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Abstract
Neuronal voltage-gated calcium channels play a pivotal role in the conversion of electrical signals into calcium entry into 
nerve endings that is required for the release of neurotransmitters. They are under the control of a number of cellular signaling 
pathways that serve to fine tune synaptic activities, including G-protein coupled receptors (GPCRs) and the opioid system. 
Besides modulating channel activity via activation of second messengers, GPCRs also physically associate with calcium 
channels to regulate their function and expression at the plasma membrane. In this mini review, we discuss the mechanisms 
by which calcium channels are regulated by classical opioid and nociceptin receptors. We highlight the importance of this 
regulation in the control of neuronal functions and their implication in the development of disease conditions. Finally, we 
present recent literature concerning the use of novel μ-opioid receptor/nociceptin receptor modulators and discuss their use 
as potential drug candidates for the treatment of pain.
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Abbreviations
VGCC   Voltage-gated calcium channel
OR  Opioid receptor
MOR  Mu opioid receptor
DOR  Delta opioid receptor
KOR  Kappa opioid receptor
NOP  Nociceptin receptor

Introduction

Calcium  (Ca2+) is a highly versatile signaling molecule 
that operates over a wide spatiotemporal range to regu-
late a plethora of cellular processes (Berridge et al. 2003). 

Among the various ion channels and receptors that allow 
the flux of  Ca2+ across cellular membranes, voltage-
gated  Ca2+ channels (VGCCs) represent one of the most 
important players by converting electrical signals into 
intracellular  Ca2+ elevations (Catterall 2011). VGCCs are 
pore-forming multisubunit complexes and are activated 
in response to electrical depolarizations of the plasma 
membrane to allow the entry of  Ca2+ along its electro-
chemical gradient. Among the ten genes that encode the 
pore-forming subunits of mammalian VGCCs, seven genes 
encode the high-voltage-activated channel subfamily that 
comprise L-type  (Cav1.1 to  Cav1.4), P/Q-type  (Cav2.1), 
N-type  (Cav2.2), and R-type  (Cav2.3) channels. In addi-
tion, three genes encode the low-voltage-activated sub-
family, the so-called T-type channels  (Cav3.1 to  Cav3.3) 
(for reviews see (Catterall 2011; Zamponi et al. 2015; 
Dolphin 2018b). At the structural level, the  Cav pore-
forming subunits of VGCCs share a similar membrane 
topology of four homologous domains, each made of 
six transmembrane helices (S1 to S6), and a re-entrant 
loop (P-loop) that comprises the pore of the channel and 
contains elements responsible for  Ca2+ selectivity (Wu 
et al. 2015, 2016; Zhao et al. 2019) (Fig. 1). These four 
transmembrane domains are connected via intracellular 
linkers (loops I–II, II–II, and III–IV) and are flanked by 

 * Gerald W. Zamponi 
 zamponi@ucalgary.ca

1 Institute of Organic Chemistry and Biochemistry, Czech 
Academy of Sciences, Prague, Czech Republic

2 Institute of Biology and Medical Genetics, First Faculty 
of Medicine, Charles University, Prague, Czech Republic

3 Department of Physiology and Pharmacology, Hotchkiss 
Brain Institute and Alberta Children’s Hospital Research 
Institute, Cumming School of Medicine, University 
of Calgary, Calgary, Canada

http://orcid.org/0000-0002-0040-1109
http://orcid.org/0000-0002-0644-9066
http://crossmark.crossref.org/dialog/?doi=10.1007/s10571-020-00894-3&domain=pdf


 Cellular and Molecular Neurobiology

1 3

cytoplasmic amino- and carboxy-terminal regions that 
serve as hubs for various regulatory pathways. In addition 
to the  Cav pore-forming subunit, high-voltage-activated 
channels associate with ancillary subunits (Fig. 1) includ-
ing the cytoplasmic β-subunit (β1 to β4) that belongs to 
the membrane-associated guanylate kinase family (Buraei 
and Yang 2010), the α2δ-subunit (α2δ1 to α2δ4), a highly 
glycosylated extracellular protein that remains bound to 
the plasma membrane (Dolphin 2018a), and in some cir-
cumstances the transmembrane γ-subunit (γ1 to γ1) (Black 
2003; Kang and Campbell 2003). These ancillary subu-
nits serve important functions ranging from channel traf-
ficking, subcellular membrane localization, and gating of 
the channel (Simms and Zamponi 2014; Campiglio and 
Flucher 2015).

Given the crucial importance of calcium ions, it is not 
surprising that VGCCs are under the control by several regu-
latory pathways that allow for the spatiotemporal regulation 
of the calcium signal. One of the most important regula-
tory mechanisms relies on heterotrimeric G-protein coupled 
receptors (GPCRs). In this mini review, we focus on the 
molecular mechanisms by which opioid receptors (OR) and 
nociceptin receptors (NOP) regulate VGCCs. We highlight 
the physiological importance of these regulations and their 
roles as therapeutic targets.

The Opioid Receptor Family

The existence of receptors for opiates was first proposed 
in 1954 based on structure–activity relationship studies 
of a series of synthetic opiates for antinociceptive activ-
ity (Beckett and Casy 1954). Additional structure–activity 
relationship analysis led to the notion that more than one 
OR type may exist in the mammalian nervous system (Por-
toghese 1965) and the existence of three ORs named after 
the prototypic drugs used was proposed: the μ receptor 
(mu for morphine, MOR), the κ receptor (kappa for keto-
cyclazocine, KOR), and the δ receptor (delta for deferens, 
DOR) (Lord et al. 1977). The three ORs were later cloned 
and in  vitro studies have confirmed that recombinant 
receptors have pharmacological profiles and functional 
characteristics consistent with their endogenous counter-
parts (Evans et al. 1992; Kieffer 1995; Kieffer et al. 1992). 
Subsequently, a search for related receptors by homology 
cloning led to the identification of the nociceptin receptor 
(NOP), initially called ORL1 (Mollereau et al. 1994) or 
LC132 (Bunzow et al. 1994), and named after its endog-
enous ligand nociceptin (Meunier et al. 1995).

In terms of their neuronal distribution, MOR is present 
throughout the nervous system where the highest density is 

Fig. 1  Diversity, composition 
and structure of voltage-gated 
calcium channels. a Diver-
sity of voltage-gated calcium 
channels. The high-voltage 
activated subfamily comprises 
 Cav1.x (L-type channels) and 
 Cav2.x (P/Q-, N- and R-types 
channels), while  Cav3.x (T-type 
channels) form the low-
voltage-activated subfamily. 
b Schematic representation of 
the calcium channel complex 
consisting of the  Cav pore-form-
ing subunit and β, α2δ and γ 
ancillary subunits. c Membrane 
topology of the  Cav subunit. 
Transmembrane segments 
depicted in brown constitute the 
voltage-sensor of the chan-
nel, whereas the extracellular/
re-entrant loops connecting seg-
ments S5 and S6 hold elements 
of the selectivity filter and pore 
permeation
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found in the thalamus, the caudate putamen, the neocortex, 
the nucleus accumbens, the amygdala, the interpeduncu-
lar complex, the inferior and superior colliculi (Mansour 
et al. 1987), and to a comparatively moderate extent in 
the periaqueductal gray and raphe nuclei (Hawkins et al. 
1988). MOR is also highly expressed in the dorsal horn 
of the spinal cord (Besse et al. 1990) where it mediates 
parts of the analgesic effects of MOR agonists. In contrast, 
DOR is discretely distributed in the central nervous sys-
tem with a gradient ranging from high expression levels 
in forebrain structures to relatively low levels in hindbrain 
regions (Mansour et al. 1987; Kitchen et al. 1997). In the 
spinal cord, DOR is present in the dorsal horn (Besse 
et al. 1990) (although in different neuronal subsets than 
MOR) where it also plays a role in mediating the analgesic 
effects of DOR agonists. KOR is located predominantly 
in the cerebral cortex, nucleus accumbens, claustrum and 
hypothalamus (Kitchen et al. 1997; Mansour et al. 1987) 
and has been implicated in several physiological functions 
including the central regulation of nociception. Finally, the 
NOP receptor is observed at relatively high densities in the 
cortex, the anterior olfactory nucleus, the lateral septum, 
the ventral forebrain, the hippocampus, the amygdala, the 
substantia nigra, the ventral tegmental area, the locus coer-
uleus, the brain stem nuclei, and also in the dorsal horn 
of the spinal cord (Neal Jr et al. 1999). This diffuse dis-
tribution in the central nervous system suggests a role for 
NOP receptors in several physiological functions including 
motor and aggressive behaviors, reinforcement and reward, 
as well as nociception.

An important feature in the functioning of ORs is their 
ability to form heterodimers. For instance, several OR inter-
acting complexes composed of MOR-DOR, MOR-KOR, 
and DOR-KOR have been described (Fujita et al. 2014). 
This association provides another layer of functional regula-
tion, best documented for MOR-DOR heterodimers where 
binding of DOR antagonists enhance the binding affinity 
for MOR agonists via an allosteric modulation, therefore 
enhancing morphine-induced analgesia (Fujita et al. 2014). 
The situation is however divergent for MOR-NOP heterodi-
mers where binding of NOP ligands rather reduces MOR 
signaling despite an increased MOR agonist affinity for the 
protomer (Pan et al. 2002). This aspect could potentially 
be exploited therapeutically and the agonist 3-iodobenzoyl 
naltrexamine (IBNtx-A) that is thought to act on MOR-NOP 
heterodimers has shown potent analgesic effects without the 
occurrence of usual side effects associated with classical 
MOR agonists (Majumdar et al. 2011). Another example are 
bivalent ligands that provide a bridge between two receptors 
and prevent their internalization. Such ligand composed of 
a MOR agonist (oxymorphone) and DOR antagonist (nal-
trindole) has shown analgesic activity with comparatively 

decreased development of tolerance and dependence (Dan-
iels et al. 2005; Lenard et al. 2007).

OR/NOP‑Dependent Regulation 
of Voltage‑Gated Calcium Channels

It is well established that VGCCs are potently regulated by 
a wide range of GPCRs including all OR and NOP recep-
tors. For instance, MOR, DOR, KOR, and NOP agonists all 
inhibit VGCCs. This regulation essentially affects the  Cav2 
subfamily  (Cav2.1,  Cav2.2, and to some extent  Cav2.3) and 
has been documented both on native and recombinant chan-
nels (Tsunoo et al. 1986; Morikawa et al. 1999; Carabelli 
et al. 1998; Toth et al. 1996; Bourinet et al. 1996; Schroeder 
et al. 1991; Berecki et al. 2016). Mechanistically, this inhibi-
tion occurs via activation of heterotrimeric G-proteins upon 
agonist binding, triggering the exchange of GDP from GTP 
from the Gα-subunit and the concomitant release of the 
Gβγ-dimer (Wettschureck and Offermanns 2005) (Fig. 2a, 
b). While the Gβγ-dimer can modulate several signaling 
pathways, it also interacts directly with the calcium chan-
nel (Fig. 2b) within a Gβγ-binding pocket formed by sev-
eral channel molecular determinants (essentially the I-II 
loop and the amino terminal region (Herlitze et al. 1996, 
1997; Zamponi et al. 1997; De Waard et al. 1997; Agler 
et al. 2005)), producing a gating switch from a “willing” 
to reluctant” state manifested by a hyperpolarized shift of 
the voltage-dependence of activation of the channel and a 
potent inhibition of the calcium current (Bean 1989). This 
is thought to occur predominantly through stabilization of 
the closed conformation of the channel (Patil et al. 1996; 
Jones et al. 1997). Additional alterations of the channel ion 
permeability may also partially contribute to the inhibitory 
effect of Gβγ (Kuo and Bean 1993). Furthermore, based on 
the observation that  Cavβ and Gβγ share similar channel 
binding determinants, it was proposed that dissociation of 
 Cavβ upon binding of Gβγ to the channel may contribute 
to induce the reluctant state of the channel (Sandoz et al. 
2004) although this notion has been challenged (Hümmer 
et al. 2003). Regardless of the exact molecular mechanisms 
underlying Gβγ-dependent inhibition of  Cav2 channels, an 
important feature is the observation that this inhibition can 
be overcome experimentally by strong membrane depolari-
zations which are believed to trigger the transient dissocia-
tion of the Gβγ moiety from the channel, which led to the 
concept of voltage-dependent inhibition (Ikeda 1991). Of 
physiological importance is the observation that significant 
recovery from Gβγ inhibition can also occur in response 
to bursts of action potential waveforms and may constitute 
a form of short-term synaptic plasticity sensitive to action 
potential timing and duration (Brody et al. 1997).
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Although G-proteins represent one of the primary 
mediators for OR/NOP receptor-dependent modulation of 
 Cav2 channels, several studies have documented the physi-
cal association of  Cav2.2 channels with NOP receptors in 
DRG neurons (Beedle et al. 2004), as well as with MOR 
and DOR expressed with recombinant  Cav2.2 channels in 
tsA-201 cells (Evans et al. 2010; Chee et al. 2008) (Fig. 2c, 
d). At least in the case of NOP receptors, this interaction is 
direct and occurs through the binding of the receptor with 
the carboxy-terminal region of the channel. The formation of 

GPCR-channel signaling complexes appears to serve several 
functions. First, it allows for a better functional coupling 
of the channel with the receptor (Bünemann et al. 2003). 
Indeed, Gβγ-dependent inhibition of the channel does not 
require a diffusible second messenger therefore indicating 
that the channel should be in close proximity with the recep-
tor in order for the regulation to occur. Second, the GPCR-
channel interaction serves as a means of control of the chan-
nel density in the plasma membrane (Fig. 2c, d). This aspect 
has been demonstrated for  Cav2.2-NOP complexes where 

a

Ca2+

b
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P

Src tyrosine kinase

d

e

forward
co-tra cking co-internalization
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GPCR VGCC

agonist

G-proteins phosphorylation

Fig. 2  Model for opioid receptor-dependent regulation of calcium 
channels. a Schematic representation of the opioid receptor, hetero-
trimeric G-proteins, and calcium channel in the absence of opioid 
agonist. b Activation of the receptor upon binding of an opioid ago-
nist triggers the release of G-proteins where binding of the Gβγ dimer 
directly onto the channel inhibits calcium influx (voltage-dependent 
inhibition). c Direct interaction of the receptor and the channel allows 

for a co-trafficking to the plasma membrane and provides another 
layer of control over the expression of the channel. d Consequently, 
receptor/channel interaction promotes agonist-dependent co-internal-
ization of the protein complex. e Activation of Gα initiates a cascade 
of downstream signaling events eventually leading to the phosphoryl-
ation of the channel by a Src tyrosine kinase and producing a voltage-
independent inhibition of the calcium current
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activation of the receptor produces an agonist-dependent 
internalization of the protein complex, providing an addi-
tional level of control over the  Ca2+ influx (Altier et al. 2006; 
Evans et al. 2010). Because this type of regulation involves 
the removal of channels from the plasma membrane it can-
not be overcome by membrane depolarizations. However, 
despite the notion that  Cav2.2 channels interact with MOR, 
they are not co-internalized in response to receptor agonist 
unless NOP receptors are also present, suggesting that bio-
chemical coupling of the channel with the receptor may not 
be sufficient to mediate agonist-dependent internalization of 
the channel (Evans et al. 2010). In addition to Gβγ-induced 
modulation, an additional Gα-mediated inhibition that 
relies on pp60c-src tyrosine kinase (Fig. 2e) has also been 
described (Raingo et al. 2007). This inhibition is insensitive 
to membrane depolarizations and is thus considered voltage-
independent. Ergo,  Cav2.2 channels undergo direct opioid 
receptor family-mediated voltage-dependent modulation by 
Gβγ, as well as multiple forms of voltage-independent regu-
lation by these receptors.

Role of Alternative Splicing 
in OR‑Dependent Regulation of  Cav2 
Channels

There are important differences in the ability of  Cav2 chan-
nel variants to respond to G-protein regulation. For instance, 
alternative splicing of exon 37 of  Cav2.2 channels produces 
two channel variants (exon 37a and exon 37b) that differ in 
their C-terminal region. Expression of exon 37a-containing 
channels is restricted to the dorsal root ganglia, preferentially 
in nociceptive neurons, while expression of exon 37b-con-
taining channels is widely found throughout the nervous 
system (Bell et al. 2004). Although Gβγ-induced voltage-
dependent inhibition is virtually identical for both chan-
nel variants, activation of tyrosine kinase inhibits channels 
containing exon 37a but not exon 37b (Raingo et al. 2007) 
(Fig. 2e), and this has been shown to enhance morphine-
induced analgesia in rodents (Andrade et al. 2010).  Cav2.1 
channel variants may also differ in their responsiveness to 
G-protein regulation. For instance, a mutation (R192Q) in 
 Cav2.1 associated with type-1 familial hemiplegic migraine 
(FHM-1) has been shown to hinder MOR agonist-induced 
voltage-dependent inhibition of the channel (Weiss et al. 
2008; Melliti et al. 2003). Although the underlying mecha-
nism by which this mutation alters G-protein regulation is 
not fully established, it was proposed that it may rely on its 
effect on the gating properties of the channel, especially on 
its voltage-dependent inactivation that appears to play an 
important role in the inhibition mediated by Gβγ (Weiss 
et al. 2007). In addition to splicing of the channel, a recent 
study reported that alternative splicing of the C-terminal 

region of MORs alters their ability to modulate  Cav2.2 chan-
nels (Gandini et al. 2019). Notably, coexpression of MOR1 
and MOR1C variants, with exon 37a-containing  Cav2.2 
channels produced a potent agonist-independent inhibition 
of the calcium current, a regulation that required Src tyrosine 
kinase. In contrast, this regulation was not observed when 
the channel was coexpressed with MOR1O, a short MOR 
C-terminal splice variant. Furthermore, none of the MOR 
variants were able to produce agonist-independent inhibition 
of exon 37b-containing  Cav2.2 channels. This highlights the 
notion that not only splicing of  Cav2.2 modulates the abil-
ity of the channel to undergo G-protein regulation, but also 
splicing of the receptor dictates the multiple facets of this 
regulation.

Harnessing OR Modulation of N‑Type 
Calcium Channels as Pain Therapeutics

Opioid receptors can be targeted in a range of neurological 
conditions such as depression and anxiety (Crowley et al. 
2016; Peciña et al. 2019) and this may involve modulation of 
a range of molecular targets in the CNS. On the other hand, a 
clear link has been established between opioid receptor ago-
nists and actions on  Cav2.2 channels in the context of pain 
relief.  Cav2.2 calcium channels are prominently expressed 
in afferent sensory fiber nerve terminals in the spinal cord, 
where they control the release of neurotransmitters such as 
substance P and glutamate (for review see (Bourinet et al. 
2014)). As discussed above, OR activation inhibits  Cav2.2 
channel activity, thus reducing the transmission of afferent 
pain signals (Heinke et al. 2011; Kondo et al. 2005; Bea-
udry et al. 2011). Opioids also contribute to analgesia at the 
level of higher brain centers (Diaz et al. 1995; Goodchild 
et al. 2004), where a functional link to  Cav2.2 channels has, 
however, not been clearly established. Although agonists of 
all types of OR have been shown to produce analgesia in 
preclinical models (King et al. 1997; Darland et al. 1998; 
Field et al. 1999; Courteix et al. 2004; Nozaki et al. 2012; 
Beck and Dix 2019; Conibear et al. 2020), clinically used 
opioid analgesics have so far predominantly been targeted 
towards the MOR subtype. While effective analgesics, MOR 
agonists such as morphine suffer from adverse effects, such 
as addiction, the development of tolerance, constipation, itch 
and respiratory depression. Novel compounds such as olicer-
idine/TRV130 are biased MOR ligands that prevent arrestin 
recruitment to the receptor, and show an improved therapeu-
tic window compared to morphine and efficacy in conditions 
of moderate to severe pain (Schmid et al. 2017). There are no 
clinically approved DOR agonists for the treatment of pain, 
and to our knowledge only one clinically used analgesic that 
targets KOR (i.e., pentazocine, (Gear et al. 1996)). This is 
mostly due to CNS side effects such as sedation, dysphoria, 
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and motor problems. However, bivalent agonists that use a 
linker molecule to combine oxymorphone (a MOR agonist) 
and naltrindole (a DOR antagonist) have been developed, 
and have been shown to result in reduced development of 
tolerance and reduced reward seeking in preclinical models 
of pain (Daniels et al. 2005; Lenard et al. 2007). In addi-
tion, efforts have been made to selectively target peripheral 
KOR (Beck and Dix 2019). One such compound (JT09) is 
highly efficacious as an analgesic without the development 
of CNS effects.

So far, there are also no clinically approved analgesics 
that target the NOP receptor. In rodents, supraspinal effects 
of nociceptin have been reported to be hypernociceptive, 
whereas they produce analgesia at the spinal level. In con-
trast, a number of NOP receptor agonists have been shown 
to have analgesic effects in non-human primates even when 
delivered systemically [for review see (Lin and Ko 2013)]. 
Compared with opioids, these agonists do not appear to suf-
fer from the development of itch, sedation, dependence or 
constipation. The dual targeted MOR/NOP agonist Cebrano-
padol (Linz et al. 2014) has successfully completed phase 
II clinical trials for chronic low back pain [oral delivery; 
(Christoph et al. 2017)]. This compound has also shown 
efficacy in a phase II trial against cancer pain (Koch et al. 
2019). AT121 is also a MOR/NOP dual ligand that has been 
shown to mediate analgesia in non-human primates (Ding 
et al. 2018). Although the in vivo pharmacological activity 
of these various OR targeting compounds would fit with an 
inhibitory action on  Cav2.2 channels expressed in the affer-
ent pain pathway, there is to date no unequivocal evidence 
that these channels are the most critical downstream effector 
of OR family agonists. While alternative splicing of  Cav2.2 
modulates the analgesic effects of morphine in rodents 
(Jiang et al. 2013; Andrade et al. 2010), we are not aware 
of studies that have examined the effect of opioid agonists 
such as morphine in  Cav2.2 null mice. Instead, it is impor-
tant to note that ORs act on other molecular targets that are 
expressed in the afferent pain pathway, such as G-protein 
coupled inwardly rectifying potassium (GIRK) channels 
(Ikeda et al. 2002; Marker et al. 2004, 2005) and TREK 1 
channels (Devilliers et al. 2013). That said, a contribution of 
 Cav2.2 inhibition to the analgesic effects of clinically used 
and preclinically developed OR agonists is consistent with 
the notion that direct inhibition of these channel by selective 
peptide-based blockers mediates pain relief in both animals 
and humans [see (Zamponi et al. 2015)].

Concluding Remarks

Since the pioneering work by Dunlap and Fischbach in the 
late 1970s reporting the first evidence that voltage-gated cal-
cium channels are regulated by G-protein coupled receptors 

(Dunlap and Fischbach 1978, 1981), tremendous progress in 
the understanding of basic processes and molecular interac-
tions that govern the regulation have been made. This has led 
not only to a greater understanding of their mechanisms of 
action and physiological importance, but also to the develop-
ment of novel pharmacopeia. Much work remains to be done 
to further clarify the role of OR heterodimerization, their 
trafficking to and from the plasma membrane with regard to 
the calcium channels, and to explore the extent and diversity 
of channel and receptor splice variants and their respective 
functional relationship. Nonetheless, all these aspects offer 
a tremendous opportunity for selective pharmacological 
manipulation with the potential to provide new generations 
therapeutics devoid of the usual side effects associated with 
classical opioid agonists.
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