distributions that can accurately estimate the

small differences between legitimate and malicious observations while the latter

models these data in a specific range that slightly increases the chances of these

instances overlapping.

261

D. Advantages and limitations of DMM-based ADS technique

The DMM-ADS technique has many advantages. Firstly, it can be implemented

on large-scale networks to recognise suspicious activities in real time as the prepa-

ration of its training and testing phases relies on only estimating some parameters

for the construction of the legitimate profile. Because the DE method applies

the lower-upper IQR functions as a baseline, it can define the class label of each

observation without depending on other observations. Also, it is very easy to up-

date the legitimate profile parameters with respect to selecting the best baseline

that can improve the performance of this technique in terms of achieving a low

processing time, high DR and accuracy and low FPR.

To ensure the best performance of this technique, a huge amount of pure

legitimate instances is required to produce the highest DRs and lowest FARs. In

future, it will be further developed to detect malicious types, such as DoS, Exploits

and Backdoors, rather than processing only binary classifications (i.e., normal and

abnormal). Also, to determine obvious differences between normal and abnormal

instances, the PCA technique will be used to decrease the number of network

features with the highest variations between their observations to considerably

enhance the performance of the proposed DMM-ADS technique.

5.6.4. Comparative Study and Discussion of Both New

DE Techniques

We compare the performances of the two proposed DE techniques (i.e., GAA-ADS

and DMM-ADS) with those of six state-of-the-art NIDS approaches, namely, the

Multivariate Correlation Analysis (MCA) [36], Computer Vision Technique (CVT)

[205], Triangle Area Nearest Neighbours (TANN) [288], Artifical Immune System

(AIS) [289], Euclidean Distance Map (EDM) [290] and Filter-based Support Vector

Machine (FSVM) [101]. As demonstrated in Table 5.11, the experimental results

262

Table 5.11: Performance comparisons of six ADS techniques with new DEs
using NSL-KDD dataset

Technique DR FPR
EDM [36] 94.20% 7.20%
MCA [290] 96.20% 4.90%
TANN [288] 91.10% 9.40%
CVT [205] 95.10% 5.00%
AIS [289] 90.10% 9.80%
FSVM [101] 92.20% 8.70%
GAA-ADS (original features) 98.10% 0.40%
GAA-ADS (components) 99.60% 0.20%
DMM-ADS (original features) 98.90% 0.20%
DMM-ADS (components) 99.80% 0.10%

clearly show the superiority of these new DE techniques in terms of their DRs and

FPRs using the NSL-KDD dataset.

The first four state-of-the-art techniques were developed to identify only DoS

attacks, for which they attain better DRs, but not for U2R, U2L and Probe mali-

cious observations. Because they rely on computing the distances and correlations

between legitimate and suspicious observations as different attacks, specifically

stealth and spy intrusion activities [287], and dramatically mimic legitimate in-

stances, they overlap the legitimate profile and reduce detection accuracy.

The FSVM and AIS techniques were developed to learn from legitimate and

malicious instances in the training phase based on the principle of rule-based

learning. They usually demand a massive number of instances to successfully

learn different patterns which are difficult to find in real network environments.

Assessments of them reveal that their DRs are better for DoS and Probe attacks,

of which there are sufficient observations, but worse for rare intrusive activities,

such as U2R and U2L attacks.

The GAA-ADS technique can achieve better performances than the six state-

of-the-art techniques for recognising attack types with different K values, as shown

in Tables 5.3, 5.4 and 5.5, as it correctly estimates the area of each observation with

263

the K intervals including small variances that can properly distinguish between

normal and abnormal instances. This relies on computing the BMM of the features

and the distances between instances to concurrently reveal the potential differences

between suspicious and normal network traffic from data observations and features.

Ultimately, the DMM-ADS technique can achieve better performances than

the other approaches for identifying attack types with different w values, as shown

in Tables 5.7, 5.8 and 5.9, as the DMM can perfectly fit the boundaries of each

network feature because its modelling involves some probability distributions for

accurately estimating the probability densities of each feature vector. Further-

more, the lower-upper IQR baseline can exactly specify the boundaries between

legitimate and suspicious instances.

5.6.5. Clarifications of Complexity and Time Cost of

Each New DE Technique

The computational complexity and time cost of data processing the new DE tech-

niques are analysed in order to demonstrate their effective and reliable perfor-

mances. As discussed in Section 5.3, the GAA-ADS technique consists of four

basic steps: 1) estimating the complexity of the PCA based on the Eigen decom-

position of a covariance matrix which is O(ND×min(N,D)) [283]; 2) estimating

the BMM parameters (Beta(π, υ, ω)); 3) estimating the distance between the mean

of normal observations and each observation (distancen); and 4) estimating the

TAE for each record (area(V)). The four big O notations are combined in these

steps to compute the total complexity of the GAA-ADS technique that processes

N network observations, each with D features.

Firstly, in the training phase, the Beta(π, υ, ω) parameters consume O(ND3),

with the estimation of D features within their observations. The (distancen) takes

O(ND) as all the observations while the features are handled only once, with

264

area(V) producing O(N) because of estimating all the network features. Secondly,

the testing phase and decision-making method consume O(ND) because they

use the principle of ‘record by record’ detection. Therefore, for all observations,

the overall complexity of the GAA-ADS technique is O((ND × min(N,D)) +

ND3 + ND + 1). Since the ND3 term becomes larger than the others, the final

overall computational complexity of this technique is O(ND3). However, as in [36],

because the D features are identically and independently distributed (i.i.d) in each

feature vector and concurrently executed, the overall computational complexity is

O(1).

The DMM-ADS technique explained in Section 5.4 has three main steps: 1)

computing the complexity of the PCA based on the Eigen decomposition of a

covariance matrix which is O(ND ×min(N,D)), as in the GAA-ADS technique;

2) computing the DMM parameters (Dir(π, α, Z)); 3) by calculating the lower

and upper IQR for the normal profile; and 3) integrating the three big O no-

tations in these steps to calculate the total complexity of the DMM-ADS tech-

nique that handles N network instances, each with D features. In the training

phase, the (Dir(π, α, Z)) parameters take O(ND3) with the D features within

their samples approximated while the lower and upper IQR generates O(N). Sim-

ilar to the GAA-ADS technique, the testing phase and decision-making method

take O(ND) due to applying the concept of ‘record by record’ detection. There-

fore, for all the records, the overall complexity of the DMM-ADS technique is

O((ND×min(N,D))+ND3 +N +ND). Then, like the GAA-ADS technique, as

the O(ND3) term becomes larger than the others, its final overall computational

complexity is O(ND3), and with the D features (i.i.d) in each record simultane-

ously performed, the overall computational complexity is O(1).

Comparing the four state-of-the-art techniques, the MCA technique [36] pro-

duces O(ND2) and O(ND4) in its training and testing phases, respectively, and,

like the proposed techniques, its features are i.i.d and its overall computational

complexity O(1) while that of the EDM technique [290][is similar. These two

265

mechanisms have overall computational complexities similar to those of the pro-

posed techniques which reduce to O(D) due to computing the correlations between

all possible combinations of the network features. The TANN technique [288] is

very complex because the computational complexities in its training and testing

phases are O(NDL2) and O(N2DL2), respectively, with L the number of clusters

used to establish the triangular areas. Finally, the overall complexities of the CVT

are O((2ND2) and O(ND4)) in its training and testing sets, respectively [205] ,

larger than those of the proposed techniques.

Figure 5.19 compares the complexities of the four ADS techniques and the

new GAA- and DMM-ADS techniques using the mathematical equation of the big

O notation (f(x) = O(g(x))), where g(x) denotes the estimated overall computa-

tional complexity and x real numbers. Since the number of observations increases,

the GAA- and DMM-ADS techniques run faster than the others. The complexity

of the two techniques is lower than the other techniques, as they execute faster than

the others with the same x value. In more detail, the lines of the two techniques

are close to the y-axis (i.e., complexity), whilst the lines of the other techniques

are far than our techniques when compensating with the same x value in the big

O equation.

Also, an examination of the times taken indicates that the two new DE tech-

niques are faster in terms of processing speed than the others. The GAA- and

DMM-ADS techniques can process almost 23,096 and 24,190 observations per sec-

ond, respectively, and the MCA, CVT and EDM approximately 23,692, 19,267

and 12,044 per second, respectively. Overall, the new techniques can run, on aver-

age, 1.04%, 2.21% and 10.34% faster than the MCA, CVT and EDM techniques,

respectively.

266

2 4 6 8 10

0
20

0
40

0
60

0
80

0
10

00

x

C
om

pl
ex

ity
 f(

x)

CVT
TANN
EDM
MCA
New GAA
New DMM

Figure 5.19: Comparison of complexities of four existing and two new DE
techniques

5.7. Chapter Summary

This chapter discusses two novel ADS techniques, namely the GAA- and DMM-

ADS, developed based on the potential statistical analysis of network data which

are used as the DE modules in two proposed frameworks for identifying known and

unknown attacks. Each framework consists of three main modules, namely, data

sniffing and storing, data pre-processing and DE. The first two are similar in the

two frameworks, with their roles to extract and log network data, and analyse and

filter these data, respectively. However, the DE modules are considerably different

in terms of identifying different suspicious behaviours.

267

Because of the large volumes, high velocities and wide varieties of current net-

work data, in order to perfectly identify normal and suspicious activities, the task

of monitoring and determining these data in depth has become essential. Some

statistical methods, in particular, the Kolmogorov-Smirnov test and Q-Q plots,

are used to determine the normality of network data, and density and correntropy

plots to define their linearity. Identifying these properties of network data can

assist in specifying which statistical learning techniques can accurately fit them

to significantly enhance the performance of an ADS for efficiently recognising ma-

licious observations in a low processing time. As, according to the statistical

literature, these measures reveal that network data precisely follow a Gaussian

distribution and are not linear, and the best models for fitting data with these

properties are mixture models, in particular, the BMM and DMM, we design DE

approaches based on them.

In order to build an intelligent ADS, the novel GAA-ADS technique, which is

based on a BMM, the computed parameters and density probability of which are

used to estimate the TAE for each network observation, and the distances between

observations are used. The TAE technique can provide more correct estimations

than the BMM and determine the potential properties of network feature vectors

that help to distinguish between known and zero-day intrusive attacks. It is used

as a DE module in one of the proposed frameworks for establishing a lightweight,

scalable and adaptable ADS. Its performance evaluation is conducted using the

NSL-KDD and UNSW-NB15 datasets in the data capture and storage module.

The impact of choosing data with the highest variations using the PCA tech-

nique for both the original features selected and their principal components is

evident in the data pre-processing module which demonstrates the effective role

of the PCA technique. The results reveal that the GAA-ADS technique performs

better on the principal components than original features. Moreover, the findings

from a comparative study of it and six other ADS techniques in terms of detection

accuracy, computational complexity and time cost indicate that its overall DR is

268

better than and its computational complexity equal to or better than the others.

However, as there is some overlap between the areas of normal and anomalous

instances, the DMM-ADS technique is proposed.

The DMM-ADS technique, which is developed based on the methodology of

anomaly detection, computes the density of Dirichlet distributions for the legiti-

mate profile in the training set and creates the probability densities in the testing

set using the parameters calculated in the training phase. The DMM can fit and

define the boundaries of network data better than other mixture models as it

consists of a set of combined probability distributions. Also, it is more suitable

for fitting streaming data, such as those generated from networks and, for group-

ing any data, can achieve better accuracy than other mixture models. The PCA

technique is used to reduce these dimensions, with its impact estimated using the

original features selected and their principal components. Then, a decision-making

method for identifying existing and zero-day anomalies by specifying a threshold of

the lower-upper IQR for the legitimate profile due to its effective role in identifying

outliers and considering any variations from it as an attack is designed.

The performance evaluation of the DMM-ADS shows that it performs better

than some recent ADS techniques, including the GAA-ADS, in terms of the DR,

FPR, complexity and processing time. However, the proposed techniques have

some limitations; in particular, they require a huge amount of pure normal ob-

servations and need a new function for defining each attack type to considerably

ensure reliability and efficiency, as detailed in the next chapter.

269

Chapter 6
Conclusion

6.1. Introduction

This thesis makes substantial contributions to the field of Network Intrusion De-

tection Systems (NIDSs), in particular, Network Anomaly Detection Systems

(NADSs). Existing IDS methodologies were designed based on the principle of

misuse/signature that monitors network data in order to compare observed pat-

terns with those on a designated blacklist. However, this principle cannot identify

zero-day attacks (i.e., new ones with no signatures logged in a blacklist) or even

variants of existing malicious activities. Consequently, the principle of anomaly

detection was developed to discover those activities by creating a profile from

normal patterns and identifying any variations from it as attacks.

However, although this methodology has not been used in any industrial appli-

cations, its implementations in academia have encountered three major problems

over the last decade. First and foremost, there is no dataset that includes a broad

range of recent network normal and malicious observations for accurately evaluat-

ing NIDSs. Secondly, it is difficult to apply the ADS methodology as two questions

must be considered: 1) how is a normal profile with the credibility to encompass

the majority of network patterns designed and developed ?; and 2) what are the

most effective online Decision Engine (DE) methods for detecting anomalous flows

given the current high speeds and large sizes of existing network environments ?

The contributions of this research study address the aforementioned challenges

to a considerable degree, with some of its limitations offering directions for future

270

research, as discussed in Sections 6.3 and 6.4, respectively. The main components

of the NADS considered are a data source, data pre-processing module and DE.

Firstly, in Chapter 3, the capability of the DARPA 2009 dataset to generate

the important features for building an effective NADS is analysed in depth from

which it is determined that it has some limitations that make it difficult to test

new NIDSs. Consequently, a new network dataset, called UNSW-NB15 , which

contains contemporary legitimate and anomalous network observations, is devel-

oped. The analyses and assessments of it demonstrate that its observations can

successfully test new DE approaches. By applying learning theories, a portion

of the dataset is used to train and test classification techniques. The training

and testing sets are created and evaluated based on statistical analyses, feature

correlations and complexity evaluations to demonstrate this dataset’s credibility

for evaluating NIDSs. It has been published and widely used by researchers and

developers in both academia and industry, such as Oracle.

Secondly, in Chapter 4, methods for selecting relevant network observations

and features from network data with no redundancy are developed to help to es-

tablish an effective and lightweight NADS. More specifically, an aggregator module

designed using the theory of network flow analysis for reducing the computational

resources of deploying NIDSs in real network systems is proposed. Then, feature

reduction and selection mechanisms are applied in the data processing module to

build DE techniques. Moreover, a new set of features is designed from the DNS

and HTTP protocols with data sources created from the UNSW-NB15 dataset

to build an effective NIDS for detecting attacks that breach important network

applications, including some user information.

Finally, for the first time in this field, in Chapter 5, two novel frameworks

for constructing the methodology for developing adaptive, lightweight and scal-

able NADS using two new DE approaches based on statistical models that ef-

ficiently differentiate between normal and suspicious observations are designed.

These frameworks have three fundamental components, namely, data sniffing and

271

storing, data pre-processing and DE. Although the first two, which extract and log

network data, and analyse and filter them, respectively, are similar in both frame-

works, the DE approaches for effectively identifying different anomalous network

activities are different.

The rest of this chapter is organised as follows. Section 6.2 elaborates the

key contributions of this study, with the limitations of the proposed techniques

provided in Section 6.3. Section 6.4 discusses future research directions related to

the main aim of this thesis and, finally, concluding remarks are provided in Section

6.5.

6.2. Contributions of Research

The key contributions of this research are as follows.

• The recent design of an effective network dataset, the UNSW-

NB15 dataset, created using the IXIA PerfectStorm tool to capture a

hybrid of authentic modern legitimate and suspicious network observations

from network traffic, with suspicious events implemented based on recent

CVE activities, including up-to-date malware ones, and the tcpdump tool

used to extract nearly 100 GB of raw network packets logged in some pcap

files, each of which consists of approximately one GB to make analysis easier.

The Argus and Bro-IDS tools and some new scripts executed to mine 47

features and their class labels reflect the dataset’s diversity in terms of high

dimensionality while its velocity is, on average, 5-10 Megabytes per second

between sources and destinations. This shows that high data rates transmit

through the Ethernets, precisely mimicking realistic network systems. This

dataset contains 2,540,044 observations logged in four CSV files, with the

parts of it used to train and test NIDS techniques consisting of 175,341 and

272

82,332 records, respectively. It comprises ten different classes, one normal

and nine security events and malware (i.e., Analysis, Backdoors, DoS, Ex-

ploits, Generic, Reconnaissance, Fuzzers for suspicious activities, Shellcode

and Worms). Evaluations of the statistical and machine-learning algorisms

demonstrate the credibility of using this dataset to evaluate a NADS because

it includes sophisticated attack vectors that demand deep and accurate anal-

ysis for their successful detection.

• The design of a new aggregator module based on the principle of flow-

level analysis for improving the performance of a NADS via extracting only

significant observations which have no duplications or missing values. This

module consists of four main functions: 1) collecting network packets at the

destination points of a network; 2) logging data which stores packets using

the technology of MySQL CGE to make it easier to analyse and apply DE

approaches; 3) using big data analysis techniques, specifically association

rule mining (ARM) and simple random sampling (SRS), to select only rel-

evant network flows; and 4) sending data to DE approaches for detecting

abnormal observations. The aggregator module’s technique demonstrates

its capability to aggregate network flows based on more attributes than the

NetFlow, sflow and IPFIX tools which overcomes the main drawbacks of

existing tools and can outperform them in terms of processing time and the

generation of distinct records. The empirical results show that the ARM

and SRS techniques can generate the majority of important flows with low

processing times and no redundant network flows.

• The development and application of feature reduction and selec-

tion methods for selecting relevant features, that is, a new ARM-Central

Points (ARM-CP) approach for feature selection, and the Principal Com-

ponent Analysis (PCA) and Independent Component Analysis (ICA) for

reducing and selecting important network features. The experimental re-

sults using the NSL-KDD and UNSW-NB15 datasets show the effectiveness

273

of these techniques for considerably improving the NADS performances, with

the PCA relatively superior due to its principal components being capable

of determining clear difference among network features. In more detail, the

ARM technique deals directly with the values of attributes while the PCA

and ICA transform the feature space into another space based on the highest

variations between features, thereby significantly improving the DE’s perfor-

mances.

• The proposal of a set of features for the DNS and HTTP and an

ensemble framework for recognising the anomalous activities they face

which contain some information about user and network activities and two

fundamental protocols for internet and network applications. Then, a NIDS

for identifying malicious observations that attempt to breach a network via

these protocols using a suggested ensemble of learning methods, including

the Decision Tree, Naïve Bayes and Artificial Neural Network techniques

with the model of Adaboost to fairly distribute network data among them, is

developed. The experimental results reveal the significance of these proposed

features for detecting malicious observations that try to expose networks via

any DNS/HTTP, with the ensemble method performing better than each

technique involved.

• The development of two new DE techniques based on statistical

mixture models for identifying existing and zero-day attacks, with

the first called a Geometric Area Analysis (GAA-ADS) based on the anomaly

methodology which creates a normal profile and considers any variation from

it an attack. The process involved in this technique is computing the Trape-

zoidal Area Estimation (TAE) for each instance from the calculated parame-

ters of the Beta Mixture Model (BMM) and the distances of instances. Then,

a new decision-making method is built based on dividing the normal areas

into intervals and considering any area in the testing phase outside them

274

an anomaly. The performance of this technique is evaluated using the NSL-

KDD and UNSW-NB15 datasets, with the empirical results showing that it

achieves a higher DR and lower FPR in less processing time using the original

and principal components of the PCA technique for reducing network fea-

tures than state-of-the-art methods. However as, sometimes, normal areas

fall into attack ones, a new Dirichlet Mixture Model-based ADS technique

(DMM-ADS) is developed.

This technique, which is also based on the methodology of anomaly detec-

tion, computes the densities of Dirichlet distributions to create a normal

profile in the training set and then generate patterns in the testing set using

parameters estimated from the training set. To detect existing and zero-day

attacks, a decision-making method is designed which specifies a threshold of

the lower-upper Interquartile Range (IQR) for the normal profile and con-

siders any deviation from it an attack. This technique is compared with the

GAA-ADS technique using the same configuration environments and the re-

sults show that it performs better than its peer techniques, including the

GAA-ADS technique, in terms of its DR, FPR and processing time.

• The design of two scalable NADS frameworks for the above DE

techniques for building a lightweight, adaptive and scalable ADS which can

effectively handle large-scale networks. It consists of the three modules of

data sniffing and storing, data pre-processing and DE techniques. The first

comprises a feature set generated from network traffic, the second analyses

and filters network data while the third effectively recognise existing and

zero-day malicious observations.

6.3. Limitations

The major limitations of the main components of the NADS are explained in the

following.

275

Firstly, the UNSW-NB15 dataset requires the addition of new attack vectors,

in particular DDoS attacks which are similar to DoS ones but originate from multi-

ple sources to hack and stop computer resources. More specifically, the strategy of

a DDoS hacker is to flood its victim with upcoming traffic using different sources

which makes it extremely difficult to either prevent its actions or distinguish be-

tween legitimate and suspicious events while they spread through several points

over a network. This type of attack requires further investigation to generate the

important features that help DE techniques to differentiate between legitimate

and suspicious vectors.

Secondly, the methods for choosing the relevant flows and features from net-

work traffic, as explained in Chapter 4, are developed separately, with their roles to

extract and create important observations and features from network data which

have no duplications or missing values. Those selected should have properties that

can potentially discriminate between normal and abnormal instances using a DE

technique. While these proposed mechanisms first select significant observations

and then choose relevant features, determining one method for selecting both will

be very useful for improving the overall performances of IDSs.

Finally, the proposed statistical DE mechanisms are designed based on the

anomaly methodology for creating a legitimate profile in the training set and

considering any variation from it in the testing phase an attack. However, this

methodology has three main limitations. Firstly, it requires a wide variety of nor-

mal observations in the training phase to ensure that the boundaries of the mixture

models contain a majority of normal activities. Although these DE methods per-

form well on existing datasets, they require testing on real network environments,

as discussed in the following section.

Moreover, as these techniques can handle only numeric data, to be used for

network forensics that require the processing of actual data, they need a new

module to link the processed and actual data to provide a genuine IDS that has

a forensic capability as well as its main role of identifying abnormal events. Last

276

but not least, these techniques also require new functions that can define attack

types, such as DoS and DDoS, to determine a methodology for detecting these

attacks. They will also assist the deployment of an efficient and reliable IDS that

can serve in the network forensic field to effectively generate rules and policies

against attackers.

6.4. Future directions

While this research provides some substantial advances in the field of IDSs, fol-

lowing are suggested directions, in the form of issues to be resolved and open

questions, for future research on overcoming the aforementioned limitations.

6.4.1. Issues to be resolved

• A decent dataset that contains recent host and attack vectors is necessary. It

requires configuring a realistic network environment, with host and network

activities captured concurrently to evaluate both host- and network-based

IDSs. It will be extremely effective for building a hybrid IDS that can detect

intrusive behaviours from host and network environments.

• Relevant feature methods that can simultaneously select relevant features

and observations from network data are needed. They should be capable of

addressing this challenge by choosing important network flows from the large

numbers of packets usually received in existing network systems, and then

selecting significant features that has the potential characteristics of intrusive

activities. The main aim would be to develop one mechanism for selecting

both important features and vectors to enhance the overall performances of

IDSs.

• It would be interesting to integrate the proposed DE techniques with two

new components, that is: 1) linking the statistically processed and original

277

data to extend the role of an IDS to investigate e-crimes and combine this

field with a network’s forensic field; and 2) designing a new function that can

determine each attack type and easily identify the methodologies of attackers

that continually try to develop new hacking methods.

• Investigating and applying the proposed NADS frameworks in large-scale

applications, in particular, cloud computing and industrial control systems,

such as Supervisory Control and Data Acquisition (SCADA) system, will

be an important focus of research because these systems have the same

network architectures. With the new era of the Internet of Things (IoT),

that is, networked interconnections of everyday objects often associated with

their ubiquitous use, these systems need to be protected against malicious

activities.

Since cloud computing and SCADA systems are currently fully dependent

on the internet, they require a lightweight, adaptive and scalable NADS for

detecting the anomalous activities they frequently face. The deployment

of a NADS framework in these large-scale environments is often difficult as

they have many nodes that are either centralised or distributed. Moreover,

the high speeds and large amounts of data transferring between these nodes

often affect the performance of a NADS.

6.4.2. Open questions

Based on the above issues, the following open questions are proposed for future

research.

• What effective testbed configurations can be used to create a decent dataset

for evaluating both host- and network-based IDSs?

• What is an efficient methodology for aggregating and selecting the relevant

features of network traffic?

278

• How can the proposed DE techniques be used for network forensics?

• What functions can be effectively integrated with the proposed frameworks

to define malicious types of attacks?

• How can statistical approaches clearly distinguish between normal and sus-

picious instances?

• How can the proposed frameworks be used in large-scale environments such

as cloud computing and SCADA systems?

6.5. Final remarks

Given their large sizes and high speeds, current networks face serious threats from

several exploitation techniques. As no single security system is capable of success-

fully combating all possible intrusive activities, the principle of defence-in-depth

should be applied to deploy many layers of security to identify and prevent all types

of malicious vectors. Anomaly-based methodologies should be implemented in dif-

ferent control systems, such as firewall and antivirus tools, in order to effectively

define existing and zero-day attacks, and reduce the number of vulnerabilities

facing computer and network systems.

This thesis makes significant contributions to the field of IDSs by applying the

anomaly-based detection methodology for identifying abnormal instances in large-

scale network data through: 1) creating the UNSW-NB15 dataset that has a broad

range of contemporary normal and abnormal observations for effectively evaluating

new DE methods; 2) proposing a new method for selecting important observations

and features with the characteristics of anomalous activities that can be detected

by the proposed statistical DE techniques; 3) developing two frameworks and DE

methods based on mixture models for creating a normal profile that has all possible

patterns of normal network data, with any deviations from it considered an attack

using new outlier methods.

279

In summary, the proposed frameworks can effectively and efficiently recognise

both known and unknown attack vectors and detect them in real network environ-

ments as they can automatically adapt by estimating their statistical parameters

from network data. It is vital that the security research community and industrial

applications consider the principle of anomaly-based detection for different secu-

rity mitigation and control systems as it can be easily executed without requiring

the generation of signatures of existing attacks, thereby ensuring that zero-day at-

tacks which do not have signatures logged in existing blacklists can be successfully

identified.

280

References

[1] Sergio Pastrana Portillo. Attacks against intrusion detection networks: eva-

sion, reverse engineering and optimal countermeasures. 2014.

[2] Digital device statistics. April 2017.

[3] Ismail Butun, Salvatore D Morgera, and Ravi Sankar. A survey of intru-

sion detection systems in wireless sensor networks. IEEE Communications

Surveys & Tutorials, 16(1):266–282, 2014.

[4] Joseph S Nye Jr. Deterrence and dissuasion in cyberspace. International

Security, 41(3):44–71, 2017.

[5] Maurizio Martellini, Stanislav Abaimov, Sandro Gaycken, and Clay Wilson.

Vulnerabilities and security issues. In Information Security of Highly Critical

Wireless Networks, pages 11–15. Springer, 2017.

[6] Public Key Infrastructure and Token Protection Profile. Common criteria

for information technology security evaluation. National Security Agency,

2002.

[7] Rossouw Von Solms and Johan Van Niekerk. From information security to

cyber security. computers & security, 38:97–102, 2013.

[8] Salvatore Pontarelli, Giuseppe Bianchi, and Simone Teofili. Traffic-aware

design of a high-speed fpga network intrusion detection system. IEEE Trans-

actions on Computers, 62(11):2322–2334, 2013.

[9] The acsc threat report. May 2016.

[10] The macafee threat report. April 2017.

281

[11] Gideon Creech. Developing a high-accuracy cross platform Host-Based In-

trusion Detection System capable of reliably detecting zero-day attacks. PhD

thesis, University of New South Wales, 2014.

[12] Ping Chen, Lieven Desmet, and Christophe Huygens. A study on advanced

persistent threats. In IFIP International Conference on Communications

and Multimedia Security, pages 63–72. Springer, 2014.

[13] Rabiah Ahmad, Zahri Yunos, and Shahrin Sahib. Understanding cyber ter-

rorism: The grounded theory method applied. In Cyber Security, Cyber

Warfare and Digital Forensic (CyberSec), 2012 International Conference on,

pages 323–328. IEEE, 2012.

[14] EWT Ngai, Yong Hu, YH Wong, Yijun Chen, and Xin Sun. The applica-

tion of data mining techniques in financial fraud detection: A classification

framework and an academic review of literature. Decision Support Systems,

50(3):559–569, 2011.

[15] Cyber-extortion-attacks. September 2016.

[16] Kriangsak Kittichaisaree. Cyber espionage. In Public International Law of

Cyberspace, pages 233–262. Springer, 2017.

[17] Estimating the global cost of cybercrime. September 2016.

[18] Dorothy E Denning. An intrusion-detection model. IEEE Transactions on

software engineering, (2):222–232, 1987.

[19] Shelly Xiaonan Wu and Wolfgang Banzhaf. The use of computational intel-

ligence in intrusion detection systems: A review. Applied Soft Computing,

10(1):1–35, 2010.

[20] Hisham A Kholidy and Fabrizio Baiardi. Cids: A framework for intrusion

detection in cloud systems. In Information Technology: New Generations

(ITNG), 2012 Ninth International Conference on, pages 379–385. IEEE,

2012.

282

[21] Leyla Bilge and Tudor Dumitras. Before we knew it: an empirical study

of zero-day attacks in the real world. In Proceedings of the 2012 ACM con-

ference on Computer and communications security, pages 833–844. ACM,

2012.

[22] Igino Corona, Giorgio Giacinto, and Fabio Roli. Adversarial attacks against

intrusion detection systems: Taxonomy, solutions and open issues. Informa-

tion Sciences, 239:201–225, 2013.

[23] Saad Y Sait, Akshay Bhandari, Shreya Khare, Cyriac James, and Hema A

Murthy. Multi-level anomaly detection: Relevance of big data analytics in

networks. Sadhana, 40(6):1737–1767, 2015.

[24] Wenke Lee, Salvatore J Stolfo, and Kui W Mok. A data mining frame-

work for building intrusion detection models. In Security and Privacy, 1999.

Proceedings of the 1999 IEEE Symposium on, pages 120–132. IEEE, 1999.

[25] Hung-Jen Liao, Chun-Hung Richard Lin, Ying-Chih Lin, and Kuang-Yuan

Tung. Intrusion detection system: A comprehensive review. Journal of

Network and Computer Applications, 36(1):16–24, 2013.

[26] Monowar H Bhuyan, Dhruba Kumar Bhattacharyya, and Jugal K Kalita.

Network anomaly detection: methods, systems and tools. IEEE Communi-

cations Surveys & Tutorials, 16(1):303–336, 2014.

[27] David J Weller-Fahy, Brett J Borghetti, and Angela A Sodemann. A survey

of distance and similarity measures used within network intrusion anomaly

detection. IEEE Communications Surveys & Tutorials, 17(1):70–91, 2015.

[28] Derek Lin. Anomaly detection system for enterprise network security, Au-

gust 18 2015. US Patent 9,112,895.

[29] Ruth Bernstein and Andrey Dulkin. Systems and methods for detection of

anomalous network behavior, May 19 2016. US Patent 20,160,142,435.

283

[30] Sumeet Dua and Xian Du. Data mining and machine learning in cyberse-

curity. CRC press, 2016.

[31] Pedro Garcia-Teodoro, J Diaz-Verdejo, Gabriel Maciá-Fernández, and En-

rique Vázquez. Anomaly-based network intrusion detection: Techniques,

systems and challenges. computers & security, 28(1):18–28, 2009.

[32] Kamaldeep Singh, Sharath Chandra Guntuku, Abhishek Thakur, and Chit-

taranjan Hota. Big data analytics framework for peer-to-peer botnet detec-

tion using random forests. Information Sciences, 278:488–497, 2014.

[33] Richard Zuech, Taghi M Khoshgoftaar, and Randall Wald. Intrusion de-

tection and big heterogeneous data: a survey. Journal of Big Data, 2(1):1,

2015.

[34] Jungwon Kim, Peter J Bentley, Uwe Aickelin, Julie Greensmith, Gianni

Tedesco, and Jamie Twycross. Immune system approaches to intrusion

detection–a review. Natural computing, 6(4):413–466, 2007.

[35] Koral Ilgun, Richard A Kemmerer, and Phillip A Porras. State transition

analysis: A rule-based intrusion detection approach. IEEE transactions on

software engineering, 21(3):181–199, 1995.

[36] Zhiyuan Tan, Aruna Jamdagni, Xiangjian He, Priyadarsi Nanda, and

Ren Ping Liu. A system for denial-of-service attack detection based on mul-

tivariate correlation analysis. IEEE transactions on parallel and distributed

systems, 25(2):447–456, 2014.

[37] Wentao Fan, Nizar Bouguila, and Hassen Sallay. Anomaly intrusion detec-

tion using incremental learning of an infinite mixture model with feature

selection. In International Conference on Rough Sets and Knowledge Tech-

nology, pages 364–373. Springer, 2013.

[38] The darpa98 and kddcup99 datasets. April 2017.

284

[39] The nslkdd dataset. April 2017.

[40] The caida datasets. April 2017.

[41] The darpa-2009 dataset. darpa scalable network monitoring (snm) program

traffic. packet clearing house. 11/3/2009 to 11/12/2009. October 2015.

[42] Nour Moustafa and Jill Slay. Unsw-nb15: a comprehensive data set for

network intrusion detection systems (unsw-nb15 network data set). In Mili-

tary Communications and Information Systems Conference (MilCIS), 2015,

pages 1–6. IEEE, 2015.

[43] The unsw-nb15 dataset. April 2017.

[44] Pavel Pudil and Jana Novovičová. Novel methods for feature subset selection

with respect to problem knowledge. In Feature Extraction, Construction and

Selection, pages 101–116. Springer, 1998.

[45] Marco AF Pimentel, David A Clifton, Lei Clifton, and Lionel Tarassenko.

A review of novelty detection. Signal Processing, 99:215–249, 2014.

[46] Jingyue Pang, Datong Liu, Yu Peng, and Xiyuan Peng. Anomaly detection

based on uncertainty fusion for univariate monitoring series. Measurement,

95:280–292, 2017.

[47] Nour Moustafa and Jill Slay. The evaluation of network anomaly detection

systems: Statistical analysis of the unsw-nb15 data set and the comparison

with the kdd99 data set. Information Security Journal: A Global Perspective,

25(1-3):18–31, 2016.

[48] Alireza Shameli-Sendi, Mohamed Cheriet, and Abdelwahab Hamou-Lhadj.

Taxonomy of intrusion risk assessment and response system. Computers &

Security, 45:1–16, 2014.

[49] Zakira Inayat, Abdullah Gani, Nor Badrul Anuar, Muhammad Khurram

Khan, and Shahid Anwar. Intrusion response systems: Foundations, design,

285

and challenges. Journal of Network and Computer Applications, 62:53–74,

2016.

[50] Shahid Anwar, Jasni Mohamad Zain, Mohamad Fadli Zolkipli, Zakira In-

ayat, Suleman Khan, Bokolo Anthony, and Victor Chang. From intrusion

detection to an intrusion response system: Fundamentals, requirements, and

future directions. Algorithms, 10(2):39, 2017.

[51] Aleksandar Milenkoski, Marco Vieira, Samuel Kounev, Alberto Avritzer, and

Bryan D Payne. Evaluating computer intrusion detection systems: A survey

of common practices. ACM Computing Surveys (CSUR), 48(1):12, 2015.

[52] Anna L Buczak and Erhan Guven. A survey of data mining and machine

learning methods for cyber security intrusion detection. IEEE Communica-

tions Surveys & Tutorials, 18(2):1153–1176, 2016.

[53] Elike Hodo, Xavier Bellekens, Andrew Hamilton, Christos Tachtatzis, and

Robert Atkinson. Shallow and deep networks intrusion detection system: A

taxonomy and survey. arXiv preprint arXiv:1701.02145, 2017.

[54] Daesung Moon, Sung Bum Pan, and Ikkyun Kim. Host-based intrusion

detection system for secure human-centric computing. The Journal of Su-

percomputing, 72(7):2520–2536, 2016.

[55] Katherine E Price. Host-based misuse detection and conventional operating

systems’audit data collection. PhD thesis, Purdue University, 1997.

[56] Jian Peng, Kim-Kwang Raymond Choo, and Helen Ashman. User profil-

ing in intrusion detection: A review. Journal of Network and Computer

Applications, 72:14–27, 2016.

[57] Gideon Creech and Jiankun Hu. A semantic approach to host-based intrusion

detection systems using contiguousand discontiguous system call patterns.

IEEE Transactions on Computers, 63(4):807–819, 2014.

286

[58] Manish Kumar, M Hanumanthappa, and TV Suresh Kumar. Encrypted traf-

fic and ipsec challenges for intrusion detection system. In Proceedings of In-

ternational Conference on Advances in Computing, pages 721–727. Springer,

2013.

[59] Roni Bar-Yanai, Michael Langberg, David Peleg, and Liam Roditty. Re-

altime classification for encrypted traffic. In International Symposium on

Experimental Algorithms, pages 373–385. Springer, 2010.

[60] Gisung Kim, Seungmin Lee, and Sehun Kim. A novel hybrid intrusion de-

tection method integrating anomaly detection with misuse detection. Expert

Systems with Applications, 41(4):1690–1700, 2014.

[61] Manmeet Kaur Marhas, Anup Bhange, and Piyush Ajankar. Anomaly detec-

tion in network traffic: A statistical approach. International Journal of IT,

Engineering and Applied Sciences Research (IJIEASR), 1(3):16–20, 2012.

[62] Mohiuddin Ahmed, Abdun Naser Mahmood, and Jiankun Hu. A survey of

network anomaly detection techniques. Journal of Network and Computer

Applications, 60:19–31, 2016.

[63] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection:

A survey. ACM computing surveys (CSUR), 41(3):15, 2009.

[64] Fairuz Amalina Narudin, Ali Feizollah, Nor Badrul Anuar, and Abdullah

Gani. Evaluation of machine learning classifiers for mobile malware detec-

tion. Soft Computing, 20(1):343–357, 2016.

[65] Yun Wang. Statistical Techniques for Network Security: Modern

Statistically-Based Intrusion Detection and Protection: Modern Statistically-

Based Intrusion Detection and Protection. IGI Global, 2008.

[66] Phillip A Porras and Alfonso Valdes. Live traffic analysis of tcp/ip gateways.

In NDSS, 1998.

287

[67] Glenn A Fink, BL Chappell, TG Turner, and KF O’Donoghue. A metrics-

based approach to intrusion detection system evaluation for distributed real-

time systems. In Parallel and Distributed Processing Symposium., Proceed-

ings International, IPDPS 2002, Abstracts and CD-ROM, pages 8–pp. IEEE,

2001.

[68] Félix Iglesias and Tanja Zseby. Analysis of network traffic features for

anomaly detection. Machine Learning, 101(1-3):59–84, 2015.

[69] ARi Vasudevan, E Harshini, and S Selvakumar. Ssenet-2011: a network in-

trusion detection system dataset and its comparison with kdd cup 99 dataset.

In Internet (AH-ICI), 2011 Second Asian Himalayas International Confer-

ence on, pages 1–5. IEEE, 2011.

[70] Animesh Patcha and Jung-Min Park. An overview of anomaly detection

techniques: Existing solutions and latest technological trends. Computer

networks, 51(12):3448–3470, 2007.

[71] Monowar H Bhuyan, Dhruba K Bhattacharyya, and Jugal K Kalita. Towards

generating real-life datasets for network intrusion detection. IJ Network

Security, 17(6):683–701, 2015.

[72] Doug Laney. 3d data management: Controlling data volume, velocity and

variety. META Group Research Note, 6:70, 2001.

[73] Paul Zikopoulos, Krishnan Parasuraman, Thomas Deutsch, James Giles,

David Corrigan, et al. Harness the power of big data The IBM big data

platform. McGraw Hill Professional, 2012.

[74] Alvaro A Cardenas, Pratyusa K Manadhata, and Sreeranga P Rajan. Big

data analytics for security. IEEE Security & Privacy, 11(6):74–76, 2013.

[75] Yeonhee Lee and Youngseok Lee. Toward scalable internet traffic measure-

ment and analysis with hadoop. ACM SIGCOMM Computer Communica-

tion Review, 43(1):5–13, 2013.

288

[76] Monowar H Bhuyan, DK Bhattacharyya, and Jugal K Kalita. Nado: net-

work anomaly detection using outlier approach. In Proceedings of the 2011

International Conference on Communication, Computing & Security, pages

531–536. ACM, 2011.

[77] Chikh Ramdane and Salim Chikhi. A new negative selection algorithm

for adaptive network intrusion detection system. International Journal of

Information Security and Privacy (IJISP), 8(4):1–25, 2014.

[78] John McHugh. Testing intrusion detection systems: a critique of the 1998

and 1999 darpa intrusion detection system evaluations as performed by lin-

coln laboratory. ACM Transactions on Information and System Security

(TISSEC), 3(4):262–294, 2000.

[79] Hashem Alaidaros, Massudi Mahmuddin, Ali Al-Mazari, et al. An overview

of flow-based and packet-based intrusion detection performance in high speed

networks. 2011.

[80] Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali A Ghorbani. A de-

tailed analysis of the kdd cup 99 data set. In Computational Intelligence for

Security and Defense Applications, 2009. CISDA 2009. IEEE Symposium

on, pages 1–6. IEEE, 2009.

[81] The defcon dataset. April 2017.

[82] Ali Shiravi, Hadi Shiravi, Mahbod Tavallaee, and Ali A Ghorbani. Toward

developing a systematic approach to generate benchmark datasets for intru-

sion detection. computers & security, 31(3):357–374, 2012.

[83] The iscx dataset. April 2016.

[84] The kyoto dataset. April 2017.

[85] Nour Moustafa and Jill Slay. Creating novel features to anomaly network

detection using darpa-2009 data set. In Proceedings of the 14th European

289

Conference on Cyber Warfare and Security. Academic Conferences Limited,

page 204, 2015.

[86] Tatsuya Baba and Shigeyuki Matsuda. Tracing network attacks to their

sources. IEEE Internet Computing, 6(2):20–26, 2002.

[87] Huan Liu and Hiroshi Motoda. Feature selection for knowledge discovery

and data mining, volume 454. Springer Science & Business Media, 2012.

[88] You Chen, Yang Li, Xue-Qi Cheng, and Li Guo. Survey and taxonomy

of feature selection algorithms in intrusion detection system. In Interna-

tional Conference on Information Security and Cryptology, pages 153–167.

Springer, 2006.

[89] Yanchang Zhao and Sourav S Bhowmick. Association rule mining with r. A

Survey Nanyang Technological University, Singapore, 2015.

[90] Petros Xanthopoulos, Panos M Pardalos, and Theodore B Trafalis. Principal

component analysis. In Robust data mining, pages 21–26. Springer, 2013.

[91] Francesco Palmieri, Ugo Fiore, and Aniello Castiglione. A distributed ap-

proach to network anomaly detection based on independent component anal-

ysis. Concurrency and Computation: Practice and Experience, 26(5):1113–

1129, 2014.

[92] Wenke Lee, Salvatore J Stolfo, et al. Data mining approaches for intrusion

detection. In Usenix security, 1998.

[93] Jianxiong Luo and Susan M Bridges. Mining fuzzy association rules and

fuzzy frequency episodes for intrusion detection. International Journal of

Intelligent Systems, 15(8):687–703, 2000.

[94] Kamini Nalavade and BB Meshram. Mining association rules to evade net-

work intrusion in network audit data. International Journal of Advanced

Computer Research, 4(2):560, 2014.

290

[95] Zhang Yanyan and Yao Yuan. Study of database intrusion detection based

on improved association rule algorithm. In Computer Science and Infor-

mation Technology (ICCSIT), 2010 3rd IEEE International Conference on,

volume 4, pages 673–676. IEEE, 2010.

[96] Cynthia Wagner, Jérôme François, Thomas Engel, et al. Machine learning

approach for ip-flow record anomaly detection. In International Conference

on Research in Networking, pages 28–39. Springer, 2011.

[97] Latifur Khan, Mamoun Awad, and Bhavani Thuraisingham. A new intrusion

detection system using support vector machines and hierarchical clustering.

The VLDB Journal - The International Journal on Very Large Data Bases,

16(4):507–521, 2007.

[98] Mohammad Esmalifalak, Huy Nguyen, Rong Zheng, and Zhu Han. Stealth

false data injection using independent component analysis in smart grid. In

Smart Grid Communications (SmartGridComm), 2011 IEEE International

Conference on, pages 244–248. IEEE, 2011.

[99] Jinsub Kim, Lang Tong, and Robert J Thomas. Subspace methods for data

attack on state estimation: A data driven approach. IEEE Trans. Signal

Processing, 63(5):1102–1114, 2015.

[100] Shi-Jinn Horng, Ming-Yang Su, Yuan-Hsin Chen, Tzong-Wann Kao, Rong-

Jian Chen, Jui-Lin Lai, and Citra Dwi Perkasa. A novel intrusion detection

system based on hierarchical clustering and support vector machines. Expert

systems with Applications, 38(1):306–313, 2011.

[101] Mohammed A Ambusaidi, Xiangjian He, Priyadarsi Nanda, and Zhiyuan

Tan. Building an intrusion detection system using a filter-based feature

selection algorithm. IEEE transactions on computers, 65(10):2986–2998,

2016.

291

[102] Inho Kang, Myong K Jeong, and Dongjoon Kong. A differentiated one-

class classification method with applications to intrusion detection. Expert

Systems with Applications, 39(4):3899–3905, 2012.

[103] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A training

algorithm for optimal margin classifiers. In Proceedings of the fifth annual

workshop on Computational learning theory, pages 144–152. ACM, 1992.

[104] Prabaharan Poornachandran, S Praveen, Aravind Ashok, Manu R Krishnan,

and KP Soman. Drive-by-download malware detection in hosts by analyz-

ing system resource utilization using one class support vector machines. In

Proceedings of the 5th International Conference on Frontiers in Intelligent

Computing: Theory and Applications, pages 129–137. Springer, 2017.

[105] Igor Balabine and Alexander Velednitsky. Method and system for confident

anomaly detection in computer network traffic, February 20 2015. US Patent

App. 14/627,963.

[106] Mohammed Saber, Ilhame El Farissi, Sara Chadli, Mohamed Emharraf, and

Mohammed Ghaouth Belkasmi. Performance analysis of an intrusion detec-

tion systems based of artificial neural network. In Europe and MENA Co-

operation Advances in Information and Communication Technologies, pages

511–521. Springer, 2017.

[107] MR Gauthama Raman, Nivethitha Somu, Kannan Kirthivasan, and

VS Shankar Sriram. A hypergraph and arithmetic residue-based probabilis-

tic neural network for classification in intrusion detection systems. Neural

Networks, 2017.

[108] Chaivat Jirapummin, Naruemon Wattanapongsakorn, and Prasert Kan-

thamanon. Hybrid neural networks for intrusion detection system. In Proc.

of ITC–CSCC, pages 928–931, 2002.

292

[109] Timo Horeis. Intrusion detection with neural networks–combination of self-

organizing maps and radial basis function networks for human expert inte-

gration. Computational Intelligence Society Student Research Grants, 2003.

[110] Guisong Liu, Zhang Yi, and Shangming Yang. A hierarchical intrusion detec-

tion model based on the pca neural networks. Neurocomputing, 70(7):1561–

1568, 2007.

[111] Shreya Dubey and Jigyasu Dubey. Kbb: A hybrid method for intrusion

detection. In Computer, Communication and Control (IC4), 2015 Interna-

tional Conference on, pages 1–6. IEEE, 2015.

[112] Liwei Kuang. Dnids: a dependable network intrusion detection system using

the csi-knn algorithm. 2007.

[113] Mahdi Soltanolkotabi, Emmanuel J Candes, et al. A geometric analysis of

subspace clustering with outliers. The Annals of Statistics, 40(4):2195–2238,

2012.

[114] Monowar H Bhuyan, DK Bhattacharyya, and Jugal K Kalita. An effec-

tive unsupervised network anomaly detection method. In Proceedings of the

International Conference on Advances in Computing, Communications and

Informatics, pages 533–539. ACM, 2012.

[115] GV Nadiammai and M Hemalatha. An evaluation of clustering technique

over intrusion detection system. In Proceedings of the International Confer-

ence on Advances in Computing, Communications and Informatics, pages

1054–1060. ACM, 2012.

[116] Ambarish Jadhav, Avinash Jadhav, Pradeep Jadhav, and Prakash Kulkarni.

A novel approach for the design of network intrusion detection system (nids).

In Sensor Network Security Technology and Privacy Communication System

(SNS & PCS), 2013 International Conference on, pages 22–27. IEEE, 2013.

293

[117] Dahlia Asyiqin Ahmad Zainaddin and Zurina Mohd Hanapi. Hybrid of fuzzy

clustering neural network over nsl dataset for intrusion detection system.

Journal of Computer Science, 9(3):391, 2013.

[118] Akara Prayote. Knowledge based anomaly detection. PhD thesis, The Uni-

versity of New South Wales, 2007.

[119] Kriti Chadha and Sushma Jain. Hybrid genetic fuzzy rule based inference

engine to detect intrusion in networks. In Intelligent Distributed Computing,

pages 185–198. Springer, 2015.

[120] Teresa F Lunt and R Jagannathan. A prototype real-time intrusion-detection

expert system. In Security and Privacy, 1988. Proceedings., 1988 IEEE

Symposium on, pages 59–66. IEEE, 1988.

[121] The snort tool. April 2017.

[122] Hannes Holm. Signature based intrusion detection for zero-day attacks:(not)

a closed chapter? In System Sciences (HICSS), 2014 47th Hawaii Interna-

tional Conference on, pages 4895–4904. IEEE, 2014.

[123] Bartosz Jasiul, Marcin Szpyrka, and Joanna Śliwa. Malware behavior mod-

eling with colored petri nets. In IFIP International Conference on Computer

Information Systems and Industrial Management, pages 667–679. Springer,

2014.

[124] Hank S Vaccaro and Gunar E Liepins. Detection of anomalous computer

session activity. In Security and Privacy, 1989. Proceedings., 1989 IEEE

Symposium on, pages 280–289. IEEE, 1989.

[125] Walter Scheirer and Mooi Choo Chuah. Syntax vs. semantics: competing

approaches to dynamic network intrusion detection. International Journal

of Security and Networks, 3(1):24–35, 2008.

[126] Prasad Naldurg, Koushik Sen, and Prasanna Thati. A temporal logic based

framework for intrusion detection. In International Conference on Formal

294

Techniques for Networked and Distributed Systems, pages 359–376. Springer,

2004.

[127] Shao-Shin Hung and Damon Shing-Min Liu. A user-oriented ontology-based

approach for network intrusion detection. Computer Standards & Interfaces,

30(1):78–88, 2008.

[128] Mikel Galar, Alberto Fernandez, Edurne Barrenechea, Humberto Bustince,

and Francisco Herrera. A review on ensembles for the class imbalance prob-

lem: bagging-, boosting-, and hybrid-based approaches. IEEE Transac-

tions on Systems, Man, and Cybernetics, Part C (Applications and Reviews),

42(4):463–484, 2012.

[129] Daniel B Araya, Katarina Grolinger, Hany F ElYamany, Miriam AM

Capretz, and Girma Bitsuamlak. An ensemble learning framework for

anomaly detection in building energy consumption. Energy and Buildings,

2017.

[130] Leandros A Maglaras, Jianmin Jiang, and Tiago J Cruz. Combining ensem-

ble methods and social network metrics for improving accuracy of ocsvm

on intrusion detection in scada systems. arXiv preprint arXiv:1507.02825,

2015.

[131] Abdulla Amin Aburomman and Mamun Bin Ibne Reaz. A survey of intrusion

detection systems based on ensemble and hybrid classifiers. Computers &

Security, 65:135–152, 2017.

[132] Vrushank Shah, Akshai K Aggarwal, and Nirbhay Chaubey. Performance

improvement of intrusion detection with fusion of multiple sensors. Complex

& Intelligent Systems, pages 1–7, 2016.

[133] Srilatha Chebrolu, Ajith Abraham, and Johnson P Thomas. Feature de-

duction and ensemble design of intrusion detection systems. Computers &

security, 24(4):295–307, 2005.

295

[134] Álvaro Herrero, Martí Navarro, Emilio Corchado, and Vicente Julián. Rt-

movicab-ids: Addressing real-time intrusion detection. Future Generation

Computer Systems, 29(1):250–261, 2013.

[135] Gianluigi Folino, Clara Pizzuti, and Giandomenico Spezzano. An ensemble-

based evolutionary framework for coping with distributed intrusion detec-

tion. Genetic Programming and Evolvable Machines, 11(2):131–146, 2010.

[136] Roberto Perdisci, Guofei Gu, and Wenke Lee. Using an ensemble of one-class

svm classifiers to harden payload-based anomaly detection systems. In Data

Mining, 2006. ICDM’06. Sixth International Conference on, pages 488–498.

IEEE, 2006.

[137] Huu Hoa Nguyen, Nouria Harbi, and Jérôme Darmont. An efficient local

region and clustering-based ensemble system for intrusion detection. In Pro-

ceedings of the 15th Symposium on International Database Engineering &

Applications, pages 185–191. ACM, 2011.

[138] Giorgio Giacinto, Fabio Roli, and Luca Didaci. Fusion of multiple classifiers

for intrusion detection in computer networks. Pattern recognition letters,

24(12):1795–1803, 2003.

[139] Jason Shifflet. A technique independent fusion model for network intrusion

detection. In Proceedings of the Midstates Conference on Undergraduate

Research in Computer Science and Mathematics, volume 3, pages 13–19.

Citeseer, 2005.

[140] Abdulla Amin Aburomman and Mamun Bin Ibne Reaz. A novel svm-knn-pso

ensemble method for intrusion detection system. Applied Soft Computing,

38:360–372, 2016.

[141] Nauman Shahid, Ijaz Haider Naqvi, and Saad Bin Qaisar. Characteristics

and classification of outlier detection techniques for wireless sensor networks

in harsh environments: a survey. Artificial Intelligence Review, 43(2):193–

228, 2015.

296

[142] Xiaoping Shen and Sonali Agrawal. Kernel density estimation for an anomaly

based intrusion detection system. InMLMTA, pages 161–167. Citeseer, 2006.

[143] Dit-Yan Yeung and Calvin Chow. Parzen-window network intrusion detec-

tors. In Pattern Recognition, 2002. Proceedings. 16th International Confer-

ence on, volume 4, pages 385–388. IEEE, 2002.

[144] Kyle Caudle, Christer Karlsson, and Larry D Pyeatt. Using density es-

timation to detect computer intrusions. In Proceedings of the 2015 ACM

International Workshop on International Workshop on Security and Privacy

Analytics, pages 43–48. ACM, 2015.

[145] Miguel Nicolau, James McDermott, et al. One-class classification for

anomaly detection with kernel density estimation and genetic programming.

In European Conference on Genetic Programming, pages 3–18. Springer,

2016.

[146] Patricia Mostardinha, Bruno Filipe Faria, André Zúquete, and Fernão Vis-

tulo de Abreu. A negative selection approach to intrusion detection. In Inter-

national Conference on Artificial Immune Systems, pages 178–190. Springer,

2012.

[147] Zeng Jinquan, Liu Xiaojie, Li Tao, Liu Caiming, Peng Lingxi, and Sun Feix-

ian. A self-adaptive negative selection algorithm used for anomaly detection.

Progress in natural Science, 19(2):261–266, 2009.

[148] Asghar Ghasemi, Saleh Zahediasl, et al. Normality tests for statistical anal-

ysis: a guide for non-statisticians. International journal of endocrinology

and metabolism, 10(2):486–489, 2012.

[149] Chien-Chuan Lin and Ming-Shi Wang. Particle Filter for Depth Evaluation

of Networking Intrusion Detection Using Coloured Petri Nets. INTECH

Open Access Publisher, 2010.

297

[150] Michael D Breitenstein, Fabian Reichlin, Bastian Leibe, Esther Koller-Meier,

and Luc Van Gool. Robust tracking-by-detection using a detector confidence

particle filter. In Computer Vision, 2009 IEEE 12th International Confer-

ence on, pages 1515–1522. IEEE, 2009.

[151] Jing Xu and Christian R Shelton. Intrusion detection using continuous time

bayesian networks. arXiv preprint arXiv:1401.3851, 2014.

[152] Alexander Tartakovsky, Igor Nikiforov, and Michele Basseville. Sequential

analysis: Hypothesis testing and changepoint detection. CRC Press, 2014.

[153] Aditya Oza, Kevin Ross, Richard M Low, and Mark Stamp. Http attack

detection using n-gram analysis. Computers & Security, 45:242–254, 2014.

[154] Srinivas Krishnan, Teryl Taylor, Fabian Monrose, and John McHugh. Cross-

ing the threshold: Detecting network malfeasance via sequential hypothesis

testing. In Dependable Systems and Networks (DSN), 2013 43rd Annual

IEEE/IFIP International Conference on, pages 1–12. IEEE, 2013.

[155] Nasser Abouzakhar and Abu Bakar. A chi-square testing-based intrusion de-

tection model. In Procs 4th International Conference on Cybercrime Foren-

sics Education & Training, 2010.

[156] Juan Luis Santos et al. Application of adversarial risk testing to anomaly-

based network intrusion detection systems. Journal of Socioeconomic Engi-

neering, (2):31–40, 2014.

[157] Hesham Altwaijry. Bayesian based intrusion detection system. In IAENG

Transactions on Engineering Technologies, pages 29–44. Springer, 2013.

[158] Liyuan Xiao, Yetian Chen, and Carl K Chang. Bayesian model averaging of

bayesian network classifiers for intrusion detection. In Computer Software

and Applications Conference Workshops (COMPSACW), 2014 IEEE 38th

International, pages 128–133. IEEE, 2014.

298

[159] Xiaoyan Han, Liancheng Xu, Min Ren, and Weiping Gu. A naive bayesian

network intrusion detection algorithm based on principal component anal-

ysis. In Information Technology in Medicine and Education (ITME), 2015

7th International Conference on, pages 325–328. IEEE, 2015.

[160] Luca Scrucca, Michael Fop, T Brendan Murphy, and Adrian E Raftery.

mclust 5: Clustering, classification and density estimation using gaussian

finite mixture models. The R Journal, 8(1):289, 2016.

[161] Wentao Fan, Nizar Bouguila, and Djemel Ziou. Unsupervised anomaly in-

trusion detection via localized bayesian feature selection. In Data Mining

(ICDM), 2011 IEEE 11th International Conference on, pages 1032–1037.

IEEE, 2011.

[162] Wentao Fan, Nizar Bouguila, and Djemel Ziou. Variational learning for finite

dirichlet mixture models and applications. IEEE transactions on neural

networks and learning systems, 23(5):762–774, 2012.

[163] Nicola Greggio. Learning anomalies in idss by means of multivariate fi-

nite mixture models. In Advanced Information Networking and Applica-

tions (AINA), 2013 IEEE 27th International Conference on, pages 251–258.

IEEE, 2013.

[164] Christian Gruhl, Bernhard Sick, Arno Wacker, Sven Tomforde, and Jörg

Hähner. A building block for awareness in technical systems: Online nov-

elty detection and reaction with an application in intrusion detection. In

Awareness Science and Technology (iCAST), 2015 IEEE 7th International

Conference on, pages 194–200. IEEE, 2015.

[165] Niandong Liao, Shengfeng Tian, and Tinghua Wang. Network foren-

sics based on fuzzy logic and expert system. Computer Communications,

32(17):1881–1892, 2009.

[166] Sergiu Nedevschi, Rolf Schmidt, Thorsten Graf, Radu Danescu, Dan Frentiu,

Tiberiu Marita, Florin Oniga, and Ciprian Pocol. 3d lane detection system

299

based on stereovision. In Intelligent Transportation Systems, 2004. Pro-

ceedings. The 7th International IEEE Conference on, pages 161–166. IEEE,

2004.

[167] Xue Yuan, Yifei Meng, and Xueye Wei. A method of location the vehicle

windshield region for vehicle occupant detection system. In Signal Processing

(ICSP), 2012 IEEE 11th International Conference on, volume 1, pages 712–

715. IEEE, 2012.

[168] P. Gasti, G. Tsudik, E. Uzun, and L. Zhang. Dos and ddos in named data

networking. In 2013 22nd International Conference on Computer Commu-

nication and Networks (ICCCN), pages 1–7, July 2013.

[169] Satomi Honda, Yuki Unno, Koji Maruhashi, Masahiko Takenaka, and Satoru

Torii. Topase: Detection of brute force attacks used disciplined ips from ids

log. In Integrated Network Management (IM), 2015 IFIP/IEEE Interna-

tional Symposium on, pages 1361–1364. IEEE, 2015.

[170] Gao Feng He, Tao Zhang, Yuan Yuan Ma, and Jia Xuan Fei. Protecting

userŠs privacy from browser-based attacks. In Applied Mechanics and Ma-

terials, volume 631, pages 941–945. Trans Tech Publ, 2014.

[171] Dove Chiu, Shih-Hao Weng, and Joseph Chiu. Backdoor use in targeted

attacks. A Trend Micro Research Paper, 2017.

[172] Sílvia Farraposo, Laurent Gallon, and Philippe Owezarski. Network security

and dos attacks. Feb–2005. http://www. cert. org/reports/dist_workshop.

pdf, 2005.

[173] Prasanta Gogoi, Monowar H Bhuyan, DK Bhattacharyya, and Jugal K

Kalita. Packet and flow based network intrusion dataset. In International

Conference on Contemporary Computing, pages 322–334. Springer, 2012.

[174] Manaf Gharaibeh and Christos Papadopoulos. The darpa-2009 intrusion

detection dataset report, 2014.

300

[175] The ground truth of darpa-2009 dataset. May 2016.

[176] The tcptrace tool. April 2017.

[177] The business intelligence development studio tool. April 2017.

[178] Wenke Lee and Salvatore J Stolfo. A framework for constructing features and

models for intrusion detection systems. ACM transactions on Information

and system security (TiSSEC), 3(4):227–261, 2000.

[179] Saurabh Mukherjee and Neelam Sharma. Intrusion detection using naive

bayes classifier with feature reduction. Procedia Technology, 4:119–128, 2012.

[180] Seong Soo Kim and AL Reddy. Statistical techniques for detecting traffic

anomalies through packet header data. IEEE/ACM Transactions on Net-

working (TON), 16(3):562–575, 2008.

[181] Ashwin Tamilarasan, Srinivas Mukkamala, Andrew H Sung, and Krishna

Yendrapalli. Feature ranking and selection for intrusion detection using

artificial neural networks and statistical methods. In Neural Networks, 2006.

IJCNN’06. International Joint Conference on, pages 4754–4761. IEEE, 2006.

[182] Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal. Data Min-

ing: Practical machine learning tools and techniques. Morgan Kaufmann,

2016.

[183] Zhi-Hua Zhou and Xu-Ying Liu. Training cost-sensitive neural networks

with methods addressing the class imbalance problem. IEEE Transactions

on Knowledge and Data Engineering, 18(1):63–77, 2006.

[184] Victoria López, Alberto Fernández, Salvador García, Vasile Palade, and

Francisco Herrera. An insight into classification with imbalanced data: Em-

pirical results and current trends on using data intrinsic characteristics. In-

formation Sciences, 250:113–141, 2013.

301

[185] Samaneh Rastegari, Philip Hingston, and Chiou-Peng Lam. Evolving sta-

tistical rulesets for network intrusion detection. Applied Soft Computing,

33:348–359, 2015.

[186] Brian D Ripley. Pattern recognition and neural networks. Cambridge uni-

versity press, 2007.

[187] Dewan Md Farid, Li Zhang, Chowdhury Mofizur Rahman, M Alamgir Hos-

sain, and Rebecca Strachan. Hybrid decision tree and naïve bayes classi-

fiers for multi-class classification tasks. Expert Systems with Applications,

41(4):1937–1946, 2014.

[188] Yacine Bouzida and Frederic Cuppens. Neural networks vs. decision trees

for intrusion detection. In IEEE/IST Workshop on Monitoring, Attack De-

tection and Mitigation (MonAM), volume 28, page 29, 2006.

[189] Christo Panchev, Petar Dobrev, and James Nicholson. Detecting port scans

against mobile devices with neural networks and decision trees. In Inter-

national Conference on Engineering Applications of Neural Networks, pages

175–182. Springer, 2014.

[190] Amuthan Prabakar Muniyandi, R Rajeswari, and R Rajaram. Network

anomaly detection by cascading k-means clustering and c4. 5 decision tree

algorithm. Procedia Engineering, 30:174–182, 2012.

[191] Joffroy Beauquier and Yongjie Hu. Intrusion detection based on distance

combination. CESSE07, Venice, Italy, World Acacemy of Sciences, WAS,

2007.

[192] Heba F Eid, Aboul Ella Hassanien, Tai-hoon Kim, and Soumya Banerjee.

Linear correlation-based feature selection for network intrusion detection

model. In Advances in Security of Information and Communication Net-

works, pages 240–248. Springer, 2013.

[193] The ixia pefectstorm one tool. April 2017.

302

[194] The cve website. April 2017.

[195] Jon Davis and Shane Magrath. A survey of cyber ranges and testbeds.

Technical report, DTIC Document, 2013.

[196] The accs website. April 2017.

[197] The tcpdump tool. April 2017.

[198] The argus tool. April 2017.

[199] The bro-ids tool. April 2017.

[200] The mysql cluster cge technology. April 2017.

[201] The hadoop technologies. April 2017.

[202] Taeshik Shon and Jongsub Moon. A hybrid machine learning approach to

network anomaly detection. Information Sciences, 177(18):3799–3821, 2007.

[203] Zubair M Fadlullah, Tarik Taleb, Athanasios V Vasilakos, Mohsen Guizani,

and Nei Kato. Dtrab: Combating against attacks on encrypted protocols

through traffic-feature analysis. IEEE/ACM Transactions on Networking

(TON), 18(4):1234–1247, 2010.

[204] Stuart Staniford, James A Hoagland, and Joseph M McAlerney. Practical

automated detection of stealthy portscans. Journal of Computer Security,

10(1-2):105–136, 2002.

[205] Zhiyuan Tan, Aruna Jamdagni, Xiangjian He, Priyadarsi Nanda, Ren Ping

Liu, and Jiankun Hu. Detection of denial-of-service attacks based on com-

puter vision techniques. IEEE transactions on computers, 64(9):2519–2533,

2015.

[206] SS Chapade, KU Pandey, and DS Bhade. Securing cloud servers against

flooding based ddos attacks. In Communication Systems and Network Tech-

nologies (CSNT), 2013 International Conference on, pages 524–528. IEEE,

2013.

303

[207] Debasish Das, Utpal Sharma, and DK Bhattacharyya. Detection of http

flooding attacks in multiple scenarios. In Proceedings of the 2011 Interna-

tional Conference on Communication, Computing & Security, pages 517–

522. ACM, 2011.

[208] Kowsik Guruswamy and Siyang Yang. Detection and prevention of encap-

sulated network attacks using an intermediate device, September 14 2010.

US Patent 7,797,411.

[209] Amir Houmansadr and Nikita Borisov. Swirl: A scalable watermark to

detect correlated network flows. In NDSS, 2011.

[210] Tianbo Lu, Rui Guo, Lingling Zhao, and Yang Li. A systematic review of

network flow watermarking in anonymity systems. International Journal of

Security and Its Applications, 10(3):129–138, 2016.

[211] Payam Refaeilzadeh, Lei Tang, and Huan Liu. Cross-validation. In Ency-

clopedia of database systems, pages 532–538. Springer, 2009.

[212] R Ravinder Reddy, Y Ramadevi, and KVN Sunitha. Hybridized data tech-

nique for evaluate the anomaly. In Advanced Computing (IACC), 2016 IEEE

6th International Conference on, pages 685–688. IEEE, 2016.

[213] Maher Salem and Ulrich Buehler. Mining techniques in network security to

enhance intrusion detection systems. arXiv preprint arXiv:1212.2414, 2012.

[214] Dan Hu, Xianchuan Yu, and Jiayin Wang. Statistical inference in rough set

theory based on kolmogorov-smirnov goodness-of-fit test. IEEE Transactions

on Fuzzy Systems, 2016.

[215] Ana Justel, Daniel Peña, and Rubén Zamar. A multivariate kolmogorov-

smirnov test of goodness of fit. Statistics & Probability Letters, 35(3):251–

259, 1997.

[216] Selcuk Korkmaz, Dincer Goksuluk, and Gokmen Zararsiz. Mvn: an r pack-

age for assessing multivariate normality. The R Journal, 6(2):151–162, 2014.

304

[217] Hae-Young Kim. Statistical notes for clinical researchers: assessing nor-

mal distribution (2) using skewness and kurtosis. Restorative dentistry &

endodontics, 38(1):52–54, 2013.

[218] Daniel T Larose. Discovering knowledge in data: an introduction to data

mining. John Wiley & Sons, 2014.

[219] Vladimir Cherkassky and Filip M Mulier. Learning from data: concepts,

theory, and methods. John Wiley & Sons, 2007.

[220] The critical values of the kolmogorov smirnov test. April 2017.

[221] The spss tool. April 2017.

[222] Hal R Varian. Big data: New tricks for econometrics. The Journal of

Economic Perspectives, 28(2):3–27, 2014.

[223] Joseph Lee Rodgers and W Alan Nicewander. Thirteen ways to look at the

correlation coefficient. The American Statistician, 42(1):59–66, 1988.

[224] Asha Gowda Karegowda, AS Manjunath, and MA Jayaram. Comparative

study of attribute selection using gain ratio and correlation based feature

selection. International Journal of Information Technology and Knowledge

Management, 2(2):271–277, 2010.

[225] David W Hosmer Jr, Stanley Lemeshow, and Rodney X Sturdivant. Applied

logistic regression, volume 398. John Wiley & Sons, 2013.

[226] Mohammed M Alani. Guide to OSI and TCP/IP models. Springer, 2014.

[227] Bingdong Li, Jeff Springer, George Bebis, and Mehmet Hadi Gunes. A survey

of network flow applications. Journal of Network and Computer Applications,

36(2):567–581, 2013.

305

[228] Yan Hu, Dah-Ming Chiu, and John CS Lui. Adaptive flow aggregation-a new

solution for robust flow monitoring under security attacks. In Network Oper-

ations and Management Symposium, 2006. NOMS 2006. 10th IEEE/IFIP,

pages 424–435. IEEE, 2006.

[229] William G Cochran. Sampling techniques. John Wiley & Sons, 2007.

[230] Darren R Kerr and Barry L Bruins. Network flow switching and flow data

export, June 5 2001. US Patent 6,243,667.

[231] Netflow feature documentation. January 2017.

[232] Nick Duffield. Sampling for passive internet measurement: A review. Sta-

tistical Science, pages 472–498, 2004.

[233] sflow collectors. January 2017.

[234] Mohiuddin Ahmed, Abdun Naser Mahmood, and Michael J Maher. A novel

approach for network traffic summarization. In International Conference on

Scalable Information Systems, pages 51–60. Springer, 2014.

[235] Malcolm Rieke, James Sebastian Dennis, and Shane Robert Thorson. Sys-

tems and methods for network data flow aggregation, December 18 2015.

US Patent App. 14/974,378.

[236] The mysql aggregation functions. April 2017.

[237] Milosz Marian Hulboj and Ryszard Erazm Jurga. Packet sampling and

network monitoring. 2007.

[238] Valentín Carela-Español, Pere Barlet-Ros, Albert Cabellos-Aparicio, and

Josep Solé-Pareta. Analysis of the impact of sampling on netflow traffic

classification. Computer Networks, 55(5):1083–1099, 2011.

[239] Yu Zhang, FANG Binxing, and LUO Hao. Identifying high-rate flows based

on sequential sampling. IEICE TRANSACTIONS on Information and Sys-

tems, 93(5):1162–1174, 2010.

306

[240] Myungjin Lee, Mohammad Hajjat, Ramana Rao Kompella, and Sanjay Rao.

Relsamp: Preserving application structure in sampled flow measurements.

In INFOCOM, 2011 Proceedings IEEE, pages 2354–2362. IEEE, 2011.

[241] Sajad Shirali-Shahreza and Yashar Ganjali. Flexam: flexible sampling ex-

tension for monitoring and security applications in openflow. In Proceedings

of the second ACM SIGCOMM workshop on Hot topics in software defined

networking, pages 167–168. ACM, 2013.

[242] Taejin Ha, Sunghwan Kim, Namwon An, Jargalsaikhan Narantuya, Chi-

wook Jeong, JongWon Kim, and Hyuk Lim. Suspicious traffic sampling

for intrusion detection in software-defined networks. Computer Networks,

109:172–182, 2016.

[243] Jason Nikolai and Yong Wang. Hypervisor-based cloud intrusion detection

system. In Computing, Networking and Communications (ICNC), 2014 In-

ternational Conference on, pages 989–993. IEEE, 2014.

[244] Nour Moustafa and Jill Slay. The significant features of the unsw-nb15 and

the kdd99 data sets for network intrusion detection systems. In Building

Analysis Datasets and Gathering Experience Returns for Security (BAD-

GERS), 2015 4th International Workshop on, pages 25–31. IEEE, 2015.

[245] Juliana Freire, Bharat Kumar, and Daniel Lieuwen. Webviews: accessing

personalized web content and services. In Proceedings of the 10th interna-

tional conference on World Wide Web, pages 576–586. ACM, 2001.

[246] Jim Conallen. Modeling web application architectures with uml. Commu-

nications of the ACM, 42(10):63–70, 1999.

[247] Surya Kumar Kovvali, Charles Boyle, Ravi Valmikam, and Krishnan Ra-

makrishnan. Hierarchical device type recognition, caching control & en-

hanced cdn communication in a wireless mobile network, July 19 2012. US

Patent App. 13/183,777.

307

[248] Stephane Bortzmeyer. Dns query name minimisation to improve privacy.

2016.

[249] Arkadiusz Jestratjew and Andrzej Kwiecien. Performance of http protocol

in networked control systems. IEEE Transactions on Industrial Informatics,

9(1):271–276, 2013.

[250] Samuel Marchal, Xiuyan Jiang, Radu State, and Thomas Engel. A big

data architecture for large scale security monitoring. In Big data (BigData

Congress), 2014 IEEE international congress on, pages 56–63. IEEE, 2014.

[251] Alfonso Valdes and Steven Cheung. Intrusion monitoring in process control

systems. In System Sciences, 2009. HICSS’09. 42nd Hawaii International

Conference on, pages 1–7. IEEE, 2009.

[252] Robert Koch and Mario Golling. Architecture for evaluating and correlating

nids in real-world networks. In Cyber Conflict (CyCon), 2013 5th Interna-

tional Conference on, pages 1–20. IEEE, 2013.

[253] Mohamed Nassar, Bechara al Bouna, and Qutaibah Malluhi. Secure out-

sourcing of network flow data analysis. In Big Data (BigData Congress),

2013 IEEE International Congress on, pages 431–432. IEEE, 2013.

[254] Dinkar Sitaram, Manish Sharma, Mariyah Zain, Ankita Sastry, and Rishika

Todi. Intrusion detection system for high volume and high velocity packet

streams: A clustering approach. International Journal of Innovation, Man-

agement and Technology, 4(5):480, 2013.

[255] PP Anjali and A Binu. Network traffic analysis: Hadoop pig vs typical

mapreduce. arXiv preprint arXiv:1312.5469, 2013.

[256] Christopher Kruegel and Giovanni Vigna. Anomaly detection of web-based

attacks. In Proceedings of the 10th ACM conference on Computer and com-

munications security, pages 251–261. ACM, 2003.

308

[257] Jose Fonseca, Marco Vieira, and Henrique Madeira. Evaluation of web secu-

rity mechanisms using vulnerability & attack injection. IEEE Transactions

on Dependable and Secure Computing, 11(5):440–453, 2014.

[258] Johannes Dahse and Thorsten Holz. Static detection of second-order vulner-

abilities in web applications. In USENIX Security, pages 989–1003, 2014.

[259] Mohssen Mohammed and Al-Sakib Khan Pathan. Automatic defense against

zero-day polymorphic worms in communication networks. CRC Press, 2013.

[260] Carol Fung and Raouf Boutaba. Intrusion Detection Networks: A Key to

Collaborative Security. CRC Press, 2013.

[261] Steven J Templeton and Karl E Levitt. Detecting spoofed packets. In

DARPA Information Survivability Conference and Exposition, 2003. Pro-

ceedings, volume 1, pages 164–175. IEEE, 2003.

[262] Gang Wang, Jianshan Sun, Jian Ma, Kaiquan Xu, and Jibao Gu. Senti-

ment classification: The contribution of ensemble learning. Decision support

systems, 57:77–93, 2014.

[263] Jasmin Kevric, Samed Jukic, and Abdulhamit Subasi. An effective combin-

ing classifier approach using tree algorithms for network intrusion detection.

Neural Computing and Applications, pages 1–8, 2016.

[264] Andreas Janecek, Wilfried Gansterer, Michael Demel, and Gerhard Ecker.

On the relationship between feature selection and classification accuracy.

In New Challenges for Feature Selection in Data Mining and Knowledge

Discovery, pages 90–105, 2008.

[265] Nour Moustafa and Jill Slay. A hybrid feature selection for network intrusion

detection systems: Central points. 2015.

[266] Yuh-Jye Lee, Yi-Ren Yeh, and Yu-Chiang Frank Wang. Anomaly detection

via online oversampling principal component analysis. IEEE transactions on

knowledge and data engineering, 25(7):1460–1470, 2013.

309

[267] Dayu Yang and Hairong Qi. A network intrusion detection method using

independent component analysis. In Pattern Recognition, 2008. ICPR 2008.

19th International Conference on, pages 1–4. IEEE, 2008.

[268] John H Gennari, Pat Langley, and Doug Fisher. Models of incremental

concept formation. Artificial intelligence, 40(1-3):11–61, 1989.

[269] Atif Ahmad, Sean B Maynard, and Sangseo Park. Information security

strategies: towards an organizational multi-strategy perspective. Journal of

Intelligent Manufacturing, 25(2):357–370, 2014.

[270] Richard Heady, George F Luger, Arthur Maccabe, and Mark Servilla. The

architecture of a network level intrusion detection system. University of New

Mexico. Department of Computer Science. College of Engineering, 1990.

[271] P Jongsuebsuk, N Wattanapongsakorn, and C Charnsripinyo. Real-time

intrusion detection with fuzzy genetic algorithm. In Electrical Engineer-

ing/Electronics, Computer, Telecommunications and Information Technol-

ogy (ECTI-CON), 2013 10th International Conference on, pages 1–6. IEEE,

2013.

[272] Dumidu Wijayasekara, Ondrej Linda, Milos Manic, and Craig Rieger. Min-

ing building energy management system data using fuzzy anomaly detection

and linguistic descriptions. IEEE Transactions on Industrial Informatics,

10(3):1829–1840, 2014.

[273] Wentao Ma, Hua Qu, and Jihong Zhao. Estimator with forgetting factor of

correntropy and recursive algorithm for traffic network prediction. In Control

and Decision Conference (CCDC), 2013 25th Chinese, pages 490–494. IEEE,

2013.

[274] Sung-Hyuk Cha. Comprehensive survey on distance/similarity measures

between probability density functions. City, 1(2):1, 2007.

310

[275] Michael D Escobar and Mike West. Bayesian density estimation and in-

ference using mixtures. Journal of the american statistical association,

90(430):577–588, 1995.

[276] BWagle. Multivariate beta distribution and a test for multivariate normality.

Journal of the Royal Statistical Society. Series B (Methodological), pages

511–516, 1968.

[277] Arjun K Gupta and Saralees Nadarajah. Handbook of beta distribution and

its applications. CRC press, 2004.

[278] Mario A. T. Figueiredo and Anil K. Jain. Unsupervised learning of finite

mixture models. IEEE Transactions on pattern analysis and machine intel-

ligence, 24(3):381–396, 2002.

[279] Zhanyu Ma and Arne Leijon. Beta mixture models and the application to

image classification. In Image Processing (ICIP), 2009 16th IEEE Interna-

tional Conference on, pages 2045–2048. IEEE, 2009.

[280] Josef Stoer and Roland Bulirsch. Introduction to numerical analysis, vol-

ume 12. Springer Science & Business Media, 2013.

[281] Takao Asano, Tetsuo Asano, and Hiroshi Imai. Partitioning a polygonal

region into trapezoids. Journal of the ACM (JACM), 33(2):290–312, 1986.

[282] Peter J Rousseeuw and Mia Hubert. Robust statistics for outlier detection.

Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,

1(1):73–79, 2011.

[283] Tarek Elgamal, Maysam Yabandeh, Ashraf Aboulnaga, Waleed Mustafa,

and Mohamed Hefeeda. spca: Scalable principal component analysis for big

data on distributed platforms. In Proceedings of the 2015 ACM SIGMOD

International Conference on Management of Data, pages 79–91. ACM, 2015.

[284] Gholam Reza Zargar, Tania Baghaie, et al. Category-based intrusion detec-

tion using pca. Journal of Information Security, 3(04):259, 2012.

311

[285] Eduardo De la Hoz, Emiro De La Hoz, Andrés Ortiz, Julio Ortega, and

Beatriz Prieto. Pca filtering and probabilistic som for network intrusion

detection. Neurocomputing, 164:71–81, 2015.

[286] Gholam Reza Zargar and Peyman Kabiri. Identification of effective network

features for probing attack detection. In Networked Digital Technologies,

2009. NDT’09. First International Conference on, pages 392–397. IEEE,

2009.

[287] Thanassis Giannetsos and Tassos Dimitriou. Spy-sense: spyware tool for

executing stealthy exploits against sensor networks. In Proceedings of the

2nd ACM workshop on Hot topics on wireless network security and privacy,

pages 7–12. ACM, 2013.

[288] Chih-Fong Tsai and Chia-Ying Lin. A triangle area based nearest neighbors

approach to intrusion detection. Pattern recognition, 43(1):222–229, 2010.

[289] Praneet Saurabh and Bhupendra Verma. An efficient proactive artificial

immune system based anomaly detection and prevention system. Expert

Systems with Applications, 60:311–320, 2016.

[290] Zhiyuan Tan, Aruna Jamdagni, Xiangjian He, Priyadarsi Nanda, and

Ren Ping Liu. Denial-of-service attack detection based on multivariate cor-

relation analysis. In International Conference on Neural Information Pro-

cessing, pages 756–765. Springer, 2011.

312

Appendix A

Protocols of UNSW-NB15

dataset

The UNSW-NB15 dataset comprises a wide range of common protocols, including

TCP, UDP and ICMP, and the services listed in Table A.1 with their numbers of

records.

Descriptions of these protocols and services are provided below.

• TCP (Transmission Control Protocol): is a basic protocol in the In-

ternet protocol suite which is a standard for defining how to establish and

maintain a network conversation via application programs regarding the ex-

change of network data.

• UDP (User Datagram Protocol): is an alternative communication pro-

tocol to TCP used primarily to construct low-latency and loss-tolerating

connections between programs on the Internet. Both UDP and TCP run on

Table A.1: UNSW-NB15 services

Service Number of records
DHCP 172
DNS 781668
FTP 49090
HTTP 206273
IRC 31
POP3 1533
RADIUS 40
SMTP 81644
SNMP 113
SSH 47160
SSL 142

313

top of the Internet Protocol (IP) and are sometimes referred to as UDP/IP

and TCP/IP.

• ICMP (Internet Control Message Protocol): is an error-reporting pro-

tocol network device, such as a router, used to create error messages to send

to the source IP address when network problems prevent the delivery of IP

packets which indicate that a gateway to the Internet, router, service or host

cannot be reached for packet delivery.

• DHCP (Dynamic Host Configuration Protocol): is a client-server

protocol which automatically provides an IP host with its IP address and

other related configuration information, for example, the subnet mask and

default gateway.

• DNS (Domain Name System): is a hierarchical decentralised naming

system for computers, services or any resource related to the Internet or a

network.

• FTP (File Transfer Protocol): is a standard network protocol used to

transfer computer files between a client and server on a network.

• HTTP (Hypertext Transfer Protocol): is an application protocol for

distributed, collaborative, hypermedia information systems and is the basic

means of data communication for the World Wide Web.

• IRC (Internet Relay Chat): is an application-layer protocol that enables

communication in the form of text via chatting which works on a client-server

networking model.

• POP3 (Post Office Protocol): is an application-layer Internet standard

protocol used by local e-mail clients to retrieve e-mails from a remote server

over a TCP/IP connection.

• RADIUS (Remote Authentication Dial-In User Service): is a net-

work protocol which provides centralised authentication, authorisation and

314

accounting (AAA) management for users who connect to and use a network

service.

• SMTP (Simple Mail Transfer Protocol): is an Internet standard for

electronic mail transmission.

• SNMP (Simple Network Management Protocol): is an Internet-

standard protocol for collecting and organising information about managed

devices on IP networks and for modifying that information to change a de-

vice’s behaviour.

• SSH (Secure Shell): is a cryptographic network protocol for securely op-

erating network services over an unsecured network.

• SSL (Secure Sockets Layer): is the standard security technology for

creating an encrypted link between a web server and browser.

315

Appendix B

Features of NSL-KDD dataset

This appendix discusses the features of the NSL-KDD dataset used to evaluate

the mechanisms developed in this thesis. There are 41 features, 9 intrinsic, 9 time,

10 statistical and 13 content, with a class label connected to each record, which

are described in the following table, respectively.

Table B.1: NSL-KDD features

No. Name Type Description
Intrinsic features
1 duration Float Length of record connection in seconds
2 protocol_type Nominal Protocol type, such as TCP, UDP and

ICMP
3 service Nominal Network service at destination, such as

HTTP and FTP
4 src_bytes Float Number of data bytes from source to

destination
5 dst bytes Float Number of data bytes from destination

to source
6 flag Nominal Normal or error status of record

connection
7 Land Binary If source and destination of IP addresses

and ports are equal, value 1, otherwise 0
8 wrong fragment Integer Number of ‘wrong’ fragments
9 urgent Integer Number of urgent packets
Time features
10 count Integer Number of record connections to same

host as current connection in previous
two seconds

11 serror_rate Float Percentage of same host connections with
‘SYN’ errors

12 rerror_rate Float Percentage of same host connections with
‘REJ’ errors

13 same_srv_rate Float Percentage of same host connections to
same service

316

14 diff_srv_rate Float Percentage of same host connections to
different services

15 srv_count Integer Number of record connections to same
service as current connection in previous
two seconds

16 srv_serror_rate Float Percentage of same service connections
with ‘SYN’ errors

17 srv_rerror_rate Float Percentage of same service connections
with ‘REJ’ errors

18 srv_diff_host_rate Float Percentage of same service connections to
different hosts

Statistical features
19 dst_host_count Integer Number of record connections to same

host in previous 100 connections
20 dst_host_serror

_rate
Float Percentage of record connections with

‘SYN’ errors
21 dst_host_rerror

_rate
Float Percentage of record connections with

‘REJ’ errors
22 dst_host_same_

srv_rate
Float Percentage of record connections to same

service
23 dst_host_diff_

srv_rate
Float Percentage of records with same host

connections to different services
24 dst_host_srv

_count
Float Number of record connections to same

service in previous 100 connections
25 dst_host_srv_

serror_rate
Float Percentage of same service connections

with ‘SYN’ errors
26 dst_host_srv_

rerror_rate
Float Percentage of same service connections

with ‘REJ’ errors
27 dst_host_srv_

diff_host_rate
Float Percentage of same service connections to

different hosts
28 dst_host_same_

src_port_rate
Float Percentage of connections from same

source port
Content features
29 hot Float Host indicator, e.g., access to system

directories, and creation and execution of
programs

30 num_failed_logins Integer Number of failed login attempts
31 logged_in Binary 1 if successfully logged in, 0 otherwise
32 num_compromised Integer Number of compromised states on

destination host (e.g., file/path ‘not
found’ errors and ‘jump to’ instructions)

33 root_shell Binary 1 if root shell obtained, 0 otherwise
34 su_attempted Binary 1 if ‘su root’ command attempted, 0

otherwise

317

35 num_root Integer Number of ‘root’ accesses

36 num_file_creations Integer Number of file creation operations

37 num_shells Integer Number of shell prompts

38 num access files Float Number of operations on access control

files

39 num_outbound_

cmds

Float Number of outbound commands in ftp

session

40 is host login Binary 1 if login belongs to ‘host’ list, 0

otherwise

41 is_guest_login Binary 1 if login ‘guest’ login, 0 otherwise

318

	Title page
	Copyright Statement
	Originality statement
	Acknowledgments
	Abstract
	List of publications
	Table of Contents
	List of Figures
	List of Tables
	List of Terms
	1 Introduction
	1.1 Overview of Cyber Security in Current Era
	1.2 Dimensions of Cyber Crime
	1.3 Problem Formulations and Research Questions
	1.4 Protection against Cyber Crime
	1.4.1 Network Data Sources
	1.4.2 Relevant Features and Observations for NADS
	1.4.3 Statistics-based NADS

	1.5 Thesis Contributions
	1.6 Thesis Structure

	2 Background and Related Work
	2.1 Objectives
	2.2 Intrusion Detection System (IDS)
	2.2.1 Intrusion Detection Properties
	2.2.2 Monitored environment
	2.2.3 Detection methods
	2.2.4 Deployment architecture

	2.3 Characteristics of Network Anomalies
	2.4 Evaluation Metrics for IDSs
	2.5 Challenges of NADS
	2.6 Components of NADS
	2.6.1 Data source
	2.6.2 Data pre-processing

	2.7 Decision Engine (DE) Approaches
	2.7.1 Classification-based approaches
	2.7.2 Clustering-based approaches
	2.7.3 Knowledge-based approaches
	2.7.4 Combination-based approaches
	2.7.5 Statistical-based approaches

	2.8 Contemporary Network Threats
	2.9 Chapter Conclusion

	3 Towards Development of New Environments of Large-scale Network Datasets and Their Features for evaluating Intrusion Detection Systems
	3.1 Target of Network Dataset
	3.2 Description of DARPA-2009 Dataset
	3.2.1 Security Events in DARPA-2009 Dataset

	3.3 Framework for evaluating DARPA-2009 Dataset
	3.3.1 Pcap Transformation and Labelling
	3.3.2 Proposed Statistical Feature Selection
	3.3.3 Preparation of Training and Testing Sets for DARPA-2009 Dataset
	3.3.4 Evaluation of Four ML Algorithms

	3.4 Generation of UNSW-NB15 Dataset
	3.4.1 Configuration of UNSW-NB15 Dataset Testbed
	3.4.2 Network Traffic Analysis

	3.5 Framework for generating UNSW-NB15 Features
	3.5.1 Features extracted using Argus tool
	3.5.2 Features extracted using Bro-IDS tool
	3.5.3 Matched features
	3.5.4 Additional Features
	3.5.5 Labelling Process
	3.5.6 UNSW-NB15 Security and Malware Events
	3.5.7 File Formats of UNSW-NB15 Dataset

	3.6 Comparisons with Other Datasets
	3.7 Big Data Properties in UNSW-NB15 Dataset
	3.8 Dataset Splitting for Learning Techniques
	3.9 Complexity Analysis of UNSW-NB15 Dataset
	3.9.1 Z-score Function
	3.9.2 Kolmogorov-Smirnov (K-S) Test
	3.9.3 Multivariate Skewness and Kurtosis

	3.10 Use of Statistical Measures on training and testing sets
	3.10.1 Feature Correlations of (TRIN) and (TSIN)
	3.10.2 Evaluation of Five ML Techniques

	3.11 Empirical Results and Discussion
	3.11.1 Statistical Analyses and Explanations
	3.11.2 Feature Correlations
	3.11.3 Complexity Evaluations using ML Techniques

	3.12 Chapter Conclusion

	4 Relevant Feature and observation Methods and Their Impacts on Design of Lightweight Network Anomaly Detection System
	4.1 Introduction
	4.2 Network Flow Analysis
	4.2.1 NetFlow
	4.2.2 sFlow
	4.2.3 IPFIX

	4.3 Aggregator Module for ADS
	4.3.1 Sampling Techniques
	4.3.2 Association Rule Mining (ARM)

	4.4 Network Feature Creation
	4.4.1 Proposed DNS and HTTP Features
	4.4.2 Proposed Ensemble Method for detecting DNS and HTTP Malicious Activities

	4.5 Role of Feature Reduction (FR)
	4.5.1 ARM Feature Selection Method
	4.5.2 Principal Component Analysis (PCA)
	4.5.3 Independent Component Analysis (ICA)

	4.6 Experimental Results and Discussion
	4.6.1 Aggregator Module
	4.6.2 Evaluation of Proposed Features of DNS and HTTP
	4.6.3 Evaluation of proposed ensemble method and discussion
	4.6.4 Feature Reduction and Evaluation

	4.7 Chapter Conclusion

	5 Novel Statistical Decision Engines for Anomaly Detection System based on analysing Potential Characteristics of Network Features
	5.1 Introduction
	5.2 Network Data Analytics for Design of Effective DE
	5.2.1 Normality measures
	5.2.2 Linearity measures

	5.3 Novel Geometric Area Analysis (GAA-ADS) Technique
	5.3.1 Beta Mixture Model (BMM)
	5.3.2 Trapezoidal Area Estimation (TAE)
	5.3.3 Construction of Normal Profile of GAA-ADS Technique
	5.3.4 Testing Phase and Decision-making Method of GAA-ADS Technique

	5.4 Novel Dirichlet Mixture Model–based ADS (DMM-ADS) Technique
	5.4.1 Finite DMM
	5.4.2 Training Phase of Normal Observations of DMM-ADS Technique
	5.4.3 Testing Phase and Decision-making Method in DMM-ADS Technique

	5.5 Two Proposed Scalable Frameworks for ADS
	5.5.1 Data Sniffing and Storing Module
	5.5.2 Data Pre-processing Module

	5.6 Experimental Results and Analysis
	5.6.1 Statistical Analysis and Decision Support
	5.6.2 Performance Evaluation of GAA-ADS Technique
	5.6.3 Performance Evaluation of DMM-ADS Technique
	5.6.4 Comparative Study and Discussion of Both New DE Techniques
	5.6.5 Clarifications of Complexity and Time Cost of Each New DE Technique

	5.7 Chapter Summary

	6 Conclusion
	6.1 Introduction
	6.2 Contributions of Research
	6.3 Limitations
	6.4 Future directions
	6.4.1 Issues to be resolved
	6.4.2 Open questions

	6.5 Final remarks

	References
	A Protocols of UNSW-NB15 dataset
	B Features of NSL-KDD dataset

