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Abstract
Wireless Sensor Networks (WSN) are formed by a large
number of networked sensing nodes. It is rather complex, or
even unfeasible, to model analytically a WSN and it usually
leads to oversimplified analysis with limited confidence. Be-
sides, deploying test-beds supposes a huge effort. Therefore,
simulation is essential to study WSN. However, it requires a
suitable model based on solid assumptions and an appropriate
framework to ease implementation. In addition, simulation
results rely on the particular scenario under study (environ-
ment), hardware and physical layer assumptions, which are not
usually accurate enough to capture the real behavior of a WSN,
thus, jeopardizing the credibility of results. However, detailed
models yields to scalability and performance issues, due to the
large number of nodes, that depending on application, have to
be simulated. Therefore, the tradeoff between scalability and
accuracy becomes a major issue when simulating WSN.

In this survey a suitable model for WSN simulation
is introduced, together with guidelines for selecting an
appropriate framework. In addition, a comparative description
of available tools is provided.

1. INTRODUCTION
Wireless Sensor Networks (WSN) can be considered a

particular type of Mobile Ad-hoc NETwork (MANET), formed
by hundreds or thousands of sensing devices communicating
by means of wireless transmission. Research on WSNs and
MANETs share similar technical problems. But in WSNs, two
specific factors arise:

• The envisioned applications and the operation of the pro-
tocol layers are usually driven by the physical variables
measured by the sensors. Therefore, the dynamics of the
physical parameters sensed by the network govern the
network traffic, and even the topology.

• The energy is a primary concern in WSN. Usually,
nodes run on non-rechargeable batteries. Therefore, the
expected node lifetime is a fundamental element, that
must be taken into account. On the contrary, in MANETs,
energy is an important issue that should be optimized,
although it is generally assumed that a node can recharge
or replace its battery.

These constraints make unfeasible to analytically model

a WSN and predict the actual performance of high-level
protocols and network operation, which often leads to over-
simplified analysis with limited confidence. Currently, the first
real WSN applications are being explored and some of them
are yet to come. Meanwhile, deploying and operating a test-
bed to study the actual behavior of protocols and network
performance supposes a great effort [1], [2].

Consequently, simulation is essential to study WSN, being
the common way to test new applications and protocols in
the field. This fact has brought a recent boom of simulation
tools available to model WSN. However, obtaining reliable
conclusions from research based on simulation is not a trivial
task. There are two key aspects that should be evaluated before
conducting experiments: (1) The correctness of the model and
(2) the suitability of a particular tool to implement the model.

On one hand, there exists an increasing concern about
the methodology and assumptions of simulations [3], [4]:
Idealized hardware, protocols and non-realistic radio models
can lead to mistaken results. A “good” model based on solid
assumptions is mandatory to derive trustful results. But, in-
cluding the required degree of detail adds strong computational
requirements. The large number of nodes that may be involved
in a WSN further stress the problem. The fundamental tradeoff
is: Accuracy and necessity of detail versus performance and
scalability.

On the other hand, implementing a complete model requires
a considerable effort. A tool that helps to build a model is
needed, and the user faces the task of selecting the appropriate
one. Simulation software commonly provides a framework to
model and reproduce the behavior of real systems. However,
actual implementation and “secondary goals” of each tool
differ considerably, that is, some may be designed to achieve
good performance and others to provide a simple and friendly
graphical interface or emulation1 capabilities.

The aim of this paper is to provide some insight on the
building blocks of a general simulation model for WSN,
introducing its specific issues. Also, to facilitate newcomers
the selection of the most appropriate tool for their needs, the
most extended WSN simulation environments are reviewed.

The contents of this survey are organized as follows.
Section 2 introduces a wide vision of a WSN simulator
architecture. Section 3 compares the main parameters to
select a simulation framework. Next, section 4 describes the

1By emulation, we mean the ability to combine simulated and real systems.

Page 2 of 9Summer Simulation Multiconference - SPECTS 2005



.

.

.

E
N

V
IR

O
N

M
E

N
T

R
A

D
IO

 C
H

A
N

N
E

L

AGENT
NODE #2

NODE #K

NODE #1
SI

N
K

 N
O

D
E

Fig. 1. Wireless sensor network model

capabilities and particular features of general and specific
simulation packages, currently used to simulate WSN. Finally,
section 5 summarizes the fundamental ideas of this paper.

2. A MODEL FOR WSN SIMULATION
Together with the development of simulation tools for

WSN, their corresponding models have been introduced.
The models include new components, not present in
classical network simulators, as detailed power and energy
consumption models or environment models. This section
describes a general component model, derived from [5], [6],
for WSN simulation tools. This model is suitable for most of
the evaluation tools employed in on-going research on WSN.

2.1. Network model
Figure 1 depicts the general model at a network-wide scale.

The following components are considered:

1) Nodes: Each node is a physical device monitoring a
set of physical variables. Nodes communicate with each
other via a common radio channel. Internally, a protocol
stack controls communications. Unlike classical network
models, sensor modes include a second group of com-
ponents: The physical node tier, which is connected to
the environment. Nodes are usually positioned in a two
or three dimensional world. An additional “topology”
component, not showed in figure 1 may control node
coordinates. Depending on the application and deploy-
ment scenario, a WSN can contain from a few to several
thousands of nodes. Section 2,2 describes the structure
of a node.

2) Environment: The main difference between classical and
WSN models is the additional “environment” compo-
nent. This component models the generation and propa-
gation of events that are sensed by the nodes, and trigger
sensor actions, i.e. communication among nodes in the
network. The events of interest are generally a physical
magnitude as sound or seismic waves or temperature.

3) Radio channel: It characterizes the propagation of radio
signals among the nodes in the network. Very detailed
models use a “terrain” component, connected to the
environment and radio channel components. The terrain
component is taken into consideration to compute the
propagation as part of the radio channel, and also
influences the physical magnitude.

4) Sink nodes: These are special nodes that, if present,
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Fig. 2. Tier-based node model

receive data from the net, and process it. They may
interrogate sensors about an event of interest. The use of
sinks depends on the application and the tests performed
by the simulator.

5) Agents: A generator of events of interest for the
nodes. The agent may cause a variation in a physical
magnitude, which propagates through the environment
and stimulates the sensor. This component is useful
when its behavior can be implemented independently
from the environment, e.g., a mobile vehicle. Otherwise,
the environment itself can generate events.

2.2. Node model
Node behavior depends on interacting factors that cause

cross-layer interdependencies. A convenient way to describe it
is to divide a node into abstract tiers, as represented in Figure
2 .

• The Protocol-tier comprises all the communication pro-
tocols. Typically, three layers coexist at this tier: A MAC
layer, a routing layer and a specific application layer. Note
that the operation of the protocol tier usually depends
on the state of the physical tier described below, e.g. a
routing layer can consider battery constraints to decide on
packet route. Hence, an efficient method to interchange
tier information must be developed.

• The physical-node tier represents the hardware platform
and its effects on the performance of the equipment.
Actual composition of this tier may change depending on
the specific application. The common elements of this tier
are the set of physical sensors, the energy module and the
mobility module. Physical Sensors describe the behavior
of the monitoring hardware. Energy module simulates
power consumption in the component hardware, a crit-
ical issue in WSN evaluation. Mobility module controls
sensor position.
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• The media-tier is the link of the node with the “real
world”. A node is connected with the environment
through: (1) A radio channel, and (2) through one
or more physical channels. Physical channels receive
environmental events as described in section 2.1 .

3. FRAMEWORK SELECTION
Widespread research on WSN have raised a race involving

many simulation tools and frameworks. The selection of a
simulation framework for any type of network is a task that is
worth to spend enough time. Indeed, this is particularly true for
wireless sensors nets, because of the diversity and complexity
of the simulation scenarios, protocols, and elements involved.
In such an heterogeneous scope, different evaluation tools
achieve different goals. This section identifies and discusses
the main features to be considered in the selection of a
WSN simulation framework. A comparative description of
representative simulators follows in section 4 .

In a first step, existing WNS frameworks can be categorized
in: (a) Specific add-ons to general purpose communication
networks (section 4.1 ) and (b) WSN frameworks built from
scratch (section 4.2 ).

3.1. The long-way road to simulation
Simulation design starts with a suitable description of the

real system. Such description constitutes the simulation model,
built up with the aid of common-simulation concepts like en-
tities, attributes, events, channels, etc. Therefore, the modeler
declares the structure of the simulation in terms of entities and
their relations and implements the behavior of those entities
and their response to events. Common simulation packages
clearly separate implementation from model description and
instantiation:

• The simulation engine and the basic model objects are
provided as a set of software libraries in a high level
programming language, usually Java or C++. This is the
simulation API.

• Some kind of scripting (Tcl, e.g.) or mark-up language
(XML, e.g.) is normally employed to support model de-
scription, that is, to establish (declare) relations between
entities. Scripts allow a uniform and efficient approach to
model description and configuration, model instantiation
of simulation runs and runtime inspection.

• In addition, other utility libraries are often included such
as graphical representation support or statistical data
gathering and analysis.

Therefore, a simulation framework usually consists of a
basic simulation library, a utility library, and some scripting
support. The actual form the package is deployed depends
on the implementation. Some packages provide tools that
translate model scripts into objects in the implementation
language to be compiled afterwards. Other packages bind
library and scripting so that simulation objects can be
instantiated from a script. Others provide a visual interface.

3.2. What may we expect from a good WSN
simulator?

Usually, the key properties to select suitable simulation
environment are:

1) Reusability and availability.
2) Performance and scalability.
3) Support for rich-semantics scripting languages to define

experiments and process results.
4) Graphical, debug and trace support.
In this section, we focus on the impact of each feature in

the context of the WSN.

Reusability and availability. Simulation is used to
test novel techniques in realistic and controlled scenarios. Re-
searchers are usually interested in comparing the performance
of a new technique against existing proposals. Therefore, two
key aspects are: Does the simulation tool include implementa-
tions of common models? How easy is to modify or integrate
a new model with the existing ones?

The first question mainly depends on how long a framework
has been used for, and how many people use it. Early and
widely adopted frameworks have many available models and
it is very likely that the new successful proposals will be
added to next releases. The second aspect is closely related
to the design of the package. A careful structure with clean
interfaces and high modularity allows the user to easily add
or change functionality. Ready-to-use models allow users to
quickly build a realistic simulation scenario and focus on
modeling more specific details of WSN. All the general-
purpose packages include a more or less complete TCP/IP
suite, which can be considered the minimum standard support.
In addition, typical requirements for WSN simulators are:
Ad-hoc routing support plus wireless MAC protocols, and
propagation and mobility models to synthesize the physical
node distribution. For example, these entities are commonly
implemented: The AODV [7] for routing, the IEEE 802.11 [8]
wireless MAC protocol, a path loss model [9] for propagation,
and the random-waypoint-based mobility.

For specific tools the question is subtlety different: All the
specific frameworks are able to execute native sensor code.
Hence, every application, protocol or component developed
for the actual sensor platform can be simulated or emulated.
Only some specific parts are purely simulated, e.g. the radio
channel or the physical media environment. Summing up, in
this case protocols availability depends on the real availability
of them for the target platform, and viceversa.

Performance and scalability. Performance and scal-
ability is a major concern when facing WSN simulation. The
former is usually bounded to the programming language ef-
fectiveness. The latter is constrained to the memory, processor
and logs storage size requirements.

Additionally, the type of simulation implies some limits:
Emulation mode and time-driven simulations operate in real
time so they cannot be arbitrarily long.

Wireless simulations stress performance and scalability
issues due to the increased complexity added by the interaction
with the environment, radio propagation, mobility and power
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consumption. Simulation of several hundred of thousands of
nodes remains a challenging problem.

Support for rich-semantics scripting languages
to define experiments and process results. The
configuration of a WSN typical trial requires to answer (at
least) questions like: How many nodes are there in the test?,
where is each node placed?, do nodes move?, all of them?,
how?, which energy model is used?, how many physical
environments are?, how they generate events?, which physical
magnitudes should measure each node?, which statistics must
be measured in the experiment?, which are the parameters
of the radio model? The vast amount of variables involved
in the definition of a WSN experiment requires the use of
specific input scripting languages, with high-level semantics.
Additionally, it is likely that large quantities of output
data will also be generated through many replicas of the
experiments. Therefore, a suitable output scripting language,
that helps to obtain the results from the experiments quickly
and precisely is desirable.

Graphical, debug and trace support. Graphical
support for simulations is interesting in three aspects: (1)
As a debugging aid. The primary and more practical way to
quickly detect a bad behavior is to “watch” and follow the
execution of a simulation. The key features that a graphical
interface should support are: Capability of inspection of
modules, variables and event queues at real time, together
with “step-by-step” and “run-until” execution possibilities.
These features make graphical interfaces a very powerful
debugging tools. Note that the key is the ability to interact
with the simulation. (2) As a visual modeling and composition
tool. This feature usually facilitates and speeds the design
of small experiments or the composition of basic modules.
However, for large scale simulations, it is not very practical.
(3) Finally, as result plotters, which allows quick visualization
of results without a post-processing application.

4. WSN SIMULATION SOFTWARE
In this section the most relevant simulation environments

used to study WSN are introduced, and their main features
and implementation issues described and discussed. We
basically focus on free, open-source, simulation tools.

4.1. General simulation packages
• NS-2 [10]. Discrete event simulator developed in C++.

NS-2 is one of the most popular non-specific network
simulators, and supports a wide range of protocols in all
layers. It uses OTcl [11] as configuration and script inter-
face. NS-2 is the paradigm of reusability. It provides the
most complete support of communication protocol mod-
els, among non-commercial packages. Regarding WSN,
NS-2 includes ad-hoc and WSN specific protocols such
as directed diffusion [12] or SMAC [13]. Also, several
projects intend to provide WSN support to NS-2 such as
SensorSim [5] and NRL [14]. Both are extensions of NS-
2 to support WSN modeling. However, SensorSim seems
to be no longer available at [15]. NS-2 can comfortably

model wired network topologies up to 1,000 nodes or
above with some optimizations. This experiment size can
be kept for wireless topologies using some new optimiza-
tions [16]. A disadvantage of NS-2 is that it provides
poor graphical support, via Nam. This application just
reproduces a NS-2 trace.
NS-2 has been an essential testing tool for network
research and, so, one could expect that the new conven-
tional protocols will be added to future releases. However,
new proposals for WSN are increasingly being tested in
specific tools, e.g. TOSSIM or EmTOS (see section 4.2
for a description of both), because of the advantage of
native sensor code simulation and the specific design
of these tools for WSN. Therefore, it is unclear the
availability of new WSN proposals for next releases of
NS-2. This problem may be even worse for less used
frameworks.

• OMNET++ [17]. Modular discrete event simulator imple-
mented in C++. Getting started with it is quite simple, due
to its clean design. OMNET++ also provides a powerful
GUI library for animation and tracing and debugging
support. Its major drawback is the lack of available
protocols in its library, compared to other simulators.
However, OMNET++ is becoming a popular tool and its
lack of models is being cut down by recent contributions.
For instance, a mobility framework has recently been
released for OMNET++ [18], and it can be used as a
starting point for WSN modeling. Additionally, several
new proposals for localization and MAC protocols for
WSN have been developed with OMNET++, under the
Consensus project [19], and the software is publicly
available. Nevertheless, most of the available models have
been developed by independent research groups and do
not share a common interface, what makes difficult to
combine them. As an example, not even the localization
and MAC protocols developed in the Consensus project
are compatible.

• J-Sim [20]. A component-based simulation environment
developed entirely in Java. It provides real-time process-
based simulation. The main benefit of J-sim is its con-
siderable list of supported protocols, including a WSN
simulation framework with a very detailed model of
WSNs, and a implementation of localization, routing and
data diffusion WSN algorithms [6]. J-sim models are
easily reusable and interchangeable offering the maxi-
mum flexibility. Additionally, it provides a GUI library
for animation, tracing and debugging support and a script
interface, named Jacl [21].
J-Sim claims to scale to a similar number of wireless
nodes than NS-2 (around 500) with two orders of mag-
nitude better memory consumption but a 41% worse
execution time [6].

• NCTUns2.0 [22]. Discrete event simulator whose engine
is embedded in the kernel of a UNIX machine. The
actual network layer packets are tunnelled through virtual
interfaces that simulate lower layers and physical devices.
This notable feature allows simulations to be fed with
real program data sources. A useful GUI is available in
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addition to a high number of protocols and network de-
vices, including wireless LAN. Unfortunately, no specific
designs for WSN are included.
On one hand, the close relationship between the simula-
tion engine of NCTUns2.0 and the Linux kernel machine
seems a difficulty (adding WSN simulation modules to
this architecture is not a straightforward task). But, on
the other hand, real sensor data can be easily plug into
simulated devices, protocols and actual applications, just
by installing these sensors in the machine.
NCTUns2.0 also has worthy graphical edition capabili-
ties.

• JiST/SWANS [23]. Discrete event simulation framework
that embeds the simulation engine in the Java byte-
code. Models are implemented in Java and compiled.
Then, bytecodes are rewritten to introduce simulation
semantics. Afterwards, they are executed on a standard
JVM. This implementation allows the use of unmodified
existing Java software in the simulation, as occurs with
NCTUns2.0 and UNIX programs. The main drawback
of JiST tool, is the lack of enough protocol models.
At the moment it only provides an ad-hoc network
simulator called SWANS, built atop JiST engine, and with
a reduced protocol support. The only graphical aid is an
event logger. Jython [24] is used as a scripting engine.
JiST claims to scale to networks of 106 wireless nodes
with two and one order of magnitude better performance
(execution time) than NS-2 and GloMoSim respectively
[23]. It has been also shown that it outperforms Glo-
MoSim and NS-2 in event throughput and memory con-
sumption, despite being built with Java.

• GloMoSim [25]. Simulation environment for wireless
networks built with Parsec. Parsec [26] is a simulation
language derived from C, that adds semantics for creating
simulation entities and message communication on a
variety of parallel architectures. Taking advantage of
parallelization, it has been shown to scale to 10,000 nodes
[27]. Several proposals for WSN protocols have been
tested with it. Recently, a development kit for WSN has
been released, sQualnet [28].

• SSFNet [29]. Set of Java network models built over the
Scalable Simulation Framework (SSF). SSF is a specifica-
tion of a common API for simulation, that assures porta-
bility between compliant simulators. There are multiple
Java and C++ implementations of SSF. DartmouthSSF
(DaSSF) [30], for instance, is a C++ implementation of
SSF oriented to (parallel) simulation of very large scale
communication networks.
Besides, specific extensions oriented towards ad-hoc net-
working exists, e.g., SWAN2. SWAN is being extended
to be able to execute TinyOS code (see section 4.2 ), in
a new framework called TOSSF [31].

• Ptolemy II [32]. Java packages that support different
models of simulation paradigms (e.g. continuos time,
dataflow, discrete-event). It also addresses the modeling,
simulation and design of concurrent, real-time, embedded

2Notice that JiST/SWANS and SWAN are not related.

systems. Ptolemy models are constructed in an actor-
oriented way, very similar to the component-based
design of J-Sim. VisualSense [33] is a modeling and
simulation framework for WSN built on Ptolemy II.
Models can be developed by subclassing base classes
of the framework or by combining existing Ptolemy
models. Ptolemy visual edition assures a simple and
intuitive graphical composition of models and result
plotting.

4.2. Specific WSN frameworks
This section describes the most relevant tools specifically

aimed to emulate and simulate the WSN hardware and soft-
ware (unlike the WSN extensions of the general network
simulators described in the previous section). WSN scenarios
are usually highly application-dependent, and subjected to hard
constraints which cause, in turn, a tight coupling between
layers. Therefore, dedicated tools may help to better capture
these dependencies.

This approach also allows to simulate “real” application
code, speeding up the migration from simulation to im-
plementation, and facilitates testing and debugging of real
applications. Emulation makes possible real time debug and
analysis of information. The only drawback is that the user is
tied to a single platform either software or hardware (typically
MICA Motes [34]), and to a single programming language
(typically TinyOS/NesC [35]). However, TinyOS and MICA
motes are becoming the de facto platform for WSN, assuring
somehow the “utility” of those tools.

Following environments are specifically designed for WSN
research:

• TOSSIM [36]. Bit-level discrete event simulator and em-
ulator of TinyOS, i.e. for each transmitted or received bit
a event is generated instead of one per packet. This is pos-
sible because of the reduced data rate (around 40 kbps) of
the wireless interface. TOSSIM simulates the execution
of nesC code on a TinyOS/MICA, allowing emulation
of actual hardware by mapping hardware interruptions to
discrete events. A simulated radio model is also provided.
Emulated hardware components are compiled together
with real TinyOS components using the nesC compiler.
Thus, an executable with real TinyOS applications over a
simulated physical layer is obtained. Additionally, there
are also several communication services that provide a
way to feed data from external sources. The result is
a high fidelity simulator and emulator of a network of
TinyOS/MICA nodes. The goal of TOSSIM is to study
the behavior of TinyOS and its applications rather than
performance metrics of some new protocol. Hence, it has
some limitations, for instance, it does not capture energy
consumption. Another drawback of this framework is that
every node must run the same code. Therefore, TOSSIM
cannot be used to evaluate some types of heterogenous
applications.
TOSSIM can handle simulations around a thousand of
Motes. It is limited by its bit-level granularity: Perfor-
mance degrades as traffic increases. Channel sampling is
also simulated at bit level and consequently the use of a
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CSMA protocol causes more overhead than would do a
TDMA one.

• EmStar/EmSim/EmTOS [37] [38]. EmStar is a software
framework to develop WSN applications on special plat-
forms called microservers: Ad-hoc systems with bet-
ter hardware than a conventional sensor. The EmStar
environment contains a Linux microkernel extension,
libraries, services and tools. The most important tools
are:

– EmSim: A simulator of the microservers environ-
ment. In EmSim every simulated node runs an Em-
Star stack, and is connected through a simulated
radio channel model. It is not a discrete event but
a time-driven simulator, that is, there is no virtual
clock.

– EmCee: An interface to real low-power radios, in-
stead of a simulated radio model, obtaining radio
emulation. EmStar source code (note that this code
can be in any language) is used in the simulations.

Additionally, the UCLA staff have developed EmTOS:
An extension of EmStar that enables nesC/TinyOS appli-
cations to run in an EmStar framework. Thus, it opens the
way to heterogenous systems of sensor and microservers.
Simulation of microserver and sensor networks is also
supported. In addition, EmTOS provides three modes
of emulation: Pure emulation, where all the motes are
emulated by software, “real mode”, where all the motes
are real, and “hybrid mode”, where some motes are
real and others are emulated. EmTOS reaches up to
200 modes and it is claimed that for over 500 nodes it
would be necessary to distribute the simulation on several
processors.

• ATEMU [39]. An emulator of the AVR processor (this
processor is used in the MICA platform). While the
operation of the mote is emulated instruction by in-
struction, the radio model is simulated. ATEMU also
provides a library of other hardware devices, e.g., timers
or transceivers. Therefore, a complete hardware platform
is emulated, obtaining two advantages: (1) The capability
of testing OS and applications other than TinyOS and (2)
the capability of simulating heterogeneous networks with
different sensors. They are achieved at the cost of high
processing requirements and poor scalability.

• SENS [40]. A discrete event simulator implemented in
C++. SENS utilizes a simplified sensor model with three
layers (application, network and physical) plus an addi-
tional combined environment and radio layer. NesC code
can be used directly on it.

• Prowler/JProwler [41]. A discrete event simulator running
under MATLAB intended to optimize network parame-
ters. JProwler is a version of Prowler developed in Java.

• SNAP [42]. A totally different approach. SNAP is
defined as an integrated hardware simulation-and-
deployment platform. It is a microprocessor that can be
used in two ways: (1) As the core of a deployed sensor
or (2) as part of an array of processors that performs
parallel simulation. Again, “real” code for sensors can

be simulated. By combining arrays of SNAPs (called
Network on a Chip), it is claimed to be able to simulate
networks on the order of 100,000 nodes.

5. CONCLUSIONS AND OPEN ISSUES
Simulation is an essential tool to study Wireless Sensor Net-

works due to the unfeasibility of analysis and the difficulties
of setting up real experiments. This survey provides guidelines
to help selecting a suitable simulation model for a WSN and
a comprehensive description of the most used available tools.

Regarding availability of models, OMNET++, JiST and
SSFNet lack of available protocol models compared to other
simulators (specially, NS-2), which increases development
time. Attending to the ability to compose models from basic
pieces, the component or actor based packages J-Sim or
Ptolemy II offer the maximum flexibility. Tools like NC-
TUns2.0 or JiST allow any, Linux or Java respectively, appli-
cation to be used in a simulation. This feature greatly increases
their possibilities. Specific tools such as TOSSIM, EMTOS or
ATEMU are able to simulate real sensor code.

Regarding performance, one can expect better performance
from C/C++ engines than from their Java counterparts. How-
ever, recent simulators like JiST/SWAN claim to perform
better than NS-2 and GloMoSim (in its sequential version).
Obviously, parallel simulations should perform and scale better
than sequential ones. The tradeoff is a greater complexity of
programming. Parallel simulators as GloMoSim (whose goal is
performance rather than scalability) can simulate up to around
10,000 wireless nodes. DaSSF parallel tool, whose main goal
is scalability, supports network topologies as large as 100,000
wired elements [43].

All the packages provide graphical support. OMNET++,
NCTUns2.0, J-Sim and Ptolemy provide powerful GUI li-
braries for animation, tracing and debugging. All they include
the aforementioned features such as inspection, modification
of parameters at execution time, etc. OMNET++ and Ptolemy
stand lightly up among them. On the contrary, JiST do
not include other graphical interface than an event logger
and viewer. Current support in NS-2 is the unelaborate and
simple trace reproduction Nam tool. Specific tools also provide
surprisingly rich GUIs. TinyViz is the TOSSIM visualization
tool, an extensible Java application that provides useful debug
information. Besides, it can control and drive the simulation
elements. Users can develop their own plugins, which listen
for TOSSIM events published by TinyViz and perform some
action. EmView is a very similar tool, in this case written in
C, for EmTos.

Additionally, Ptolemy-II and NCTUns2 provide graphical
editors very simple to use. The graphical editors of the rest of
packages are not that simple, so it is preferable most of the
times to use their script-oriented way to create models.

We must also point out that there is a clear trend to
use native code from actual devices (e.g., TinyOS/NesC)
directly in simulations. All specific WSN frameworks have
this capability.

As a final remark, credibility concerns about assumptions
(mainly about radio channel) have been inherited from
MANETs. Such concerns lead to complex models. Use
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of these detailed models may solve these accuracy issues.
However, unlike MANETs, such solution limits the scalability
of WSN experiments. New algorithms may alleviate
this problem. Although, it is an open research field.
New advances should contribute to improve scalability.
Additionally, modeling problems arise when considering
the new environment and the energy components. They
also compromise scalability and accuracy. A deep study of
these issues is mandatory for a better understanding and
characterization of sensor networks and their corresponding
simulators.
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