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    Abstract—As  accessing  computing  resources  from  the  remote
cloud  inherently  incurs  high  end-to-end  (E2E)  delay  for  mobile
users, cloudlets, which are deployed at the edge of a network, can
potentially mitigate this problem. Although some research works
focus  on  allocating  workloads  among  cloudlets,  the  cloudlet
placement aiming  to  minimize  the  deployment  cost  (i.e.,  consist-
ing of both the cloudlet cost and average E2E delay cost) has not
been  addressed  effectively  so  far.  The  locations  and  number  of
cloudlets  have  a  crucial  impact  on  both  the  cloudlet  cost  in  the
network and average E2E delay of users. Therefore, in this paper,
we propose the Cost Aware cloudlet PlAcement in moBiLe Edge
computing  (CAPABLE)  strategy,  where  both  the  cloudlet  cost
and average E2E delay are considered in the cloudlet placement.
To solve  this  problem,  a  Lagrangian  heuristic  algorithm  is  de-
veloped  to  achieve  the  suboptimal  solution.  After  cloudlets  are
placed  in  the  network,  we  also  design  a  workload  allocation
scheme to minimize the E2E delay between users and their cloud-
lets by  considering  the  user  mobility.  The  performance  of  CAP-
ABLE has been validated by extensive simulations.
    Index Terms—Cloudlet placement,  mobile  cloud  computing,  mo-
bile edge computing.

I.  Introduction

R ECENT  mobile  applications,  such  as  augmented  reality,
on-line  gaming,  and  image  processing,  are  computation-

intensive  while  the  resource  of  battery  powered  mobile
devices remains limited. Mobile Cloud Computing (MCC) [1]
is introduced to offload user tasks to a centralized data center
via Internet and thus reduces the task execution time and en-
ergy consumption of users. However, the cloud is usually re-
motely located  and  far  away  from  its  users,  and  thus  inher-
ently incurs a long end-to-end (E2E) delay between a user and
the cloud. Although this E2E delay may meet the demands of
some applications such as web browsing,  it  is  unbearable for
many  delay  sensitive  applications  such  as  augmented  reality
and on-line gaming [2]–[4]. Hence, the concept of cloudlets is
employed to reduce the user E2E delay by moving the remote
cloud resources to  the network edge [5]–[7].  Since cloudlets,
which are tiny versions of data centers, are generally placed at
access points in the network that are close to users, users can

access the computing resources with a lower E2E delay [8].
Although  the  cloudlet  concept  is  a  promising  technique  to

reduce user E2E delay, how to place cloudlets to minimize the
E2E delay as well as the cloudlet cost in the network has not
been  addressed.  The  budget  of  a  cloudlet  provider  is  always
limited.  The  cloudlet  cost  of  a  cloudlet  mainly  comes  from
renting a site and installing a certain number of servers, which
indicate  the  capacity  of  the  cloudlet.  As  site  rentals  are
geographically  dynamic,  and  thus  the  location  of  a  cloudlet
poses  a  significant  impact  on  the  cloudlet  cost.  Meanwhile,
once  the  location  of  a  cloudlet  is  decided,  the  cloudlet
provider  still  needs  to  determine  how  many  servers  (i.e.,  the
amount of computing resources) to be installed in the cloudlet,
according to the user density (i.e., workload density) near the
cloudlet.  Thus,  the  cloudlet  cost  of  a  cloudlet  provider
depends  on  the  locations  and  quantity  of  cloudlets  and  their
servers.  In  addition,  when  placing  the  cloudlets,  the  cloudlet
provider  should  ensure  a  low  E2E  delay  between  users  and
their  cloudlets to improve the quality of experience (QoE) of
MCC applications.  It  can  be  observed  that  users  can  achieve
lower  E2E  delay  from  cloudlets  in  their  physical  proximity
than  from  cloudlets  far  away.  The  E2E  delay  of  users  is
determined by the location and quantity of cloudlets and their
servers.  On  one  hand,  if  cloudlets  with  high  capacities  are
deployed  at  some  strategic  positions  (i.e.,  regions  with  high
user  density),  more  users  are  able  to  access  the  computing
resources in their proximity, thus reducing the total E2E delay
in  the  network.  On  the  other  hand,  the  number  of  cloudlets
also affects the total E2E delay of users. If more cloudlets are
placed in the network, each user is more likely to access to a
closer  cloudlet,  thus  incurring  the  lower  E2E  delay  between
the user and its cloudlet.  In the extreme case, when cloudlets
are  placed  at  every  base  station  (BS),  most  of  users  can  be
served  by  their  local  cloudlets,  which  are  attached  to  their
BSs,  and  the  cloudlet  network  can  thus  provision  the  lowest
E2E delay between users and their cloudlets.

A  cloudlet  provider  aims  to  minimize  the  cloudlet  cost
while improving the quality of experience (QoE) for its users,
in terms of the E2E delay between users and their cloudlets. In
this  case,  only  optimizing  the  cloudlet  cost  or  E2E  delay
cannot  meet  the  cloudlet  provider's  objective.  Therefore,  we
propose the Cost Aware cloudlet PlAcement in moBiLe Edge
computing  (CAPABLE)  strategy  to  optimize  the  tradeoff
between  the  cloudlet  cost  and  average  E2E  delay  between
users and their cloudlets. Below are major contributions of the
paper.

η
●  The  proposed  CAPABLE  strategy  adopts  a  tradeoff

coefficient  to  balance  the  weight  of  the  cloudlet  cost  and

 
Manuscript received December  7,  2018;  revised February 2,  2019;  accep-

ted March 27, 2019. This work was supported in part by the National Science
Foundation  (CNS-1647170).  Recommended  by  Associate  Editor  MengChu
Zhou. (Corresponding author: Qiang Fan.)

Citation: Q. Fan and N. Ansari, “On cost aware cloudlet placement for mo-
bile edge computing,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 4, pp. 926–937,
Jul. 2019.

Q. Fan and N. Ansari are with Advanced Networking Lab, Department of
Electrical  and  Computer  Engineering,  New  Jersey  Institute  of  Technology,
Newark, USA (e-mail: qf4@njit.edu; nirwan.ansari@njit.edu).

Color versions of one or more of the figures in this paper are available on-
line at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JAS.2019.1911564

926 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 6, NO. 4, JULY 2019



η

η

average E2E delay in the cloudlet placement. If  is large, the
strategy  tends  to  place  cloudlets  at  the  sites  with  low rentals
and  deploy  as  few  servers  as  possible.  In  contrast,  if  is
small,  the  proposed  strategy  focuses  on  the  average  E2E
delay, and thus tends to place a large number of cloudlets and
servers in the network.

● We have proved that the cloudlet placement is an NP-hard
problem.  Hence,  we  design  a  Lagrangian  heuristic  algorithm
to obtain the sub-optimal solution.

●  After  cloudlets  are  placed  in  the  network,  with
consideration  of  user  mobility  in  the  network,  we  design  a
dynamic  workload  allocation  scheme  to  distribute  users'
virtual  machines  among  cloudlets  in  each  time  slot  to
minimize the E2E delay between the users and their cloudlets.

The  remainder  of  this  paper  is  organized  as  follows.  In
Section II, we briefly review related works. In Section III, we
illustrate  the  cloudlet  network  architecture  and  describe  the
system  model.  In  Section  IV,  we  formulate  and  analyze  the
cloudlet  placement  problem.  In  Section  V,  the  CAPABLE
algorithm is proposed to obtain the suboptimal solution of the
cloudlet  placement  problem.  In  Section  VI,  the  dynamic
Avatar (i.e., virtual machine) allocation scheme is proposed to
minimize the E2E delay in different time slots by considering
the  user  mobility.  Section  VII  shows  the  simulation  results,
and concluding remarks are presented in Section VIII.

II.  Related Works

As the cloud is usually physically far away from their users,
offloading  tasks  from users  to  the  remote  cloud  suffers  from
prohibitively  long  latency  and  increases  the  burden  of  the
network  [1].  This  can  be  especially  problematic  for  mobile
applications  where  the  response  time  is  critical  to  their  user
experience, such as augmented reality applications and on-line
games.  Recently,  many  studies  have  proposed  to  utilize
cloudlets  deployed  at  the  network  edge  to  reduce  the  E2E
delay  between users  and  their  computing  resources,  and  thus
improve  the  performance  of  MCC  applications.  Tawalbeh et
al. [9]  proposed  a  mobile  cloud  computing  model  to  run  the
big  data  applications  in  cloudlets  rather  than  remote  clouds.
Quwaider  and  Jararweh  [10]  proposed  a  cloudlet-based
wireless  body  area  network.  The  huge  amount  of  data
generated  by  the  users  are  transmitted  to  a  nearby  cloudlet
through  WiFi.  The  nearby  cloudlet  stores  and  processes  the
data  streams  locally  to  reduce  the  latency  as  well  as
communications  power  consumption  as  compared  to  the
traditional  cloud-based  wireless  body  area  network.
Satyanarayanan et  al. [11]  proposed  the  GigaSight
architecture to perform the video processing in local cloudlets
to  reduce  the  latency  while  saving  the  bandwidth  of  core
networks. Sun and Ansari [12] proposed a profit maximization
virtual  machines  (VMs)  placement  strategy  for  mobile  edge
computing,  referred  to  as  PRIMAL,  which  makes  a  tradeoff
between the E2E delay reduction and migration overheads by
selectively  migrating  VMs  to  their  optimal  cloudlets.  In
addition,  Sun et  al. [13],  [14]  proposed  a  green  cloudlet
network architecture, where all cloudlets are powered by both
green  energy  and  on-grid  energy.  To  minimize  the  on-grid
energy  consumption,  users'  designated  VMs  are  migrated  to

cloudlets with excessive green energy while ensuring low E2E
delay for users.

K

K

η

Although  the  research  on  cloudlets  has  recently  received
much  attention,  few  has  addressed  the  cloudlet  placement
problem, which poses a crucial  impact on the E2E delay.  Xu
et  al. [15],  [16]  formulated  a  capacitated  cloudlet  placement
problem and placed  capacitated cloudlets to some strategic
locations to minimize the average E2E delay between mobile
users  and  their  cloudlets.  Jia et  al. [17]  proposed  a  model  to
place  cloudlets  in  the  network  and  realize  the  load
balancing among the cloudlets to minimize the response time
of  users.  However,  the  above  works  only  minimize  the  E2E
delay  by  placing  a  certain  number  of  cloudlets,  without
considering the cloudlet cost and E2E delay at the same time.
Moreover,  these  works  assume  that  the  cloudlet  capacity  of
each  cloudlet  is  given  before  the  cloudlet  placement.  In
contrast,  another  work  [18]  determines  the  locations  of
cloudlets  and  their  servers  based  on  each  BS’s  workload  by
jointly  considering  the  cloudlet  cost  and  average  E2E  delay.
As  compared  to  existing  studies,  this  paper  presents  several
enhancements.  First,  we  have  proposed  the  cloudlet  network
architecture, where each user is assigned a dedicated VM (i.e.,
an  Avatar)  to  process  its  own data  and  applications.  Second,
we  consider  the  average  E2E  delay  of  users  as  well  as  the
cloudlet cost in the cloudlet placement and adopt a coefficient
 to adjust their tradeoff relationship. Third, when placing the

cloudlets, we not only choose strategic locations for cloudlets,
but  also  determine  the  optimal  number  of  cloudlets.  Fourth,
when  the  number  and  locations  of  cloudlets  are  decided,  we
also determine the optimal number of servers (i.e., the cloudlet
capacity)  for  different  cloudlets  based  on  the  geographical
user density around them. Fifth, considering the user mobility,
we  have  proposed  the  dynamic  Avatar  allocation  scheme  to
optimize  the  locations  of  all  the  Avatars  in  each  time  slot  in
order to minimize the E2E delay for all users during the time
slot.

III.  System Model

A  cloudlet  network  architecture  is  illustrated  in Fig. 1,
where  cloudlets  are  collocated  with  some  selected  BSs.
Meanwhile,  the  software  defined  network  (SDN)  based
cellular  network  is  employed  as  the  cellular  core  network  to
provide  efficient  and  flexible  communications  paths  between
BSs  [19],  [20].  Meanwhile,  mobile  providers  offer  seamless
wireless communications between a user and its BS, and thus
each  user  can  access  its  BS  and  then  connect  to  a  nearby
cloudlet.  Based on the  geographical  distribution  of  users,  the
numbers  of  servers  in  cloudlets  are  different  (i.e.,  the
capacities of cloudlets are different).  In the cloudlet network,
each user is mapped to a specific Avatar in a cloudlet (i.e.,  a
designated  VM  for  the  user),  which  only  runs  task  requests
offloaded  from  the  corresponding  user.  An  Avatar  is  a
software clone of a user and always offers service to the user
wherever  it  moves  [14],  [21].  We  assume  that  every  user's
Avatar is homogeneous (i.e., the configurations of Avatars are
the  same)  although  the  workloads  of  Avatars  are  different.
Also, the computational resources of every server is the same,
and  thus  each  server  is  assumed  to  accommodate  the  same
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number of Avatars.
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Denote  as the set of potential sites of cloudlets; denote 
as the set of BSs; denote  as the set of users. To indicate the
locations  of  cloudlets  in  the  network,  a  binary  variable  is
introduced  to  represent  whether  a  cloudlet  is  placed  at  site 
(i.e., ) or not (i.e., ). For brevity, we define cloudlet
 as the cloudlet located at site . Meanwhile, we denote  (i.e.,

a  non-negative  integer  variable)  as  the  number  of  servers
installed  in  cloudlet ,  and  thus  should  not  exceed  the
maximum number of servers in cloudlet , which is denoted as
. Note that if no cloudlet is deployed at site  (i.e., ), 

will  also  be  zero.  The  key  notations  of  this  paper  are
summarized in Table I.

A.  Cloudlet Cost Model
When  cloudlet  providers  decide  to  deploy  a  cloudlet  at  a

BS, they have to rent a facility (site),  whose cost depends on
the  geographical  location,  and  then  install  the  basic
equipment. Thus, this part of the cloudlet cost is considered as
the fixed cost, which is decided by the location of the cloudlet.
In addition, cloudlet providers also need to install servers into
a cloudlet to provide computing resources. Given the price of
a server, the cost of servers in a cloudlet, which is considered
as the dynamic cost, just depends on the number of servers in
the  cloudlet.  Therefore,  the  cloudlet  cost  in  the  cloudlet
network consists of the fixed cost and the dynamic cost, which
can be expressed as

Pi =
∑
i∈I

fiyi+
∑
i∈I
ξizi (1)

fi i ξi
i

where  is  the  fixed  cost  of  a  cloudlet  at  site  and  is  the
price of a server at cloudlet .

B.  E2E Delay
When  a  request  of  a  mobile  user  is  sent  to  a  cloudlet,  the

request  goes through its  BS and the SDN-based cellular  core
network.  Therefore,  the  E2E  delay  between  a  user  and  its
Avatar consists of two parts: first, the E2E delay between the
user and its associated BS, i.e., the wireless delay; second, the

τki k i
τki

E2E  delay  between  the  BS  and  the  cloudlet  that  hosts  the
user's  Avatar.  However,  changing  the  locations  of  cloudlets
does not affect the wireless delay, which only depends on the
user's  service  plan  and  the  mobile  provider's  bandwidth
allocation strategy [22]. Thus, we just consider the E2E delay
between the BS and cloudlet in this paper (i.e., the E2E delay
between  a  user  and  its  Avatar  is  defined  as  the  E2E  delay
between its BS and the cloudlet that hosts its Avatar). Denote

 as the E2E delay between BS  and cloudlet . The value of
 can  be  measured  and  recorded  by  the  SDN  controller

[23], [24].
As  we  know,  mobile  user  movement  often  follows  a

repetitive pattern, i.e., a user usually commutes among several
places such as home, workplace and gym for most of the time

 

TABLE I  
List of Symbols

Symbol Definition

I Set of potential sites of cloudlets.
K Set of BSs.
J Set of mobile users.
xi j j iBinary variable of user ’s Avatar being assigned to cloudlet .
yi iBinary variable of a cloudlet being placed at site .

zi iNumber of servers installed in cloudlet .
fi iFixed cost of a cloudlet at site .
ξi iPrice of a server at cloudlet .
di j j iAverage E2E delay between user  and cloudlet .
γ Weight of the average E2E delay in the objective function.
η Tradeoff coefficient.
p jk j kOccurrence probability of user  in the coverage of BS .
µ j Lagrangian multipliers.
LB Lower bound of the original problem.

UB Upper bound of the original problem.

J1 Set of users whose Avatars are waiting to be allocated.
I1 Set of cloudlets that can still host at least one more Avatar.
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Fig. 1.     Cloudlet network architecture.
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j i

of  one  day  [17],  [25].  In  this  case,  we  can  estimate  the
occurrence probability of users in different BSs, based on the
historical data of user movements [21]. Thus, the average E2E
delay between user  and cloudlet  can be expressed as

di j =
∑

k

p jkτki (2)

p jk j
k

where  is the occurrence probability of user  in the cover-
age of BS .

xi j j
i xi j = 1

xi j = 0 d j j

Denote  as  a  binary  variable  indicating  whether  user 's
Avatar  is  located  at  cloudlet  (i.e., )  or  not  (i.e.,

);  denote  as  the  average  E2E delay  between  user 
and its Avatar; then, we have:

d j =
∑
i∈I

xi jdi j. (3)

IV.  Problem Formulation and Analysis

p

ρ

A  cloudlet  provider,  in  placing  cloudlets,  has  to  consider
two issues: cloudlet cost and average E2E delay [26]. On one
hand, the average E2E delay between users and their Avatars
should  be  minimized  to  improve  the  QoE  of  mobile
applications. Hence, a cloudlet provider should place as many
cloudlets  as  possible  in  the  cloudlet  network,  thus  enabling
each user's Avatar to be allocated to a nearby cloudlet.  If  the
number  of  cloudlets  and  their  capacities  are  increasing,  the
average  E2E delay  of  users  will  be  reduced accordingly.  We
assume  the  maximum  number  of  cloudlets  in  the  network
allowed  by  cloudlet  providers  is .  On  the  other  hand,  the
cloudlet  provider  aims  to  minimize  the  capital  expenditures
(CAPEX) in deploying cloudlets, i.e., placing fewer cloudlets
on suitable positions.  Thus,  only optimizing the cloudlet  cost
or  the  average  E2E  delay  cannot  meet  the  provider's
requirement.  Therefore,  we  design  the  Cost  Aware  cloudlet
PlAcement in moBiLe Edge computing (CAPABLE) strategy
to  optimize  the  tradeoff  between  the  cloudlet  cost  and  the
average  E2E  delay.  In  this  paper,  the  deployment  cost  of  a
cloudlet network is defined as the sum of the cloudlet cost and
the average E2E delay cost. Denote  as the deployment cost;
we have

ρ =
∑
i∈I

fiyi+
∑
i∈I
ξizi+γ

∑
i∈I

∑
j∈J

xi, jdi, j. (4)

γNote that  is  the  weight  of  the  average E2E delay,  and is
modeled as follows:

γ =

∑
i∈Imax

fi+ ξie∑
j
dJ j

× 1−η
η
. (5)

dJ j j
J j

p Imax
p

|Imax| = p
∑

i∈Imax fi+ ξie
p

Imax
e

∑
j dJ j

Here,  indicates the largest average E2E delay for user ,
where  cloudlet  is  the  farthest  cloudlet  for  user .
Furthermore,  the  maximum  number  of  cloudlets  in  the
network allowed by cloudlet providers is ; let  be the set
of  sites  with  the  highest  rental  costs  in  the  network  (i.e.,

 ).  Thus,  represents  the  maximum
cloudlet cost of the network by deploying  cloudlets at sites
in  and each cloudlet has the maximum number of servers
(i.e., ). Meanwhile,  represents the largest average E2E
delay of all users (i.e., when each user is served by its farthest

η η ∈ (0,1).
η

η

cloudlet).  In  order  to  set  different  tradeoff  relations  between
the  cloudlet  cost  and  average  E2E  delay,  we  introduce  a
tradeoff coefficient , where  Increasing the value of
 would reduce the weight  ratio  of  the average E2E delay to

the cloudlet cost, and encourage the cloudlet provider to place
fewer cloudlets. Thus,  is used to adjust the tradeoff between
the  cloudlet  cost  and  average  E2E  delay,  and  can  be  chosen
between  0  and  1  via  experiments  based  on  the  cloudlet
provider's practical requirements.

The objective of the CAPABLE strategy is to minimize the
deployment  cost  of  a  cloudlet  network.  Consequently,  we
formulate the problem as follows:

P1 : min
xi jyizi

∑
i∈I

fiyi+
∑
i∈I
ξizi+γ

∑
i∈I

∑
j∈J

xi jdi j (6)

s.t.
∑
i∈I

xi j = 1 ∀ j ∈ J (7)

∑
j∈J

xi j ≤ szi ∀i ∈ I (8)

zi ≤ eyi ∀i ∈ I (9)∑
i∈I

yi ≤ p ∀i ∈ I (10)

xi j ∈ {0,1} ∀i ∈ I ∀ j ∈ J (11)

yi ∈ {0,1} ∀i ∈ I (12)

zi ≥ 0 integer ∀i ∈ I. (13)
s

e
i

Here,  is the capacity of a server in terms of the number of
Avatars, and  is the maximum number of servers in cloudlet
.  Constraint  (7)  ensures  that  the  Avatar  of  each  user  is

assigned  to  only  one  cloudlet.  Constraint  (8)  imposes  the
number  of  Avatars  hosted  by  a  cloudlet  not  to  exceed  the
maximum  number  of  Avatars  in  the  cloudlet.  Constraint  (9)
imposes  the  number  of  servers  in  a  cloudlet  to  be  no  more
than  the  maximum  number  of  servers  in  the  cloudlet.
Constraint (10) imposes the number of cloudlets not to exceed
the maximum number of cloudlets in the network.

Lemma  1: The  cloudlet  placement  problem  (i.e.,  P1)  is  an
NP-hard problem.

ξi pProof: Suppose  the  price  of  a  server  (i.e., )  is  zero; 
equals the total number of BSs in the network. Therefore, P1
can be transformed into:

R1 : min
xi jyizi

∑
i∈I

fiyi+γ
∑
i∈I

∑
j∈J

xi, jdi j (14)

s.t.
∑
i∈I

xi j = 1 ∀ j ∈ J (15)

∑
j∈J

xi j ≤ seyi ∀i ∈ I (16)

xi j ∈ {0,1} ∀i ∈ I ∀ j ∈ J (17)

yi ∈ {0,1} ∀i ∈ I. (18)
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Obviously,  the  above  problem  R1  is  a  capacitated  facility
location  problem,  which  is  a  well  known  NP-hard  problem
[27].  Thus,  the  capacitated  facility  location  problem  is
reducible to the problem P1, i.e., P1 is NP-hard. ■

V.  CAPABLE Algorithm

Some  studies  have  shown  that  Lagrangian  relaxation  is  an
efficient  algorithm  to  solve  the  capacitated  facility  location
problem [28], [29]. Thus, we design the CAPABLE algorithm
(i.e.,  a  Lagrangian  heuristic  algorithm)  to  place  cloudlets  to
suitable sites. The basic idea of the algorithm is to iteratively
improve the lower  bound (LB) and upper  bound (UB) of  the
original problem by the subgradient method. In each iteration,
given  a  sequence  of  Lagrangian  multipliers,  the  LB  can  be
obtained  by  solving  a  Lagrangian  relaxation  problem.  Based
on the solution of the Lagrangian relaxation problem, the UB
can  be  obtained  by  a  heuristic  algorithm.  Then,  the
subgradient  method  is  used  to  adjust  the  Lagrangian
multipliers  based  on  the  UB  and  LB.  When  the  Lagrangian
multipliers are updated in each iteration, the gap between the
UB and LB becomes smaller, i.e., the solution is approaching
the optimal one.

A.  The Lower Bound
We can derive the following Lagrangian relaxation problem

by relaxing Constraint (7) of P1:

LR : {g(µ) = min
xi jyizi

∑
i∈I

fiyi+
∑
i∈I
ξizi+γ

∑
i∈I

∑
j∈J

xi jdi, j

+
∑
j∈J
µ j

1−∑
i∈I

xi j


s.t. Constraints(8), (9), (10), (11), (12), (13), (19)
µ j j ∈ J µ j ≥ 0where  ( , ) are Lagrangian multipliers. When the

Lagrangian multipliers  are  given,  the optimal  objective value
of  the  Lagrangian  relaxation  problem  becomes  a  LB  on  any
feasible solution of the original problem (i.e., P1).

|I|

We first  ignore  Constraint  (10).  Then,  for  any given set  of
multipliers,  it  can  be  observed  that  LR  can  be  decomposed
into  subproblems, i.e., one for each cloudlet site. Thus, for
each site, we have

LRi : gi = min
xi jyizi

fiyi+ ξizi+
∑
j∈J

(γdi j−µ j)xi j (20)

s.t.
∑
j∈J

xi j ≤ szi (21)

zi ≤ eyi (22)

xi j ∈ {0,1} ∀ j ∈ J (23)

yi ∈ {0,1} (24)

zi ≥ 0 integer. (25)
i Λi = {Λi j| j ∈ J}

Λi j =min{γdi j−µ j,0}
i zi i

zis Jizi ∀i ∈ I

For  each  cloudlet ,  define  vector ,  where
. Given the number of servers in cloulet

 (i.e., ), the capacity of cloudlet  in terms of the number of
Avatars  is ;  thus,  we  define  a  user  set  ( ,

0 ≤ zi ≤ e i |Jizi | = zis {Λi j| j ∈ Jizi }
zis Λi

Ψizi = ξizi+
∑

j∈Jizi
Λi j Ψi = {Ψizi |0 ≤ zi ≤ e}

Ψi Ψ ∗izi
z
′
i

LRi
min{ fi+Ψ ∗izi

,0}

) for cloudlet , where  and  is
composed  of  smallest  elements  of .  Furthermore,  let

;  we  define  vector ,
where  the  minimum  value  in  is  denoted  as and  the
corresponding number of servers is . It can be observed that
the  optimal  objective  value  of  of  can  be  expressed  as

.
Φ = {Φi|i ∈ I} Φi =min{ fi+Ψ ∗izi

,0}

p I′ {Φi|i ∈ I
′ }

p Φ

Define  vector ,  where .
Since the maximum number of cloudlets allowed by cloudlet
providers is , we define a cloudlet set , where  is
composed of  smallest elements of .

µ = {µ j| j ∈ J}Lemma 2: For a given set of multipliers ,  the
optimal  solution  of  the  Lagrangian  relaxation  problem  (i.e.,
LR) can be expressed as follows:

∀i ∈ I,y∗i =
{

1, fi+Ψ ∗izi
< 0; i ∈ I′

0,otherwise
(26)

∀i ∈ I,z∗i = z
′
iy
∗
i , (27)

∀i ∈ I, x∗i j =

{
1,γdi j−µ j < 0 ; j ∈ Jizi′ ;y∗i = 1,
0,otherwise

(28)

i y∗i
µ = {µ j| j ∈ J}

LRi y∗i = 1
y∗i = 0 y∗i = 1 LRi

Proof: For  each  cloudlet  site ,  can  equal  1  or  0  for  a
given  set  of .  Hence,  to  validate  (27)  and  (28),
we only need to consider two cases for each  (i.e.,  or

). In the first case, , and thus the problem  can
be transformed into:

Ki : κi =min
xi jzi
ξizi+

∑
j∈J

(γdi j−µ j)xi j (29)

s.t.
∑
j∈J

xi j ≤ szi (30)

zi ≤ e (31)

xi j ∈ {0,1} ∀ j ∈ J (32)

zi ≥ 0 integer. (33)
zi e zi

Ki

As we know,  can be selected from 0 to . For any fixed ,
the problem  can be transformed into the following.

Mi : κi =min
xi j

∑
j∈J

(γdi j−µ j)xi j (34)

s.t.
∑
j∈J

xi j ≤ szi (35)

xi j ∈ {0,1} ∀ j ∈ J . (36)
Mi γdi j−µ j < 0

j j
xi j = 1 i

szi szi
Jizi szi Λi j min{γdi j−µ j,0}

Λi Mi∑
j∈Jizi

Λi j zi

i xi j = 1
γdi j−µ j < 0& j ∈ Jizi

In  order  to  optimize  the  problem ,  if ,  it  is
beneficial  to  allocate  user 's  Avatar  to  cloudlet  (i.e.,

).  Since  the  capacity  of  cloudlet  site  in  term  of  the
number of Avatars is ,  we need to select  users (i.e.  the
user  set )  with  smallest  (i.e.,  )  in

. Thus, the optimal objective value of  can be expressed
as .  Consequently,  in  the  first  case,  for  a  certain 
of  cloudlet ,  we  can  derive  only  if

.
y∗i = 1 zi i eAs we know, when ,  of cloudlet  varies from 0 to .
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zi Mi
Ki

Ψizi = ξizi+
∑

j∈Jizi
Λi j z∗i

z∗i = argmin
zi
Ψizi Ψ ∗izi

Ψi zi′ z∗i
z∗i = z

′
iy
∗
i

For each , based on the optimal solution of Problem , the
objective  value  of  Problem  can  be  expressed  as

.  Thus,  the  optimal  can  be  achieved
by .  As  is  denoted  as  the  minimum value
of  and  is the corresponding number of servers,  can be
expressed as .

y∗i = 0 z∗i x∗i j
z∗i z∗i = z

′
iy
∗
i

In the second case, ; thus, both  and  should be set
as 0. Specifically,  can be expressed as . Therefore,
(27) and (28) have been proved.

Ki Ψ ∗izi
y∗i = 1

LRi fi+Ψ ∗izi
y∗i = 1 fi+Ψ ∗izi

< 0
LRi

Φi =min{ fi+Ψ ∗izi
,0}

LR LR
p

Φi p Φ
i ∈ I′ fi+Ψ ∗izi

< 0 y∗i = 1 y∗i = 0

Since the optimal objective value of  is , if , the
objective  value  of  is ,  and  0,  otherwise.  It  is
beneficial  to  set ,  only  if .  Hence,  the
minimum  objective  value  of  can  be  derived  as

.  At  this  time,  to  achieve  the  optimal
solution  of ,  we  should  consider  Constraint  (10)  of ,
which is the limitation of the number of cloudlets (i.e., ). In
other  words,  if  is  within  of  smallest  values  of  (i.e.,

) and , ; otherwise, . Thus, (26) is
validated.

LR

Φi LRi
Î

Î = {i|y∗i = 1, i ∈ I}
LR

After obtaining the optimal solution of  by Lemma 2, we
still  need  to  derive  its  optimal  objective  value.  As  we  know,

 is  the minimum objective value of  the problem  based
on its  definition.  Denote  as  the set  of  the selected cloudlet
sites,  i.e., .  Consequently,  the  minimum
objective value of , which is a LB of the original problem,
is expressed as:

LB =
∑
i∈Î

Φi+
∑
j∈J
µ j. (37)

■
B.  The Upper Bound

Y∗ = {y∗i |i ∈ I} Z∗ = {z∗i |i ∈ I}

Y∗ Z∗ ∑
i∈I xi j > 1∑

i∈I xi j = 0

The  Lagrangian  relaxation  problem  yields  the  LB  of  the
original problem. However, the solution may not be a feasible
solution with respect to the original problem, i.e.,  the relaxed
Constraint  (7)  may  not  be  satisfied.  Specifically,  by  solving
the  Lagrangian  relaxation  problem,  we  obtain  a  cloudlet
vector  and  a  server  vector .
However, the cloudlet capacity in the network, corresponding
to  and ,  may  be  insufficient  to  host  all  users'  Avatars.
Furthermore,  without  constraint  (7),  some  users'  Avatars  are
allocated to  multiple  cloudlets  (i.e., ),  while  some
are  not  allocated  to  any  cloudlet  (i.e., ).  Hence,
based on the result  of the Lagrangian relaxation problem, we
design  a  heuristic  algorithm to  achieve  a  feasible  solution  of
the original problem, which is also an UP of the problem.
1)  Adjust the capacity of the cloudlet network

i
{i|z∗i < e, i ∈ I} i

ωi

If  the  total  capacity  of  all  cloudlets  is  insufficient  to  serve
all users, new servers should be added to some cloudlets until
all users can be served. In each iteration, the algorithm checks
each cloudlet  that  can still  accommodate more servers  (i.e.,

),  and  calculates  the  weight  of  cloudlet  (i.e.,
denoted as ):

ωi =

{
ξi(z∗i +1) if y∗i = 1,
ξi(z∗i +1)+ fi if y∗i = 0,

(38)

ωi z∗i
y∗i

y∗i = 1
Y∗ Z∗

Then, the cloudlet with the smallest  is selected, and  of
the  selected  coudlet  is  increased  by  one.  Meanwhile,  if  of
the  selected  cloudlet  is  equal  to  0,  let .  The  above
procedure  is  repeated  (i.e.,  and  are  updated  in  each
iteration)  until  the  capacity  of  the  cloudlet  network  is  large
enough.
2)  Heuristic Avatar allocation algorithm

Y∗ Z∗When  the  updated  and  provide  sufficient  capacity,
the original problem can be transformed into:

P2 : min
xi j

∑
i∈Î

∑
j∈J

di jxi j (39)

s.t.
∑
i∈Î

xi j = 1 ∀ j ∈ J (40)

∑
j∈J
λ jxi j ≤ sz∗i ∀i ∈ Î (41)

xi j ∈ {0,1} ∀i ∈ Î ∀ j ∈ J . (42)

Îwhere  is the set of selected cloudlet sites.
Lemma 3: P2 can be equivalently transformed into:

P3 : min
xi j

∑
i∈I

∑
j∈J

di j

y∗i + ϵ
xi j

s.t.
∑
i∈I

xi j = 1 ∀ j ∈ J∑
j∈J
λ jxi j ≤ sz∗i ∀i ∈ I

xi j ∈ {0,1} ∀i ∈ I ∀ j ∈ J .
ϵwhere  is a small positive value close to zero.

j ∈ J y∗i = 0 i ∈ I\Î
di j/(y∗i + ϵ) = +∞ xi j P3

y∗i = 1 i ∈ Î ϵ

di j/(y∗i + ϵ) di j

Proof: For  each ,  if  (i.e., ),  then
, and thus  should equal 0 to optimize .

If  (i.e., ), since  is a small positive value close to
zero,  the  value  of  is  approximately  equal  to .
Hence,  P2  and  P3  are  equivalent. ■

Based on Lemma 3, problem P2 can be transformed into:

P4 : min
xi j

∑
i∈I

∑
j∈J

ci jxi j (43)

s.t.Constraints (40)− (42), (44)
ci j = di j/(y∗i + ϵ)

j i
where  is  the  weighted  average  E2E  delay
between user  and its  Avatar  located in cloudlet .  It  can be
seen  that  P4  is  an  integer  programming  problem,  which  is
computationally expensive to achieve the optimal solution. In
this case, we design a HEuristic Avatar allocaTion (HEAT) al-
gorithm to obtain the suboptimal solution.

J1
I1

J1
I1 j

j ∈ J1 I1

i′ = argmin
i
{ci j|i ∈ I1}

ci j I1

Let  be the set of users, whose Avatars are waiting to be
allocated  among  cloudlets,  and  be  the  set  of  cloudlets
having excess resources to host at least one more Avatar. Note
that  at  the  beginning  of  HEAT,  all  users  are  included  in ,
while  all  available  cloudlets  are  included  in .  For  user 
(i.e., ),  the  optimal  cloudlet  in  is  the  one  incurring
the  lowest  weighted  average  E2E  delay,  i.e.

;  the suboptimal cloudlet is the one that
incurs  the  second  lowest  among  the  cloudlets  in ,  i.e.,
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i′′ = argmin
i
{ci j|i ∈ {I1\i′}}

j

.  The  basic  idea  of  HEAT  is  to
select  a  suitable  user  in  each  iteration,  whose  suboptimal
cloudlet  incurs  a  significant  E2E  delay  degradation  as
compared to the optimal cloudlet, and then allocate the user's
Avatar into the optimal cloudlet. In other words, if allocating
user 's  Avatar  to  its  suboptimal  cloudlet  has  a  significantly
negative impact on the weighed average E2E delay, we should
place  it  into  its  optimal  cloudlet  to  avoid  the  corresponding
E2E delay degradation.

∆c j
j i′

i′′

Denote  as the E2E delay degradation by allocating user
's  Avatar  from  the  optimal  cloudlet  to  the  suboptimal

cloudlet , i.e.,

∆c j = ci′′ j− ci′ j, ∀ j ∈ J1. (45)

ĵ ĵ = argmax
j
{∆c j| j ∈ J1}

ĵ J1

I∞ I1
i′ i′′ ∆c j j ∈ J1

J1 = ∅

Therefore,  in  an  iteration,  HEAT  will  choose  to  allocate  a
suitable user 's  Avatar,  where ,  to its

optimal cloudlet  in  order to  mitigate  the  E2E delay  degrada-
tion.  Then,  user  is  removed  from .  Afterwards,  if  the
optimal cloudlet has no extra space for hosting more Avatars,
it  is  removed  from .  Note  that  once  is  updated,  the
algorithm has to recalculate ,  and  for each user .
The  above  iteration  is  repeated  until  all  users'  Avatars  are
allocated,  i.e., .  As  a  result,  we  obtain  a  feasible
solution  of  the  original  problem,  yielding  an  UP.  The  details
of the algorithm is shown in Algorithm 1.

Algorithm 1: HEAT algorithm
Y∗ = {yi|i ∈ I}

Z∗ = {zi|i ∈ I}
C = {ci j|i ∈ I, j ∈ J}

Input: The  cloudlet  placement  vector .  The
server  vertor .  The  average  E2E  delay  vector,
i.e., .

X∗ = {§⟩||⟩ ∈ I, | ∈ J}.Output: Avatar allocation vector, i.e., 
J1 I11:　Initialize  and  based on their definitions;

∀ j ∈ J1 ∆c j2:　 , calculate  based on Eq. (45);
J1 , ∅3:　while  do

ĵ ĵ = argmax
j
{∆c j| j ∈ J1}4:　　Find user , where ;

ĵ i′

i′ = argmin
i
{ci ĵ|i ∈ I1} xi′ ĵ = 1

5:　 　 Allocate  user  to  its  optimal  cloudlet  (i.e.,
), and let ;

J1 J1 =J1\ ĵ6:　　Update the user set , i.e.; .
i′7:　　if cloudlet  is full then
I1 I1 = I1\i′8:　　　Update , i.e., ;

∀ j ∈ J1 ∆c j9:　　　 , recalcuate  based on Eq. (45);
10:　　end if
11:　end while

X12:　return .

C.  Subgradient Algorithm

u j

When the LB and UP of the original problem are obtained,
we  need  to  update  the  Lagrangian  multipliers  by  solving
the following Lagrangian dual problem to improve the LB and
UP  of  the  next  iteration.  In  this  paper,  we  apply  the
subgradient  method  to  derive  the  Lagrangian  multipliers  in
each  iteration  [30],  [31].  The  Lagrangian  dual  problem  is
expressed as

LD : max
µ

g(µ). (46)

The subgradients are calculated as follows:

Ψ j = 1−
∑
i∈I

x∗i j, ∀ j ∈ J , (47)

x∗i jwhere  is derived  from  the  optimal  solution  of  the  Lag-
rangian relaxation problem.

tMoreover,  the  step  size  in  the  subgradient  algorithm  is
defined as [31]:

t =
σ(UBopt −LB)∑

j∈J
Ψ2

j

(48)

UBopt σ

LB
σ

LB

where  indicates  the  best  UP  so  far,  and  is  a  scalar
ranging  from  0  and  2.  If  the  improvement  of  cannot  be
achieved within a fixed number of subsequent iterations,  is
halved to facilitate the search for a better .

µ j n+1Therefore,  the  Lagrangian  multipliers  in  iteration 
can be updated as follows:

µn+1
j = µn

j +Ψ jtn. (49)

M
If the number of iterations exceeds the predefined maximum

number , the subgradient algorithm stops.
The details of the complete CAPABLE algorithm are shown

in Algorithm 2.
Algorithm 2: The CAPABLE algorithm

µ j,∀ j ∈ J1:　Initialize the Lagrangian multipliers ;

Y∗ Z∗ X∗
LB

2:　 Solve  the  problem  LR  to  obtain  the  optimal  solution
(i.e., ,  and ) according to Eq. (26) (27) (28); calculate

.
3:　Based  on  the  optimal  solution  of  LR,  use  the  HEAT

algorithm to get a UP of the original problem;
UP < UPopt4:　if  then

UPopt = UP5:　　Let ;
6:　else

σ = σ\27:　　Let ;
8:　end if

t9:　Update the step size  based on Eq. (48);
µ j,∀ j ∈ J10:　Update  the  Lagrangian  multipliers ,  based

on Eq.(49);
iter < M11:　if  then

12:　　Go to Step 2;
13:　else
14:　　STOP;
15:　end if.

VI.  Dynamic Avatar Allocation (DARA)

As  we  know,  users  move  around  in  the  network
dynamically. If a user roams to a new BS in a time slot,  it  is
desirable  to  reallocate  the  user's  Avatar  to  a  nearby  cloudlet,
thus reducing the E2E delay between the user and its Avatar.
Therefore,  after  cloudlets  have  been  deployed  by  the  above
CAPABLE  algorithm,  it  is  necessary  to  design  a  Dynamic
AvataR  Allocation  (DARA)  scheme  to  reallocate  Avatars
among cloudlets to minimize the E2E delay between users and
their Avatars in each time slot. Note that if a user's Avatar is
assigned  to  a  different  cloudlet  as  compared  to  the  previous
time  slot,  the  Avatar  will  migrate  from the  previous  cloudlet
to the destination cloudlet by the live migration method.

I2

I2 = {i|y∗i = 1, i ∈ I} x
′
i j

Let  be  the  cloudlet  vector  generated  by  the  above
CAPABLE  strategy,  i.e., .  Let  be  the
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j
i k j

j ti j j

j ti j = τk ji

binary variable indicating whether user 's Avatar is located at
cloudlet  in the current time slot. Denote  as the BS where
user  is located, and  as the E2E delay between user  and
its  Avatar  in the current  time slot,  which is  equal  to the E2E
delay  between  user ’s  BS  and  its  cloudlet  (i.e., ).
Therefore, we formulate the Avatar allocation problem in each
time slot as follows:

P5 : min
x′ i j

∑
i∈I∈

∑
j∈J

ti jx
′
i j (50)

s.t.
∑
i∈I∈

x
′
i j = 1 ∀ j ∈ J (51)

∑
j∈J
λ jx

′
i j ≤ sz∗i ∀i ∈ I∈ (52)

x
′
i j ∈ {0,1} ∀i ∈ I2 ∀ j ∈ J . (53)

Based on Lemma 3, problem P5 can be transformed into:

P6 : min
x′i j

∑
i∈I

∑
j∈J

c
′
i jx
′
i j (54)

s.t. Constraints (51), (52), (53), (55)

c
′
i j = ti j/(y∗i + ϵ)

j i
where  is the weighted E2E delay between user
 and its Avatar located in cloudlet  in the time slot.
This  problem  is  also  an  integer  programming  problem,

similar  to P2,  and thus it  is  computationally expensive to get
the  optimal  solution.  Since  we  have  to  solve  this  problem in
each  time  slot  to  dynamically  allocate  Avatars  among
cloudlets,  we apply  the  above HEAT algorithm to  obtain  the
suboptimal solution.

|J|
O(|J|+ |I|)

|J|

O((|J|+ |I|)|J|) |I|

O((|J|+∞)|I|)
O((|J|+ |I|)|J|)

Note  that  the  DARA  scheme  will  incur  some  specific
overhead in the network. When users’ Avatars are reassigned
to  a  new  cloudlet  in  a  time  slot,  the  Avatars  have  to  be
migrated to the new cloudlet to provision service to the users.
Meanwhile, the HEAT algorithm has to be performed in each
time  slot  to  reassign  the  Avatars  among  cloudlets，and  thus
the complexity of the algorithm directly impacts the overhead.
We  now  analyze  the  computational  complexity  of  the
algorithm.  The  complexity  of  Step  2  is .  Meanwhile,  the
complexity of Steps 4 and 5 is  in the worst case.
As  the  algorithm  allocates  one  user's  Avatar  to  its  optimal
cloudlet in each iteration, the number of iterations is ,  and
thus the total complexity of Steps 4 and 5 can be expressed as

.  Meanwhile,  as  Steps  8  and  9  repeat  for 
times  in  the  worst  case,  the  corresponding  complexity  is

.  Summarizing  all  these  steps,  the  complexity
of the algorithm can be expressed as .

VII.  Simulation Results

In  this  section,  we set  up  the  simulation  of  the  CAPABLE
strategy and the DARA scheme to evaluate their performance.
We  begin  by  describing  the  simulation  environment  setting.
To demonstrate the effectiveness of the CAPABLE algorithm,
we compare the solutions of CAPABLE and the CPLEX tool
in a small-scale randomly generated network. Then, we apply
a large-scale network in the real world to further evaluate the
performance of the proposed strategies.

A.  Simulation Environment

fi

k i τki
τki = 3.3∗Lki Lki

k i
τki k = i i

k τki = 0
pk j j

In the simulation, the capacity of each server in terms of the
number  of  Avatars  is  set  as  30;  the  maximum  number  of
servers  in  a  cloudlet  is  10.  The  rental  cost  at  each  site  is
determined by the Normal distribution with an average of 500,
and a variance of 100; the price of a server is 50. To construct
the E2E delay matrix, we assume that the E2E delay between
BS  and cloudlet  (i.e., )  is  a  function of  the  geographic
distance between them [32], [33], i.e., , where 
is the distance between BS  and cloudlet  in km and the unit
of  is  ms.  Note  that  if ,  it  means  that  cloudlet  is
attached  to  BS ,  and  thus .  We  can  apply  historical
data  to  calculate  the  occurrence  probability 1 of  user 
among BSs.

B.  Performance in the Small-scale Randomly Generated Network
In the small-scale randomly generated network, 100 BSs are

placed  in  an  10*10  km2 area,  where  each  BS has  a  coverage
area of 1 km2. Meanwhile, the number of users in the network
is  500.  To  emulate  the  real  scenario,  each  user  randomly
chooses five BSs and randomly moves among the five BSs in
different time slots.

For the small-scale network, we can use the CPLEX tool to
generate  the  optimal  solution  of  the  cloudlet  placement
problem.  To  evaluate  the  performance  of  the  proposed
algorithm, we can compare the results of CAPABLE with that
of CPLEX. Hence, both deployment cost and simulation time
are  examined  to  verify  the  effectiveness  of  the  CAPABLE
algorithm.

η

In Fig. 2,  we  study  the  deployment  cost  delivered  by
CAPABLE  and  CPLEX,  where  are  set  as  0.2  and  0.4,
respectively.  Note  that  the  deployment  cost  of  the  proposed
algorithm  is  only  a  little  higher  than  that  of  CPLEX,  which
suggests that the performance of CAPABLE does not degrade
significantly  as  compared  to  CPLEX  because  the  proposed
algorithm  is  able  to  improve  the  UB  and  LB  of  the  original
problem in each iteration, and so it yields a desirable feasible
solution  when  the  gap  between  the  UB  and  LB  becomes
small.  Similarly, Fig. 3 and Fig. 4 compare  the  cloudlet  cost
and  average  E2E  delay  of  the  two  algorithms,  respectively.
Both the cloudlet cost and average E2E delay of the proposed
algorithm  is  very  close  to  the  near  optimal  solution  of
CPLEX, which suggests that the number and locations of the
cloudlets selected by CAPABLE is close to that of CPLEX.

90.6% 77.8%
η

As  seen  from Fig. 5,  the  simulation  time  of  the  proposed
scheme  is  and  fewer  than  that  of  CPLEX
respectively, when  equals 0.2 and 0.4. In each iteration, we
can apply a closed-form solution of Lemma 2 to calculate the
LB,  and  then  obtain  the  UB  by  a  heuristic  algorithm.
Consequently,  its  simulation time is  remarkably decreased as
compared  to  that  of  CPLEX.  As  the  proposed  algorithm can
achieve  a  suboptimal  solution  by  consuming  much  less  time
as  compared  to  CPLEX,  it  is  effective  to  solve  the  cloudlet
placement problem.
 
 
pk j =

the amount o f time that user j is associated with BS k
the total time period

1
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C.  Performance in A Large-scale Network
To  further  evaluate  the  performance  of  the  proposed

algorithms,  we study the impact  of  system parameters on the
proposed  algorithms  in  a  real  mobile  network  in  Harbin,
China, with 8826 users and 500 BSs and extract user mobility
activities  in  one  day.  To  continuously  track  user  locations,
each packet of a user is monitored, and thus we can extract the
BS  information  from  each  packet  and  consider  the  BS's
location as the current location of the user (e.g., if a packet of
the user contains the information of BS A, we can say that the
user  is  currently  associated  with  BS A).  As  shown in  below,

the proposed CAPABLE algorithm can also effectively solve
the cloudlet placement problem in the large-scale network.
1)  Performance of the CAPABLE strategy

η 0 < η < 1

η

η

η

The  tradeoff  coefficient  ( )  determines  the  wight
ratio  of  the  cloudlet  cost  to  the  average  E2E  delay  in  the
cloudlet placement. If  increases, the cloudlet providers focus
more  on  the  cloudlet  cost  than  the  average  E2E delay.  Thus,
we  should  test  the  impact  of  on  the  performance  of  the
proposed algorithm to help cloudlet providers choose a proper
 based  on  their  practical  requirement.  For  comparison,  we

consider the scenario that all users’ Avatars are allocated to a
remote data center that is placed at the southwest point of the
network.  Moreover,  we  also  consider  the  Heaviest-AP  First
placement (HAF) strategy [17] for comparison, which places a
certain  number  of  cloudlets  (i.e.,  30  cloudlets  in  the
simulation)  at  the  BSs  having  the  heaviest  workloads  to
reduce the E2E delay between users and their cloudlets.

η
η
η

η

η

Fig. 6 shows  that  the  average  E2E  delay  achieved  by
CAPABLE  is  significantly  reduced  as  compared  to  the
traditional big data network and the HAF strategy as  varies.
With  the  increase  of ,  the  average  E2E  delay  achieved  by
CAPABLE  grows.  When  is  small,  the  cloudlet  providers
will  deploy a large number of  cloudlets  at  the BSs with high
user  density,  and thus  most  users  can access  their  Avatars  in
the  nearby  cloudlets,  incurring  a  low  average  E2E  delay
between users and their Avatars. Then, with the increase of ,
fewer  cloudlets  are  available  because  cloudlet  providers  are
more  conscious  of  placing  cloudlets  in  a  cost-effective  way,
i.e., a user's Avatar has a higher probability to be allocated to
a  cloudlet  with  higher  average  E2E  delay.  The  average  E2E
delay  of  the  traditional  big  data  network  and  HAF,  on  the
other hand, is not impacted by  because each user's Avatar is
located  in  the  remote  data  center  in  the  traditional  big  data
network.  With  regards  to  HAF,  the  cloudlet  placement  is
determined by the workloads of different BSs.

η

η

η

As  shown  in Fig. 7,  we  examine  how  the  cloudlet  cost  of
CAPABLE varies  with  the  increase  of .  It  can  be  seen  that
the  cloudlet  cost  of  CAPABLE  drops  and  finally  plateaus.
When  is  high,  the  cloudlet  cost  of  CAPABLE  is  less  than
that  of  HAF  because  the  cloudlet  providers  tend  to  decrease
the  number  of  cloudlets  and  their  servers  to  reduce  the
cloudlet cost, with the increase of . However, the numbers of
cloudlets  and  their  servers  are  bounded  from  below  by  the
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Fig. 2.     Deployment cost comparison.
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Fig. 3.     Cloudlet cost comparison.
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Fig. 4.     Total average E2E delay comparison.
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η

demands of all users' Avatars. When the capacity of cloudlets
is close to the minimum value that can serve all users' Avatars,
increasing  has very little effect on the numbers of cloudlets
and servers.

η = 0.4

CAPABLE  aims  to  reduce  the  number  of  cloudlets  and
servers while decreasing the average E2E delay between users
and their Avatars.  With the increase of the cloudlet size (i.e.,
the  maximum  number  of  servers  in  a  cloudlet),  the  cloudlet
providers are more likely to install more servers to cloudlets in
the  areas  with  high  user  density  so  as  to  maintain  low  E2E
delay,  while  reducing  the  total  number  of  cloudlets  in  the
network. To study how the maximum number of servers in a
cloudlet impacts the performance of CAPABLE, we examine
the  cloudlet  cost  and  average  E2E  delay  of  CAPABLE  by
changing  the  maximum  number  of  servers  in  a  cloudlet.  As
shown in Figs. 8 and 9, when the maximum number of servers
in a cloudlet increases from 2 to 16 ( ), the cloudlet cost
is  reduced  significantly  while  the  average  E2E  delay
increases.  If  the maximum number of servers of a cloudlet is
small, the cloudlet providers need to deploy a large number of
cloudlets  to  provision  enough  computing  resources  for  users'
Avatars,  thus users'  Avatars are more likely to be placed at a
nearby cloudlet (i.e., incurring low average E2E delay). If the
maximum number of servers of each cloudlet is large, in order
to reduce the cloudlet cost, the cloudlet provider will put more
servers to cloudlets in areas with high user density and reduce
the total number of cloudlets in the network. As the number of

cloudlets degrades, the average E2E delay between users and
their  Avatars  also  significantly  increases.  Moreover,  the
cloudlet  cost  of  CAPABLE  does  not  diminish  significantly
when the maximum number of servers of a cloudlet is close to
16.  This  is  because  when  the  number  of  cloudlets  is  very
small,  the  further  reduction  of  the  number  of  cloudlets  will
tremendously increase the total average E2E delay, which has
a  negative  impact  on  the  deployment  cost  of  the  network.
Hence,  to minimize the deployment cost,  the cloudlet  cost  of
CAPABLE  changes  slowly  when  the  maximum  number  of
servers of a cloudlet is close to 16.
2)  Performance of DARA

After  cloudlets  are  placed  at  the  selected  BSs  by
CAPABLE,  we  further  evaluate  the  performance  of  the
DARA scheme.  As we know, user  mobilities  follow the data
trace that we sampled from the real world, while the cloudlet
placement  is  static.  As  a  result,  it  is  important  to  reallocate
users' Avatars among cloudlets to maintain the low E2E delay
in different time slots.

η = 0.4
In Fig. 10, we compare the E2E delay in different time slots

delivered  by  the  two  strategies,  given .  It  can  be  seen
that  the  E2E  delay  of  DARA  is  significantly  reduced  as
compared to CAPABLE, which does not reallocate Avatars in
different  time slots.  This  is  because when users  roam to new
BSs in  a  time slot,  DARA can allocate  users  to  new suitable
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cloudlets  to  reduce  their  E2E  delay.  For  instance,  if  user 
roams to a new BS , the new BS may be far away from user
's  previous  cloudlet  (i.e.,  incurring  the  E2E  delay ).

Meanwhile,  there  is  an  alternative  cloudlet  (i.e.,  incurring
the E2E delay ).  In this case, if ,  reallocating user
's  Avatar  from cloudlet  A to cloudlet  B can reduce the E2E

delay between user  and its Avatar.

VIII.  Conclusion

In  this  paper,  we  have  presented  the  cloudlet  network
architecture  which  facilitates  mobile  cloud  computing  at  the
network  edge.  Specifically,  each  user  can  access  its  Avatar,
which  is  considered  as  the  designated  VM for  the  user,  with
low  E2E  delay.  In  order  to  minimize  the  average  E2E  delay
between  users  and  their  cloudlets,  some  existing  studies
deploy  a  certain  number  of  cloudlets  to  some  suitable  sites.
However,  aside  from the  E2E delay,  a  cloudlet  provider  also
has  to  pay  attention  to  the  cloudlet  cost.  Hence,  we  have
proposed  the  CAPABLE  strategy  to  determine  the  location
and  capacity  of  each  cloudlet,  so  as  to  optimize  the  tradeoff
relation  between  the  E2E  delay  and  cloudlet  cost.  As  the
cloudlet  placement  problem is  NP-hard,  we  have  proposed  a
Lagrangian  heuristic  algorithm  to  achieve  the  suboptimal
solution.  After  cloudlets  are  placed  in  the  network,  because
users roams among the BSs, their Avatars should be allocated
to  cloudlets  in  each  time  slot.  Hence,  we  have  designed  the
DARA  scheme  to  optimally  allocate  Avatars  to  suitable
cloudlets,  so  that  the  E2E  delay  between  users  and  their
Avatars  are  minimized  in  different  time  slots.  We  have
demonstrated that CAPABLE achieves a low deployment cost
of  the  cloudlet  network  consisting  of  both  the  cloudlet  cost
and  E2E  delay  cost.  Moreover,  DARA  can  improve  the
performance of E2E delay of users in different time slots.
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Fig. 10.     Total E2E delay in different time slots.
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