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Abstract— It may come as no surprise that a simple “planar
unicycle” (or “skate”) model can successfully follow a wall at
high speed under PD-control. What would be surprising is that
such a simple control mechanism may underly the control
of one of Nature’s fastest terrestrial insects, the American
cockroach. For this paper, we implemented the same controller
(up to scale) believed to govern cockroach wall following to
successfully control two models of the cockroach: a differential-
drive mobile robot with a flexible artificial antenna and a lateral
leg spring model with moving center of pressure as the control
input. These physical and numerical experiments demonstrate
the sufficiency of the cockroach’s putative controller in a real-
world setting with unmodeled effects, and suggest how the
nervous system might guide leg placement in response to
sensory stimuli. This hierarchy of models may prove useful
in generating prescriptive hypotheses for biological testing and
hence elucidating the general principles that underly sensor-
guided animal locomotion.

I. INTRODUCTION

American cockroaches (Periplaneta americana) can run
up to 1.5 m/s (or 50 body lengths/s), even changing their
gait to bipedal in order to achieve high speeds [9]. When
they encounter a wall, they typically run along it using their
antenna to regulate their distance from the wall. They are
capable of tracking a zigzagged wall of up to 25 turns/s [3].
Biologists and engineers alike are interested in understand-
ing the fundamental mechanisms that underlie such agility.
Specifically, we are interested in how cockroaches process
sensory data from their antenna for control of locomotion.

One approach to this problem has been a bottom-up
approach: fit kinematic data to a synaptically-interconnected
gross neural network model of biologically-relevant neurons.
Chapman and Webb [5] implemented such a neural circuit
on a mobile robot where IR sensors were used as the
robot’s “antenna”; their robot exhibited an escape response
followed by a wall-following response, much like that of
a cockroach. However, the sheer complexity of the neural
network hampers any formal mathematical analysis (e.g.,
stability analysis) on their neural controller. In addition, the
absence of the robot’s mechanical parameters (e.g., body
mass and inertia) in the overall modeling process may
produce synaptic weights that may not reflect the animal’s
actual neural controller [6].

In this paper, we use an alternative, top-down approach:
find the simplest control law (in the classical control theory
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sense) that abstractly models the cockroach’s neural con-
troller. This approach elucidates the general functions of the
neural network as a whole, allowing one to predict how
actual neural signals may look [6], [7]. Of course, the models
we present in this paper are behavior specific, and thus do not
capture the complex dynamics—such as switching between
escape response and wall following—that may emerge out
of more elaborated neural-network-based models [5].

We utilize the notion of templates and anchors [8] to sys-
tematically formulate the synthesis of sensory, body, and neu-
ral controller dynamics; such formulation makes the model
amenable to formal mathematical analyses. A template is
the simplest model that captures a specific behavior, while
an anchor is a more complex, representative model of the
behavior. Templates and anchors are not just “simple models”
and “complex models”; there must be a natural embedding
of the template behavior within the anchor [8]. For example,
horizontal plane locomotion in sprawled-posture animals,
such as many insects, is well characterized by the lateral
leg-spring (LLS) template because the animal’s center of
mass (COM) bounces side-to-side [23]–[25]. In this paper,
we consider multiple levels in a template-anchor hierarchy
(shown in Fig. 1) and show (1) how they are “connected” to
each other and (2) biological predictions one can generate
from each level in the hierarchy.

In Section II, we briefly review the simplest template for
high-speed wall following proposed by Cowan et al. [7]:
antenna-based planar unicycle (APU) (see Fig. 1). Using
classical control theory, they show that P-control is not
sufficient for stable wall following. For their experiments the
next simplest control law, PD-control, most parsimoniously
accounts for the data.

In Section III, we consider one anchor for the APU model:
our mobile robot with an artificial antenna (see Fig. 1).
We first discuss the design of the antenna as well as its
construction. Then we show the analytical embedding of the
APU model in the Garcia robot model. Using the principle
of similitude, we map the best-fit parameters from the
cockroach ethological experiments to the robot’s parameters
and control gains; the robot exhibits stability without any
parameter tuning. The success of our trials demonstrates
the sufficiency of the PD-controller in a real-world setting
with unmodeled effects including a flexible antenna and its
friction with the wall. In addition, our result supports Camhi
and Johnson’s [3] claim that the sensors at the base of the
cockroach antenna may not be necessary in the high-speed
wall following.

In Section IV, we consider another anchor for the APU
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Fig. 1. Our research program involves multiple levels of modeling, robotic experimentation, ethology, and neurophysiology. In this paper, we present a
sequence of antenna-based wall following models of increasing complexity, and at each stage make predictions about both robot and biological performance.
Here, we present three models: the APU (Section II), a model for our Garcia robot (Section III), and the antenna-based LLS (ALLS) (Section IV). Importantly,
each level of modeling admits the same control structure, including parameters (up to scale). The two physical systems involved in this study are the Garcia
robot and an actual American cockroach. Eventually, we plan to extend our modeling effort to more elaborated anchors, such as the planar, multi-legged
model proposed by Seipel et al. [28], or the spatial SimSect model developed by Saranli et al. [20] of RHex [21]. As well, we plan to extend our
experimental robotics work to include a RHex-like six legged robot, endowed with an artificial antenna.

model: antenna-based lateral leg spring (ALLS) model (see
Fig. 1). Here we also show, numerically but not formally, the
embedding of the APU model within the ALLS. From this,
we ask how might such a simple control mechanism, namely
PD-control with an antenna, be implemented on a legged
mechanism? We show that antenna-based feedback-driven
placement of the center of pressure (COP) of the LLS model
enables us to control the LLS to follow along a wall using
a virtual antenna, with no modification of the control gains
used for the lower-dimensional template model. This analysis
suggests new biological experiments, and should lead to new
control strategies for legged robots such as RHex [1], [21],
Sprawl [4], or Whegs [19].

II. REVIEW: ANTENNA-BASED PLANAR UNICYCLE
(APU)

In this section, we briefly review the mathematical setup
by Cowan et al. [7]. They modeled the high-speed wall
following of P. americana as a planar unicycle with polar
moment of inertia, and the antenna is assumed to measure d
(see Fig. 2) where d = ` tan θ + y sec θ.

Cowan et al. proposed the PD-control law shown in Fig. 3.
This yields the closed-loop model:

ẏ = v∗ sin θ,

θ̇ = ω,

ω̇ = −αω−KP (d− d∗)−KDḋ︸ ︷︷ ︸
u

, (1)

where α = B/J , J is polar moment of inertia, B is damping
coefficient, and u is the inertia-scaled polar moment that the
cockroach must generate in order to turn [11]. They obtained
parameters (`, α, KP , KD) by fitting (1) to biological high-
speed wall-following data; their fitted parameter values are
given in Table I (first row). Using classical control theory,
Cowan et al. showed that P-control is not sufficient for stable
wall following and that the next simplest control law, PD-
control, most parsimoniously accounts for the data.
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Fig. 2. (Adapted from [7]) (A) Depiction of a cockroach following a
straight wall. (B) Unicycle model of the running cockroach: ` is the look-
ahead distance; d is the antenna measurement; v∗ is the forward running
speed which is assumed to be constant; θ, is the angle of the cockroach
body relative to the wall (note that θ < 0 in this figure).
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Fig. 3. (From [7]) Block diagram of simplified control model. The
“mechanics” box represents the torsional dynamics. The “sensing” box is a
simplified model of the antenna sensing kinematics. Cowan et al. [7] fit a
simplified neural controller (in the dashed box) to their experimental data;
d∗ is a nominal “desired” wall-following distance.

III. ARTIFICIAL ANTENNA AND DIFFERENTIAL-DRIVE
ROBOT

In this section, we use a mobile robot (Garcia, Fig. 5)
as a test platform to support the efficacy of using the
APU as a template model for the high-speed wall-following
cockroach; we integrate our flexible antenna with a robot
that has the same dimensionally-scaled parameters as P.
americana. Anchoring the APU model within a physical
system demonstrates the sufficiency of the PD controller
suggested by Cowan et al. [7] in a real-world setting with
unmodeled effects.

A. Antenna Design

Both mammalian whiskers and arthropod antennae in-
spired past work in robotic tactile sensing. In whiskers—an
evolutionary adaptation of hairs—the length of the hair is
unsensorized; thus a typical whisker-inspired probe consists
of a flexible, cantilevered beam sensed solely at its base



[12], [17], [26], [31]. Arthropod antennae, by contrast, are
complex, multimodal sensory structures containing mechan-
ical, chemical (e.g., humidity and pheromone), and thermal
receptors [27], and can inspire new sensory systems in
robotics [2], [14], [16].

We designed and built an artificial antenna (Fig. 4) to pro-
vide tactile feedback to our mobile robot. The design is based
on our observations of real cockroaches and their antennae
while wall following as well as those suggested by others [3],
[22], [27], [29]. These observations and their implications
toward our design are briefly summarized as follows. (1) We
integrated a series of flex sensors (cut from Abrams Gentile
4” FlexSensors) along the length of the antenna in order
to obtain local curvatures of the antenna; P. americana may
also detect the bend of each segmental joint via campaniform
sensilla [27]. (2) Arthropod’s flagellum decreases in stiffness
along its length [29], allowing the antenna to conform to
a broad range of surface irregularities as it sweeps along;
we tapered our antenna to give a continuously decreasing
stiffness along its length. For added stiffness we added a rigid
support structure in the middle of the antenna (see Fig. 5).
(3) Since the flex sensors are unidirectional, we cast the tip
of the antenna with a curve to prevent the tip of the antenna
from bending (pointing) forward (Fig. 4(D)). (4) For the
robot to predict what is coming ahead, we rigidly clamped
the base of our antenna to the robot at about 35◦ from
heading; cockroaches similarly hold the base of their antenna
at a relatively fixed angle during rapid wall-following (see
Fig. 8(D)).

The raw data provided by the antenna consists of an
amplified voltage output, Vi, from each flex sensor. To extract
the distance to the wall d from the voltage outputs, we
performed least-squares fit.1 Here we do not consider the
two proximal flex sensor measurements; the high stiffness
near the base of the antenna and the addition of the support
structure in the middle of the antenna have limited their
motions and did not contribute significantly to the calculation
of d. The omission of the most proximal sensory data is
consistent with Camhi and Johnson’s [3] experiment that
distance can be encoded by distal receptors in the flagellum
without the sensory data from the base.

B. Review: Model of the Garcia with an Antenna

Our physical instantiation of the unicycle-like robot is
called Garcia (Acroname, Inc.) shown in Fig. 5. It is a
three-wheeled robot, with two drive wheels sharing the same
axis of rotation and a third passive omni-directional wheel,
with zero caster sweep space, for balance. This machine was
used previously by Lamperski et al. [14] to demonstrate the
feasibility of wall following using a multi-rigid-link antenna
as its distance sensor.

1We placed the antenna (attached to our robot) against a wall parallel to
the body of the robot and recorded outputs from each flex sensor as we
varied d. We then placed the robot at a 30◦ angle to the wall and read
the outputs from the flex sensor while we varied d. Finally, we applied a
least-squares fit to the data to obtain the parameters a ∈ R2, b ∈ R for the
affine relationship d = aT V + b.
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Fig. 4. An overview of the cast urethane antenna construction process.
(A) We cut the flex sensors into 2.5 cm lengths and attach wire leads to
both ends of each flex sensor using conductive epoxy as shown on the left-
most gauge. (B) Next we arrange the two wires from each gauge to run
behind the other gauges down to the base, ensuring they will remain within
the neutral bending axis during normal operation. (C) We then slide the
gauges and wires into a heat-shrink tube and shrink it leaving ample room
for the wires to move freely. At the base, the wires are soldered to a single
header which plugs into custom amplifiers on the robot. (D) We slide the
assembly into a pre-shaped (by heating until soft, forming, then cooling)
Tygon rubber tube. We fill the Tygon tube with a two-part urethane casting
compound using a vacuum pump and allow it to cure for 48 hours prior
to calibration. Finally we wrap Teflon tape along the antenna to reduce the
friction between the antenna and the wall.

Fig. 5. The cast urethane antenna with embedded flex sensors mounted
on the Garcia robot.

Following the similar characterization of the feedback
stability as Lamperski et al., we have


ẏ

θ̇

Σ̇
v̇
ω̇

 =



v sin θ
ω

v − v∗

−γv−KV (v − v∗)−KIΣ︸ ︷︷ ︸
u1

−αω−KP (d− d∗)−KDḋ︸ ︷︷ ︸
u2


, (2)

where α and γ account for the robot’s electrical and me-
chanical parameters such as back-EMF constant and wheel
moment of inertia. The only difference between (2) and that
of Lamperski et al. is that they use ω instead of ḋ in the
feedback law u2. Linearizing the system at its equilibrium
point (y, θ,Σ, v, ω) = (d∗, 0,−αv∗/KI , v

∗, 0) reveals that
the system is stable exactly when

KV > −γ, KI > 0,

KP > 0, KD > −α

`
,

KD

KP
v∗ >

v∗

α + KD`
− `,

(3)

where γ, α, v∗, ` > 0. Notice that the conditions for forward



TABLE I
PARAMETER VALUES FOR P. americana AND THE GARCIA.

v∗ ` α KP KD

(m/s) (m) (m−1s−2) (m−1s−1) (s−1)

P. americana 0.352 0.027 12.7 2600 433
Garcia 0.5 0.139 3.53 39.16 23.49

stability—which are constraints on KV and KI—are decou-
pled from the conditions on rotational stability—which are
constraints on KP and KD.

C. Dynamically-Scaled Parameters of P. americana for the
Garcia

We found the necessary parameters for the Garcia using
the principle of similitude; the APU’s torsional dynamics
equation (1) and the last row of (2) are identical, namely
they are of the form

ω̇ = −αω −KP (d− d∗)−KDḋ, (4)

where α, KP , and KD are known quantities for the cock-
roach [7]. Since we know α for the robot as well [14],
selecting two fundamental units, v and `, leads to the
following dimensionless ratios:

α̃ =
α`

v∗
, K̃P =

KP `3

v∗ 2
, K̃D =

KD`2

v∗
. (5)

Setting the desired velocity for the Garcia to 0.5 m/s and
assuming α̃ to be constant, we calculated the dimensionally-
scaled look-ahead distance for the Garcia. Then we found
values for KP and KD in the similar way. The calculated
values are shown in bold in Table I (second row).

D. Experiments

The experimental setup for the Garcia was similar to that
of the cockroach behavioral experiment by Cowan et al. [7].
The robot followed a wall that consisted of a straight control
wall (to allow the robot to reach its steady state) and an
angled wall to act as a “step” perturbation to the internal
state, θ. We used the parameter values for the Garcia shown
in Table I with KV = 1 s−1 and KI = 1 s−2. This set of
parameters satisfied the stability conditions (3).

All 30 trials at v∗ = 0.5 m/s with the 30◦ angled wall
demonstrated successful turning (e.g., Fig. 8(B)). Our some-
what arbitrary choice of speed gains (KV ,KI ) produced
substantial oscillations in the forward speed (Fig. 6(A)), but
nevertheless reached steady state speed within about two
seconds and did not imperil wall-following performance.

From our experiments we noticed a few undesirable behav-
iors. First, the robot followed the wall with a constant error
in d (Fig. 6(B)). We believe that this was caused by the non-
negligible force produced by the antenna against the wall.
One remedy to this problem would be to either introduce an
integral controller or design the antenna to be less stiff (the
latter solution would be more consistent with the biology).
Second, the figure shows that flex sensors 3 and 4 (E, F) did
not return to their original configuration after encountering
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Fig. 6. The Garcia’s internal states during a trial with parameters from
Table I. (d∗ = 0.17 m, v∗ = 0.5 m/s) (B,D) were obtained from the
overhead camera images. (B) shows the raw (thin) and lightly filtered (thick)
d values; the Garcia used the filtered d and ḋ in (4). (E,F) show raw voltages
from the respective amplifiers for flex sensors; hence, they are shown for
their qualitative forms.

the angled wall. One possible explanation could be that there
is a range of “stable” configurations of the antenna for a
given d due to friction, memory effects, etc. A reasonable
calibration can cope with this as suggested by the fact that the
Garcia was able to follow the wall successfully after making
the turn despite the drift. Third, the Garcia failed to navigate
turns of angles greater than 40◦. We believe this problem will
be addressed through the design of more flexible antennae
with more appropriately tapered mechanical stiffness.

E. Biological Implications from Robotics Experiments

Experiments performed on a robotics platform can guide
researchers in generating, refuting, and supporting biologi-
cal hypotheses [10]. We see two such instances from our
experimental result. First, the success of our trials supports
Cowan et al.’s [7] work by demostrating the sufficiency of
the PD-controller in a real-world setting with unmodeled
effects including a flexible antenna and its friction with
the wall. Our result also supports Camhi and Johnson’s [3]
claim that turning, in cockroach wall following, is mediated
predominantly by the flagellum and not necessarily the base
of the antenna; our robot controller uses only the two most
distal flagellar segments of an antenna without the flex sensor
data from the base of the antenna.

IV. THE ANTENNA-BASED LATERAL LEG SPRING
(ALLS)

In the previous models, APU and the Garcia, the control
input was literally the torque applied to the body through
continuous actuation. What is less clear, however, is how
might the simplest wall-following model (APU, Section II)
be embedded in more elaborated anchors. Further, can we
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Fig. 7. (Adapted from [15]) Illustration of multi-step dynamics and its
equivalent representations of the LLS model; legs are not shown for clarity.
Inset: A schematic of the LLS model at the start of a left step; [a1, a2]T

is the location of the COP written in {B}.

glean from such an embedding how a PD signal might
be applied to control stride-to-stride dynamics in a legged
organism? Here we present first steps toward answering these
questions by adding antenna-based control to the Lateral Leg
Spring model of cockroach running.

A. Review: The LLS Model

Inspired by Kubow and Full’s model [13], Schmitt and
Holmes introduced the lateral leg spring model [24], [25];
it is a horizontal template model to study running sprawl-
postured animals that exhibit lateral oscillations during each
stride. The model is a rigid body on a frictionless surface that
has two massless, spring-loaded, telescoping legs as shown
in Fig. 7 (inset). The legs attach to the body at a point called
center of pressure (COP) (parameterized by a1 and a2), and
they can rotate freely about that point. Cockroaches run in
a tripod gait; hence, in effect, each virtual leg represents the
three stance legs. For ease of explanation, we only consider
a left step; the right step dynamics is a reflection of the left
step dynamics along the x-axis in {U} (Fig. 7).

At the start of a left step, the left leg affixes its foot to
the ground with leg base angle β0 and relaxed leg length l0.
Due to the body’s initial velocity, the leg gets compressed
while rotating about its foot and the COP. The compressed
leg generates a counter force to the body along the leg and
its attachment point to the body at the COP. As the body
moves ahead of the foot contact point, the spring starts to
decompress and pushes the body forward. When the left leg
returns back to its relaxed length l0, the left leg lifts off and
the right leg touches down (at an angle −β0) simultaneously,
and the right step ensues.

For a2 = 0, Schmitt and Holmes [24] have shown that
if a1 < 0, δ (relative heading: the direction of the COM
velocity relative to the body angle) and ω (angular velocity)
are asymptotically stable; if a1 > 0, they are unstable; if
a1 = 0, they are neutrally stable. That is, they have shown
that the body mechanics alone can stabilize the LLS system
without any active feedback control! However, having a fixed
COP on the fore-aft axis yields yaw dynamics that do not
match that of actual biological data. Schmitt et al. [23]
resolved the issue by moving the COP during a step. An

alternative, slightly simpler solution was proposed by Lee et
al. [15]: place the COP laterally offset to the side, i.e., have
a2 = −const < 0 for a left step and a2 = const for a right
step. They have shown that the LLS model is stable even
when the COP is placed in front of the COM (a1 > 0) as
long the COP is sufficiently offset to the side.

For task-level control of the multi-stride dynamics, we use
the notation used by Lee et al. [15] and represent discrete
state evolution by

qk+1 = f(qk, uk) := MfL(qk, uk), (6)

where M = diag {−1,−1,−1,−1} (MM = I), qk =
(δ, θ, θ̇, y)T

k , and uk is the control input at k-th step. Here,
they were able to omit states x and v due to translational
symmetry and conservation of energy. fL and fR are maps
for a left and right step, respectively (see Fig. 7). The
matrix M mirrors the states about the x-axis. Then the above
definition eliminates the need to distinguish between left and
right steps for control purposes.

B. Antenna-Based LLS (ALLS) Control Strategy

In this section, we discuss our approach to controlling the
LLS model, and discuss how it relates to other models in our
hierarchy (Fig. 1). As a preliminary control task, we chose
to have the LLS follow on top of a line or a virtual “wall”
that is coincident with the x-axis in {U}.

To achieve task-level control, we use the same antenna
model that measures d and ḋ as in previous sections. In
addition, we found the LLS parameters that best represented
the data collected for [7] of P. americana; see Fig. 8(C) cap-
tion for the the parameter values. From those assumptions,
we numerically linearized the return map around a nominal
equilibrium trajectory2 (denoted by an overbar ( · )), to obtain
the local return map

ek+1 = Aek + Buk, zk = Cek (7)

where A = (∂f/∂q)(q, 0), B = (∂f/∂u)(q, 0), C =
(∂h/∂q)(q, 0), ek = qk − q, zk = [dk − d, ḋk − ḋ]T ,
uk := a1,k, and h = [d, ḋ]T . We used a1 rather than a2

as our control input because the gradient of the eigenvalues
is greater in the direction of x-axis than y-axis of {B}
[15]; a small displacement in a1 should give us a greater
control than that of a2. In addition, updating the control input
on every step rather than throughout a step resonates with
the notion that due to the inherent mechanical stability, it
puts less demand on the neural feedback [8]. The Kalman
rank test showed the system (7) to be both controllable and
observable.3

2We used Levenberg-Marquardt method in Matlab’s fsolve function to
find the equilibrium point; while fixing the state v to a desired value, the
function minimized the error difference of a step, f(q)− q. We found the
step-to-step return map Jacobian, A, about the equilibrium point using a
central difference approximation. [15]

3Lee et al. [15] controlled their LLS model using a linearized feedback
controller where, unlike this paper, (1) they used the LLS parameters for
the death-head cockroach (Blaberus discoidalis); (2) they assumed that
cockroaches can measure the states h = [δ, ω, d]T ; and (3) they found
the controller gains (without being biologically relevant) only to make the
linearized system stable.



Here we make several approximations to the ALLS model
to simplify control and connect the ALLS to a simpler
model in our research program (Fig. 1). The third row
of the linearized discrete dynamics (7) for parameters for
P. americana can be written as

ωk+1−ωk = −(1.96)ωk− (1.07)(δk− δ)+(616.5)uk. (8)

The eigenvalue associated with the relative heading, δ, is
quite fast (λδ = 0.24), and our simulations confirm that δk−δ
was at least an order of magnitude smaller than the other
terms during transients. So we approximate (8) by neglecting
δk − δ and approximate ω̇ ≈ (ωk+1 − ωk)fs, where fs =
12 Hz (unpublished stride frequency data from [7]) is the
stride frequency. Thus, we rescale the input and approximate
(8) with a continuous-time system,

ω̇ ≈ −αω + u′, (9)

where α ≈ 23.5 and u′ ≈ (7398)uk. This equation mirrors
the unicycle model (1), and despite the fairly crude approxi-
mations, the coefficient α ≈ 23.5 in the LLS approximation
(9) is within the confidence intervals of the fitted parameters
for α in cockroaches (Table I). Also note that the u in (1) is
a moment (scaled by inertia), whereas in the ALLS model,
the control input is the COP position. Hence the coefficient
multiplying the control uk in (9) has been absorbed into u′

for comparison purposes.
The similarity between the two equations, although a

rough approximation, has revealed the possibility that the
same control structure, u′ = −KP d − KDḋ, with the same
parameters that were fitted to the cockroach and applied to
the Garcia model, may be applicable to the ALLS. Using
these gains have yielded closed loop system of ek+1 =
(A + BKC)ek with all of its eigenvalues (−0.60 ± j0.10
and −0.23± j0.50) inside the unit circle.

Simulation for this controller using the parameters for
P. americana is shown in Fig. 8(C). In this control law, COP
lies nominally along the body y-axis, namely a1 = 0 and
a2 = −3 mm (for the left step); the feedback controller
varies the COP in the a1 direction and the value for a1 is
saturated to ±7 mm.

C. Toward a Motor Control Strategy for Sensor-Based Task-
Level Maneuvering in Legged Runners

The most parsimonious controller sufficient to stabilize
high-speed wall following in the APU model is a continuous
PD-controller mapping antenna measurements to a contin-
uous moment about the COM. Above, we show that this
control law applies with essentially no modification to the
control of a legged running model, ALLS, by mapping sensor
values to the COP position during each step. The next step
from this work is to find evidence in running animals that
links the actual COP motion to the sensory stimulus. The ex-
perimental paradigm would consist of cockroaches following
along a wall with perturbations [3], [7], while individual leg
forces and kinematics are measured to recover COP motions
[30]. Together, these data can be used to approximate the
mapping from antennal measurements to COP motions. From

the above modeling, we hypothesize that the motion of the
COP from step to step is governed by a PD controller,
whose parameters are given in Table I. Looking further,
increasingly anchored models which represent cockroach
kinematics with increasing biofidelity can be used to tease
apart the contributions of individual legs during turning [11],
again within our template-anchor research program. With this
biological understanding, we will be poised to create bio-
inspired control strategies for hexapedal robots that shift the
COP based on sensory stimuli.

V. CONCLUSION

Our research program (Fig. 1) integrates models and
experiments at several levels of complexity, from the simple
3 degree-of-freedom (DOF) APU, up to the animal itself
with orders of magnitude more mechanical DOFs. The result
is a multifaceted view (Fig. 8) of one of the most extraor-
dinary reflex-driven locomotor behaviors ever studied [3]:
high-speed antenna-based wall following in the American
cockroach.

While it may come as no surprise that a wheeled robot
can successfully follow a wall at high speed under PD-
control, it is surprising that such a simple control mechanism
may underly the control of one of Nature’s fastest terrestrial
insects [18]. This paper presents evidence from several levels
of mathematical models and robotics experiments that just
such a mechanism may be in place. Along the way, we
constructed a cockroach-inspired tactile sensor that can be
used for new robotics applications, and to test new biological
hypotheses. Future iterations of this reciprocal inspiration
of biology, modeling, and robotics promise to continue
elucidating the principles that underly biological control, and
lead to the design of dynamic, maneuverable legged robots.
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