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Abstract

A class of Hamiltonians that are experimentally feasible in several contexts within Quantum

Optics area and which lead to the so-called cooling by heating for fermionic as well as for bosonic

systems have been analyzed numerically. We have found a large range of parameters for which

cooling by heating can be observed either for the fermionic system alone or for the combined

fermionic and bosonic systems. Finally, analyzing the experimental requirements we conclude that

cooling by heating is achievable with nowadays technology, especially in the context of trapped

ions/cavity QED, thus contributing to understand this interesting and counter intuitive effect.
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Recently, two schemes were proposed for cooling by heating [1, 2], i.e., a given physical

system in contact with a thermal reservoir has decreased its energy when one increases the

temperature of the reservoir. A. Mari et al. [1] introduced the idea of cooling a quantum

system using incoherent thermal light. They proposed a scheme based on an optomechanical

system, demonstrating that by driving the system with a thermal noise the interaction with

other modes can be enhanced to assist in cooling the optomechanical system. In a another

work, B. Cleuren, B. Rutten, and C. Van den Broeck [2] proposed a scheme to cool a system

powered by photons. Their systems are based on a nanosized solid state device, with no

moving parts and no net electric currents, which can be refrigerated directly by using thermal

photons.

In this brief report we investigate numerically a class of well known Hamiltonians in the

quantum optics domain and show that these Hamiltonians can lead to cooling by heating.

Differently from both schemes above, which investigate the cooling by heating in solid state

or optomechanical devices, our work brings this striking effect to the quantum optics context

where techniques to manipulate systems at the individual atomic and bosonic scale is daily

presented, thus opening the possibility to experimentally observe this phenomenon in a very

controllable scenario.

Model. In order to find out a system which allows us to cool it by raising the tem-

perature of its reservoir, firstly we must note that all the systems which thermalize with

the environment can not present this phenomenon (for example a single two-level atom

or a single bosonic mode interacting with a thermal reservoir). Thus, to see cooling by

heating some external force must be employed to drive the system out of equilibrium with

the environment. To this end we explore the well known generalized anti-Jaynes-Cummings

model (JCM) (which will be derived bellow), in the coupling regime where the effective Rabi

frequency (atom-boson coupling) is much smaller than the bosonic and atomic transition

frequencies. To implement such Hamiltonians in the trapped ions domain, for instance, one

can use a two-level ion characterized by the transition frequency ω0 between the ground |g〉
and excited |e〉 states and trap frequency ν (bosonic mode) [3]. The transition |g〉 ↔ |e〉 is
driven by a classical field of frequency ωL, wave vector kL = ωL/c, and Rabi frequency Ω [3].

In the Schrödinger picture, the Hamiltonian which describes such a system reads (~ = 1)
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H = Hf +Ha +Hint (t), with Hf = νa†a, Ha = ω0σz/2 and

Hint (t) =
Ω

2
σ−e

i(kLx̂+ωLt) +H.c., (1)

σ+(σ−) being the usual raising (lowering) Pauli operator for a two-level atomic system,

σz = σ+σ− − σ−σ+, a (a†) is the annihilation (creation) operator in the Fock space for the

bosonic mode (vibrational motion of the ion), H.c. means Hermitian conjugate, kLx̂ =

ηL
(
a+ a†

)
, with ηL = kL/

√
2mν being the Lamb-Dicke parameter [3]. Working in the limit

ηL ≪ 1 and applying the rotating wave approximation, the Hamiltonian H in the interaction

picture can be written as [3]

HI = gk(σ−a
k + σ+a

†k), k = 0, 1, 2. (2)

By adjusting the frequency ωL on resonance with the two-level ion we can have the carrier

interaction (k = 0, g0 = Ω/2); adjusting δ = ωL − ω0 = kν, we can also have the first

(k = 1, g1 = iΩηL/2) and second (k = 2, g2 = −Ωη2L/4) blue sideband interactions [3]. The

quantum of vibrational energy of the center of mass of the ion is then described by a†a. In

quantum optics area, the dynamics of this model under Born and Markov approximations

(weak system-reservoir coupling) is provided by the master equation formalism [4], which

for the Hamiltonian (2) reads

∂ρ

∂t
= −i [HI , ρ] + κ (nth + 1)D[a]ρ+ κnthD[a†]ρ

+ γ (mth + 1)D[σ−]ρ+ γmthD[σ+]ρ (3)

where κ and γ are the spontaneous emission rates for the vibrational motion and internal

levels of the ion, respectively, nth (mth) is the mean number of phonons (photons) of the

reservoir coupled to the vibrational mode (internal levels of the ion), and D[A]ρ ≡ 2AρA†−
A†Aρ− ρA†A [5].

Below we proceed to solve numerically (or analytically, for the carrier interaction) this

master equation to obtain the steady state of the system (at t → ∞ or ∂ρ/∂t = 0), in

order to be able to calculate the corresponding thermodynamical properties. To this aim,

we firstly have to note that the master equation can give rise to an infinity set of coupled

differential equations for the elements of the density matrix of the whole system. Then, to

solve it numerically, first we must truncate the Fock basis of the bosonic field somewhere.

This truncation depends on the mean number of excitations in the vibrational mode, i.e.,
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the matrix elements corresponding to highly excited Fock states (compared to the mean

number of excitation of the vibrational mode) must be virtually zero. We then integrate

numerically the system of coupled differential equations for the elements of the density

matrix of the system following the method presented in [6]. As we are working with two

distinct reservoirs, there will be different response functions: one for the atom and another

for the vibrational mode [7]. Working with the Hamiltonian (2) we can distinguish three

situations where cooling by heating (i.e., by raising the temperature of the reservoir) can be

observed:

(i) looking at the variation of the internal energy of the ion only;

(ii) looking at the variation of the vibrational energy of the ion;

(iii) looking at the variation of both internal and vibrational energies of the ion.

Variation of the internal energy of the ion only. Firstly we assume a carrier interaction

(k = 0) in Eq.(2) which corresponds to a single two-level ion driven by a classical field.

Since the dynamics of the system does not involve the vibrational mode, we can fix κ = 0

without loss of generality. From Eq.(3), we can easily obtain the average internal energy

Ea = 〈H〉 = 〈Ha +HINT 〉 = 〈Ha〉 of the ion in the steady state as a function of the

mean number of thermal photons (temperature of the reservoir). Then we can calculate the

response function (Ca) of the internal energy with respect to the temperature of its reservoir

(T ) which we define as

Ca =
∂Ea

∂T
. (4)

This equation resembles the usual definition of specific heat. However, note that the tem-

perature appearing in the equation above is the one of the reservoir, which is different of the

effective temperature of the system since it is not in thermal equilibrium with its environ-

ment. With the steady state solution for the internal energy Ea, we can analytically derive

the response function

Ca = −2kBmth (mth + 1)

×
[
ln

(
mth + 1

mth

)]2 [
2 (g0/γ)

2 − (2mth + 1)2
]

[
2 (g0/γ)

2 + (2mth + 1)2
]2 , (5)

kB being the Boltzmann constant. Clearly, we see from Eq.(5) that Ca ≤ 0 for

mth ≤ 1√
2

g0
γ

− 1

2
. (6)
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Note that Ca → 0 when mth → 0 (similar to what occurs for the third law of thermody-

namics) or mth → ∞ (system saturation). For a sample of N non-interacting atoms [8], the

response function is CN = NCa and then, the negative response can be observed even for

an ensemble of two-level atoms.

Variation of the vibrational and internal energy of the ion. Considering the ion coupled

to the vibrational mode, we note that using the average energy of an individual system

instead of the total energy (sum of the subsystems and interaction average energies) does

not change our conclusions, since there is a region where the response function, Eq.(4),

becomes negative for both systems simultaneously and Tr (HIρ) = 0 in all cases studied

here, HI being the interaction Hamiltonian (2). To see that this is so, in Fig. 1(a) (k = 1)

and Fig. 2(a) (k = 2) we plot the stationary average energy for both the bosonic mode

(〈Hf〉 /ν) and the atomic system (〈Ha〉 /ω0). In all simulations we assumed zero atomic

energy in the lower state |g〉. To reliably calculate the region where cooling by heating can

occur, we have limited our numerical analysis to the range 0 ≤ gk, κ ≤ 2γ (k = 1, 2). Also,

in all figures, the average atomic energy was multiplied by a factor of ten for the sake of

clarity. Assuming the two reservoirs at a common temperature (mth = nth), first we set

κ = 0.1γ and g1 = 1.0γ in Fig. 1(a), and κ = 0.1γ and g2 = 0.2γ in Fig. 2(a). Remarkably,

note from those figures that there is a region where the response to the rising reservoir

temperature of both atomic and bosonic system is negative (falling energy), thus supporting

our assertion that cooling by heating can be observed even if we adopt a definition, different

from Eq.(4), taking into account the total energy. Also, note that the final temperature

of the bosonic system differs from that of its reservoir
(〈
a†a

〉
6= nth

)
, thus indicating the

existence of non-equilibrium steady states [7, 9]. It is important to mention that it is not

surprisingly to have a non-equilibriun steady state once the system is driven by an external

force (the external laser).

In Fig. 1(b) (Fig. 2(b)) we plot the response function versus nth to the bosonic and the

atomic systems for the model k = 1 (k = 2). Both figures show that cooling by heating for

the bosonic system can occur in a wider region than that for the atomic system.

Let us now explore the fact that the reservoirs for the atomic and bosonic systems can

have different mean number of thermal photons. This is particularly relevant for trapped

ion experiments since the transition frequency ω0 (of the order of few GHz) of the electronic

levels involved are usually much bigger than the frequency ν of the ionic motion (∼MHz)
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[10], resulting in different mean number of thermal photons for the electronic levels and ionic

motion for a given temperature. In Fig. 3(a) we show the behavior of the response function

for the atomic system when the mean photon number of the bosonic reservoir is fixed at

nth = 0.0, 1.0, 2.0, for the model k = 1, using the same parameters as those in Fig. 1. Note

that cooling by heating can occur when mth . 1 irrespective of the fixed nth. Fig. 3(b)

does the same for the model k = 2, with the parameters used in Fig. 2. Cooling by heating

can now occur when mth . 0.5.

It is noteworthy that when we fix the average number of thermal photons for the atomic

reservoir and investigate the behavior of the response function to the bosonic system as a

function of temperature, we do not see regions where cooling by heating can occur. Besides,

for the range of parameters used in our numerical simulations, we have found regions where

cooling by heating can occur in the atomic system for some values of the effective Rabi

frequency gk, irrespective of the ratio κ/γ.

On the other hand, to the system under study, to observe cooling by heating for the

bosonic system for some effective Rabi frequency gk, not only the reservoirs must have the

same average photon number (mth = nth) but the atomic decay must be stronger than

the bosonic mode decay, which our numerical simulations point to the ratio κ/γ . 0.3

for the model k = 1 and κ/γ . 0.4 for the model k = 2. In a first moment, one could

think that we should have the same response regardless the bosonic or the fermionic system,

once the equation of motion (3) is completely symmetric on the fermionic and on the bosonic

operators. However, the nature of those operators are completely different, i.e., the fermionic

operators are restricted to a two-dimension Hilbert space while the bosonic ones are in a

infinite Hilbert space. So, the physical difference is the number of accessible states of each

subsystem: the fermionic subsystem has only two accessible states and the bosonic subsystem

can access infinite states.

Experimental proposal : We now comment on the parameters appearing in the effec-

tive Hamiltonians discussed above and how cooling by heating could be observed with the

nowadays technology. In the trapped ions domain, for instance, Hamiltonians Eq.(2) were

obtained and used to engineer nonclassical motional states [3]. For the anti-JCM (k = 1)

and the so-called two-phonon anti-JCM (k = 2), the effective couplings are, respectively,

|g1| = |ηLΩ| /2 and |g2| = |η2LΩ| /4, where ηL is the Lamb-Dicke parameter and Ω is the

Rabi frequency of the classical field driving the two-level ion, which can easily be adjusted
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[3]. For the hyperfine ground states of a single 9Be+ ion, one can adjust ηL = 0.2, thus lying

in the Lamb-Dicke regime [10]. We note that typical starting values of the average number

of thermal phonons in the mode of interest are between 0 and 2 and the decay rate of the

vibrational motion of the ion can be much smaller than gk [11]. Thus, a trapped ion seems

to be an appropriate physical system to observe cooling by heating. The existence of cooling

by heating in this context provides an interesting and counter-intuitive application: the ion

motion can be reduced as the reservoir temperature increases. The anti-JCM can also be

engineered in a cavity QED setup [12]. As the usual atom-field coupling in the microwave

domain is λ ∼ 105s−1, the effective coupling for the anti-JCM can be g1 ∼ 103s−1 [12]. The

cavity decay rate κ ranges from 10s−1 to 102s−1 [13] and, therefore, we easily attain the

condition 0 ≤ gk/κ . 10. Taking into account realistic temperatures, the effective mean

occupation number at the microwave frequency has to be nth ∼ 0.7, according to QED

cavity experiments [14]. This mean number of thermal photons can be reduced down to 0.1

by sending atoms resonantly with the cavity mode to absorb the thermal field [14].

Conclusion. We studied a class of Hamiltonians well-known in the quantum optics do-

main and showed that cooling by heating can occur for a large range of parameters, including

some achievable by present day techniques. We numerically solve the master equation and

calculate the response function of the internal energy for systems interacting with a thermal

bath when varying their corresponding reservoir temperature: a) a single two-level atom (or

even a sample of N two-level atoms) driven by a classical field and b) a bosonic mode inter-

acting with a two-level ion/atom. We hope this work will trigger a search for experimental

verification of cooling by heating in the quantum optics area, thus strongly contributing to

understand this interesting and counter intuitive effect.
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Figure Caption

Fig. 1: (color online) (a) Average energy for atomic (〈Ha〉 /ω0 - dashed line (x10)) and

bosonic systems (〈Hf〉 /ν - solid line) versus a common mean number of thermal photons

nth = mth, for the model k = 1. (b) Response function versus mean number of thermal

photon. The cooling by heating can occur for mth = nth . 1.4 to the bosonic and mth =

nth . 0.9 to the atomic system. The parameters used are κ = 0.1γ and g1 = 1.0γ.

Fig. 2: (color online) (a) Average energy for atomic (dashed line (x10)) and bosonic

systems (solid line) versus a common mean number of thermal photons nth = mth, for the

model k = 2. The mean value of the interaction Hamiltonian HI (not shown in this figure)

is always zero. (b) Response function versus mean number of thermal photons. The cooling

by heating can occur for mth = nth . 1.2 to the bosonic and mth = nth . 0.4 to the atomic

system. The parameters used are κ = 0.1γ and g2 = 0.2γ.
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Fig. 3: (color online) Response function to the atomic system versus the average photon

number mth of its reservoir when fixing the average photon number of the bosonic reservoir:

nth = 0.0 (solid line), nth = 1.0 (dashed line) and nth = 2.0 (dotted line), for the model (a)

k = 1, using κ = 0.1γ and g1 = 1.0γ; and (b) k = 2, using κ = 0.1γ and g2 = 0.2γ.
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