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ABSTRACT: The aim of the present review was to provide an up-to-date overview of the biological

and epidemiological evidence of the role of oxidative stress as a major underlying feature of the

toxic effect of air pollutants, and the potential role of dietary supplementation in enhancing

antioxidant defences.

A bibliographic search was conducted through PubMed. The keywords used in the search were

‘‘air pollutant’’, ‘‘oxidative stress’’, ‘‘inflammation’’, ‘‘antioxidant polyunsaturated fatty acids’’ and

‘‘genetics’’. In addition, the authors also searched for biomarkers of oxidative stress and

nutrients.

The review presents the most recent data on: the biological and epidemiological evidence of the

oxidative stress response to air pollutants; the role of dietary supplementation as a modulator of

these effects; and factors of inter-individual variation in human response. The methodology for

further epidemiological studies will be discussed in order to improve the current understanding

on how nutritional factors may act.

There is substantial evidence that air pollution exposure results in increased oxidative stress

and that dietary supplementation may play a modulating role on the acute effect of air pollutants.

Further epidemiological studies should address the impact of supplementation strategies in the

prevention of air-pollution-related long-term effects in areas where people are destined to be

exposed for the distant future.
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E
pidemiological studies have clearly shown
that air pollution exposure is associated
with a range of respiratory and cardio-

vascular health effects and increased mortality
[1]. Recent research has identified oxidative stress
as one potential feature underlying the toxic
effect of air pollutants, which trigger a number of
redox sensitive signalling pathways, such as
those of inflammatory response and cytokine
production [2–5]. Toxicity may arise from an
imbalance of biological pro-oxidant and anti-
oxidant processes [6] linked to increased expo-
sure to oxidants or the presence of impaired
antioxidant defences [7, 8]. This imbalance has
long been recognised in investigations of ozone
(O3) [9], one of the most potent oxidants, and
more recent studies have focused on this parti-
cular mechanistic hypothesis [10]. Since diet is a
major source of antioxidants, it is important to
examine whether antioxidant defence mechan-
isms could be increased by dietary means to
protect against air pollutants as this could have

major public health consequences [11]. To pro-
vide an up-to-date overview on the biological
and epidemiological evidence of the role of
oxidative stress as a major underlying feature of
the toxic effect of air pollutants and the potential
role of dietary supplementation as an enhancer
[11] of antioxidant defences, a bibliogaphic search
was conducted through PubMed. The keywords
used in the search were ‘‘air pollutant’’, ‘‘oxida-
tive stress’’, ‘‘inflammation’’, ‘‘antioxidant’’ (vita-
min C, vitamin E, carotenoids), ‘‘polyunsaturated
fatty acids’’ (PUFA) and ‘‘genetics’’. In addition,
the current authors searched for biomarkers of
oxidative stress, biomarkers of antioxidant intake
(selenium, flavonoids, carotenoids, vitamin C,
vitamin E), and n-3 PUFA. Various recent
reviews have been published on these issues [1–
5, 7–10, 12–34], therefore, the present authors
refer to these and mostly focus on the latest
findings. Thus, the purpose of this up-to-date
overview is five-fold. First, the relevance of
oxidative stress as a common mechanism for
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effects of ambient air pollutants will be summarised. Secondly,
the role of antioxidants in oxidative stress will be briefly
discussed. Thirdly, the evidence for dietary supplements as
modulating the adverse effects due to air pollution will be
reviewed. Fourthly, the relevance of factors that may interact
with a subjects’ response to exogenous oxidative stress will be
discussed. Finally, the need to further investigate the relevance
of dietary supplementation as an approach to protect from
adverse effects of air pollution will be discussed.

BIOLOGICAL AND EPIDEMIOLOGICAL EVIDENCE

Oxidative stress and air pollutants
Several air pollution components have been related to
particulate toxicity. An important determinant of the acute
inflammatory response appears to be the dose of bio-available
transition metals (such as copper, vanadium, chromium,
nickel, cobalt and iron), organic compounds (such as polycyclic
aromatic hydrocarbons) and biological fractions (such as
endotoxins) [35, 36]. The oxidative stress mediated by
particulate matter (PM) may arise from: direct generation of
reactive oxygen species (ROS) from the surface of soluble
compounds; altered function of mitochondria or reduced
nicotinamide adenine dinucleotide phosphate (NADPH)-
oxidase; and activation of inflammatory cells capable of
generating ROS and reactive nitrogen species (RNS), as well
as oxidative DNA damage [37, 38]. The particle provides a
template for electron transfer to molecular oxygen in these
reduction and oxidation (redox) cycling events [39]. In
addition, target cells, such as airway epithelial cells and
macrophages, generate ROS in response to particle uptake by
biologically catalysed oxidation reactions that occur in the cell
membrane and mitochondria [4, 40–42]. In vitro studies have
shown that inhaled PM causes expression of nuclear factor
(NF)-kB-related genes and oxidant-dependent NF-kB activa-
tion [43, 44]. The dose of bio-available transition metal, rather
than particulate mass, may be the primary determinant of
acute inflammatory response [35, 37, 44]. However, other
studies suggest that the hydrosoluble fraction is responsible
for the oxidative damage to DNA [45]. The biological
component of particles also seems to be related to oxidative
stress [46], as well as bacterial endotoxin that induce the
liberation of tumour necrosis factor (TNF)-a and interleukin
(IL)-6 by macrophages [36].

Strong oxidative activity and the effective depletion of lung
lining fluid antioxidants have been reported in large studies of
ambient PM ,2.5 mm (PM2.5) [17]. To defend against the
oxidative damage, cells use up their stores of a key antioxidant,
glutathione. The glutathione depletion can induce a state of
cellular stress, which triggers an increase in the production of
antioxidant enzymes through activation of a transcription
factor nuclear factor-erythroid 2-related factor 2 [17]. Failure to
overcome oxidative stress leads to the activation of additional
intracellular signalling cascades that regulate the expression of
cytokine and chemokine genes [15]. These products are
produced locally in target tissues as well as systemically, and
lead to widespread pro-inflammatory effects remote from the
site of damage. In addition, PM appears to inhibit protective
enzymes involved in oxidative stress responses depending on
their toxicity (copper/zinc superoxide dismutase, manganese

superoxide dismutase, glutathione peroxidase and glutathione
reductase) [47].

Diesel exhaust particles (DEPs) have a high content of
elemental and organic carbon and are thought to be particu-
larly toxic [15]. These particles consist of a carbon core with
adsorbed organic compounds, such as polyaromatic hydro-
carbons, quinones and redox-active metals, and the capacity of
DEPs to induce oxidative stress is largely related to these
adsorbed components. Animal experimental models, cell
culture experiments and cell free systems involving DEPs
have shown oxidative stress response and oxidative DNA
damage. Human studies have shown increased neutrophils, B
cells and alveolar macrophages in bronchoalveolar lavage fluid
and an increased amount of pro-inflammatory cytokines,
chemokines and adhesion molecules [48]. Exposure to DEPs
has been shown to increase airway resistance, increase IL-6
and IL-8 in lavage fluid, increase IL-8 mRNA expression in
bronchial mucosa and upregulate endothelial adhesion mole-
cules P-selectin and vascular cell adhesion molecule-1 [49].
ROS formed at the epithelial level after DEP exposure
upregulate IL-10, promoting antigen-presenting cells and
allergy to pollen [15]. However, controlled exposure to DEP
in human subjects has been shown to respond with an increase
in low molecular antioxidants in the alveolar compartment
[50]. The role of oxidative stress in response to DEPs and other
particles is further supported by in vitro studies in which ROS
are generated by macrophages, neutrophils, eosiniphils and
epithelial cells after stimulation by DEPs or particles [15].
Interestingly, low sulphur diesel combined with engine filters
blocked a range of responses to DEPs including the oxidative
stress responses in mice [51].

Alteration of autonomic functions also appears to be partly
associated with oxidative stress [14]. Long-term exposure to
low concentrations of PM2.5 has been shown to alter vasomotor
tone, lead to vascular inflammation and potentiate athero-
sclerosis induced by high-fat chow in susceptible mice [52].
Although epidemiological evidence suggests that it is the fine
(PM2.5) or ultrafine (PM ,0.1 mm) fraction that contains the
toxic components; the large spectrum of disease end-points
(from cardiovascular to asthma attack) suggest that more than
one component may be driving the health effects [2].

O3 is a very reactive gas whose uptake depends on the
availability of antioxidants in the lining fluids, and its toxicity
appears to be transmitted to the respiratory epithelium by
secondary ROS formed by direct ozonisation of respiratory
tract lining fluid lipids [16]. Alteration of the cell membrane
translating an induction of lipid peroxidation and a significant
modification of the redox status has been observed [53], as well
as the activation of transcription factors such as NF-kB and
increased expression of a range of pro-inflammatory cytokines
and adhesion genes [2, 6]. O3 has been shown to react readily
with ascorbic acid, uric acid and thiols, and exposure of these
molecular species to O3 results in their rapid depletion [6].
When these defence mechanisms are overwhelmed, O3 may
injure the underlying cells by inducing lipid peroxidation and
activating inflammatory gene expression [6, 53]. Like O3,
nitrogen dioxide (NO2) reacts with substrates present in the
lung lining fluid compartment. The oxidised species arising
from the reaction between NO2 and lining fluid are responsible
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for the signalling cascade of inflammatory cells into the lung
[54–56].

A hierarchical oxidative stress model has been proposed to
explain the dose–dependent response to air pollutant exposure
[57]. Low exposure would lead to the formation of ROS
activating an antioxidant response, followed by the transcrip-
tion of enzymes important in detoxification, cytoprotective
and antioxidant responses. These include phase II enzymes,
whose induction serves as a detoxification mechanism (e.g.
NAD(P)H:quinone oxidoreductase 1 (Nqo1) and glutathione S-
transferase). At higher exposure, the transcription NF-kB and
activator protein-1 responses would be activated. This would
lead to NF-kB and mitogen-activated protein kinase signalling,
altering the function of mitochondria or NADPH, and to
increased expression of pro-inflammatory cytokines (such as
TNF-a and IL-8 and IL-6) and genes coding adhesion
molecules [2, 6, 15, 43, 44]. Any enhanced inflammatory
response would lead to additional generation of ROS and RNS,
together with oxidative DNA damage (fig. 1) [15, 37, 38].

Antioxidants and oxidative stress
Antioxidants in the lung are the first line of defence against
oxygen free radicals. The respiratory tract lining fluids (RTLF)
contain a range of low molecular weight antioxidants similar to

those found in blood plasma, including reduced glutathione,
ascorbic acid (vitamin C), uric acid and a-tocopherol (vitamin
E). They also contain antioxidant enzymes, such as superoxide
dismutase, glutathione peroxidase, thioredoxin reductase,
catalase and the metal binding proteins ceruloplasmin and
transferrin [2, 7]. All these antioxidants are free radical
scavengers but also function as sacrificial targets for O3

(ascorbate and urate) and react rapidly with this oxidant to
limit its interaction with RTLF lipids and proteins [58]. The
composition and quantity of antioxidants in the RTLF may
represent an important determinant of individual responsive-
ness to air pollutants but should be thought of as a dynamic
equilibrium with the antioxidant defences within the epithe-
lium and the more remote plasma pool [59]. Controlled studies
suggest that exposure to O3 results in a depletion of RTLF
antioxidants followed by an enhancement of the movement of
antioxidants to the RTLF [60] or increased synthesis [3, 59].
Similarly, low-dose diesel exposure challenge in healthy
volunteers was followed by an increase of inflammatory
markers in bronchial lavage. No inflammatory response was
seen in the alveolar compartment, but both reduced glu-
tathione and urate concentrations were increased following
diesel exposure suggesting differential antioxidant responses
in the conducting airway and alveolar regions [50].

Although the inter-relation among antioxidant levels in RTLF,
cellular and plasma levels is not well understood, it appears that
the susceptibility of the lung to oxidative injury depends largely
on its ability to upregulate protective ROS- and RNS-scavenging
systems and that the speed at which lost antioxidant defences
can be replaced is a major determinant [58].

As many antioxidants are derived from the diet, several
dietary factors have been implicated; mainly because of their
potential role in inflammatory reactions. The following section
will focus mostly on nutrients that have been used in
supplementation studies to modulate the impact of air
pollutants or might interact with the immune response.
These factors include antioxidant vitamins, omega-3 fatty
acids and other micronutrients that might affect the immune
response.

Antioxidant nutrients
Vitamin C
Vitamin C, a water-soluble vitamin, is an abundant antioxidant
substance and is widely distributed throughout the body
including the extracellular lining fluid of the lung [17].
Ascorbate is an excellent reducing agent and scavenges free
radical and oxidants. In vitro evidence suggests that vitamin C
has a role as a chemical reducing agent both intracellularly and
extracellularly. Intracellular vitamin C might prevent protein
oxidation and regulate gene expression and mRNA translation.
This is particularly relevant for the lung which is exposed to
oxidative substances. Extracellular vitamin C protects against
oxidants and oxidant-mediated damage [61]. It contributes to
antioxidant activity through scavenging a variety of free
radicals and oxidants, in vitro, including superoxide radical
(O2-), peroxyl radicals, hydrogen peroxide, hypochlorous acid,
singlet oxygen, oxidant air pollutants and oxidants that leak
from activated neutrophils and macrophages [59, 61]. While
the terminating product dehydroascorbate can be regenerated
to ascorbate by intracellular enzymes, in particular thioredoxin

FIGURE 1. A model of the reaction of oxidants in the airway. Inhaled

pollutants, such as ozone (O3), nitrogen dioxide (NO2), particulate matter ,2.5 mm

(PM2.5) or diesel exhaust particulates (DEPs), react with nonenzymatic antioxidant

constituents of the respiratory tract lining fluid including: reduced glutathione

(GSH); vitamin C; uric acid; and enzymatic antioxidants, such as extracellular

superoxide dismutase (ecSOD), extracellular glutathione peroxidise (ecGSHpx) and

thioredoxin. These molecules provide a protective screen against these pollutants.

If defences are exceeded, the production of reactive oxygen species (ROS) is

increased and oxidants may react with organic molecules, such as proteins or

lipids, and alter the epithelium resulting in: cell activation and initiation of the

inflammatory process; activation of neutrophils; and liberation of cytokines,

chemokines and adhesion molecules. CHO: carbohydrate; NF-kB: nuclear factor-

kB; AP-1: activator protein-1. Modified from [3].
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reductase, which catalyses its regeneration [62], this regenera-
tion is unlikely in the RTLF because of the lack of enzymes.
Therefore, the maintenance of ascorbate level in the RTLF
requires transportation from cellular sources or from the
plasma pool [59]. Ascorbate also acts indirectly to prevent lipid
peroxidation [59] and contributes to the regeneration of
membrane-bound oxidised vitamin E [63]. Ascorbate plays a
role in immune function and is transported into neutrophils
and lymphocytes [18]. Whilst ascorbate has many antioxidant
actions, it also has the capacity to act as a pro-oxidant in the
presence of transition metals [64].

Vitamin E

Vitamin E, a lipid-soluble vitamin, represents the principal
defence against oxidant-induced membrane injury in human
tissue because of its role in breaking the lipid peroxidation
chain reaction [64]. It is a potent peroxyl radical scavenger and
especially protects PUFAs within the phosphsolipid biological
membrane and in plasma liproteins [65]. It also decreases
production of prostaglandin E2, a metabolite of arachidonic
acid produced by lipid peroxidation of lung cells after O3

exposure [19]. Vitamin E appears to play a major role as an
integral constituent of alveolar surfactant, whose quantity and
composition conditions normal lung function [66].

b-Carotene

b-Carotene, a precursor to vitamin A and other carotenoids,
accumulates in tissue membranes, scavenges O2- and reacts
directly with peroxyl free radicals generated by O3 [67]. It
could, therefore, play a role in the control of inflammation
and immune response through its antioxidant properties.
However, recent research has shown that high-dose carotenoid
supplementation may lead to both antioxidant and pro-oxidant
reactions [68], depending on the redox potential of the
biological environment in which it acts [69].

Other antioxidants, such as flavonoids, are scavengers of
superoxide anions and peroxyl radicals [70]. In addition to
antioxidant activities, flavonoids can modulate cell signalling
pathways [20]. Selenium, an essential trace element that plays a
role in the detoxification of peroxides and free radicals [67],
could also play an important role in the prevention of lung
injury [21]. As an integral part of the glutathione peroxidases
and thioredoxin reductase, selenium probably interacts with
every nutrient that affects the pro-oxidant/antioxidant balance
of the cell. It also appears to support the activity of vitamin E in
limiting lipid oxidation [71].

Omega-3 PUFA

Increased intake of omega-3 PUFA (n-3 PUFA) can decrease
the inflammatory reaction by changing the contents of lipid
membranes and other substrates, which are in turn the
substrates for eicosanoid production [72]. The substitution of
n-3 PUFA (a-linoleic acid; 18:3n-3 and eicosapentaenoic acid
(EPA); 20:5n-3) for n-6 fatty acids (linoleic acid; 18:2n-6) in the
membrane leads to the production of less potent inflammatory
mediators (prostaglandin E3 instead of prostaglandin E2, and
leukotriene 5 instead of leukotriene 4) [72]. Prostaglandin E2

has been shown to act on T-lymphocytes to reduce the
formation of interferon (IFN)-c without affecting the formation
of IL-4. This may lead to the development of allergic

sensitisation, since IL-4 promotes the synthesis of immunoglo-
bulin E whereas IFN-c has the opposite effect [73]. Leukotriene
4, a potent stimulator of airway smooth muscle cells, increases
post-capillary vascular permeability and mediates asthma by
vasoconstriction and mucus secretion. The competitive inter-
actions between n-6 PUFA and n-3 PUFA determine the
cellular contents of arachidonic acid and EPA.

Increased intake of n-3 PUFA appears to decrease the risk of
sudden and nonsudden death from myocardial infarction and
nonfatal myocardial infarction [74–76]. The protective effect of
n-3 PUFA may be linked, in part, to its cardiac and arrhythmic
effects, including increasing heart rate variability (HRV) [22,
74, 77]. There is a positive correlation between the baseline cell
membrane concentrations of n-3 PUFA and the degree of HRV,
both in healthy subjects and in patients with coronary artery
disease [23, 78]. Along with increasing HRV, other anti-
arrhythmic mechanisms of n-3 PUFA have also been described,
including the capacity to stabilise the electrical activity of
cardiac myocytes by modulating sarcolemmal ion channels
and voltage-dependent sodium channels [24], and the capacity
to reduce myocardial infarct size in animal models of
ischaemia and reperfusion [24]. N-3 PUFA also appear to:
decrease the risk of thrombosis; decrease serum triglyceride
levels, slowing the growth of atherosclerotic plaque; improve
vascular endothelial function; lower blood pressure; and
decrease inflammation [79].

Other micronutrients and immune functions

Micronutrients such as zinc, vitamin A and folic acid can also
influence several components of immunity, altering the
function of macrophages and thus their role in innate
immunity and inflammation. Studies have shown that defi-
ciencies in these micronutrients can significantly alter macro-
phage phagocytosis and their production of cytokines (IL-1
and IL-6, TNF-a and IFN-c). These deficiencies also alter
natural killer cell function, neutrophil motility and antimicro-
bial activity [25].

Nutrient supplementation and effects of air pollution
The effects on air pollutant toxicity of nutrient supplementa-
tion at levels higher than is physiologically required have been
studied in both animals and humans and summarised
previously [2, 11, 17, 80].

Experimental animal studies

Results of animal studies suggest that supplementation with
vitamin C and vitamin E modulates the pulmonary response to
exposure to photo-oxidants, such as O3 or NO2 [17, 81], and
that vitamin C, uric acid and glutathione located in the
respiratory tract lining fluid are consumed on exposure to O3

and NO2 [16, 82, 83]. Dietary deficiency of vitamin C appears
to quickly translate to decreased levels of vitamin C in blood
and RTLF [84]. Temporary vitamin E deficiency may induce
reversible changes in the expression of pro-inflammatory
markers, reduce surfactant lipid synthesis in alveolar type II
cells and favour the development of injury in response to air
pollution insults [66]. Further experimental studies using
antioxidants, iron chelators or other substances support the
role of ROS as mediators of the effects of particulates [37, 54].
Oxidative stress appears to play a critical role in the activation
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of NF-kB, and cytokine-induced NF-kB activation is prevented
after treatment with antioxidants or metal chelators [54]. N-
acetylcysteine, a powerful antioxidant, had a protective effect
on inflammatory response and oxidative stress damage in rats
exposed to coal dust [85] and on changes in heart rate and
decrease in HRV in rats exposed to urban air particles [86].

Human studies
There is little information on the impact of antioxidant
supplementation on the acute effects of air pollution exposure
in humans. Most existing studies have focused on the changes
of acute lung function. Other outcomes included bronchial
airway reactivity, inflammatory response and changes in HRV
but are less numerous and consistent. All these studies were
experimental studies using supplements.

Antioxidant supplementation
Lung function and airway reactivity
Early studies used experimental protocols with single pollu-
tants and a small number of healthy adults. Levels of O3 and
NO2 were very high (usually close to 1,000 mg?m-3 and
.3,000 mg?m-3, respectively) and subjects were supplemented
for a relatively short period of time with high doses of vitamin
C or vitamin E (eight to 16 times the USA recommended daily
allowance of vitamin C (60 mg?day-1) and vitamin E
(8 mg?day-1)) [2, 87–89]. A modulating effect of antioxidant
supplementation was observed in some studies of acute lung
function changes [89] and airway reactivity [87] but not in
others.

More recent experimental studies have addressed conditions
in which the O3 level and supplement doses were lower. In a
study of asthmatic adults, a cocktail of vitamin C (500 mg) and
vitamin E (400 UI) protected against a decrease in peak
expiratory flow from SO2 challenge after O3 exposure [90]. In
another study [91], subjects were first deprived of vitamin C
and then supplemented with a relatively low dose of vitamin C
(250 mg), vitamin E (100 mg) and vegetable cocktail. Supple-
mentation protected against acute change in lung function
(forced expiratory volume in one second and forced vital
capacity) after O3 challenge. However, in well nourished
individuals sensible to O3, supplementation with vitamin C
(500 mg) and vitamin E (100 mg) provide no protective effect
on inflammatory response or lung function decrease after O3

challenge. This lack of protection was observed despite
elevated plasma vitamin C (+60.1%) and vitamin E (+51.4%)
concentrations following supplementation, and increased
vitamin C concentrations in the airways after supplementation
following O3 exposure [92].

Supplementation studies conducted in free-living populations
of healthy exercising adults (the Netherlands) or adults
exposed to high levels of air pollutants (Mexico) support the
hypothesis that antioxidant supplementation protects against
the acute effects of O3 on lung function. In these studies,
healthy adults were randomised to receive vitamin C (650 mg),
vitamin E (75 mg) and b-carotene (15 mg) for several weeks
[80, 93–95]. More recently, a study of asthmatic children
exposed to high levels of air pollutants in Mexico City also
suggested that supplementation with vitamin C (250 mg?day-1)
and vitamin E (50 mg?day-1) had a modulating effect on acute
lung function changes [96]. The positive effect of antioxidant

supplementation was mostly found in children genetically
susceptible to the effects of oxidants (glutathione S-transferases
(GST)M1 null genotypes) [97].

Inflammatory response

Only three studies have evaluated the impact of antioxidant
supplementation on airway inflammatory response to air
pollutant exposure. SAMET et al. [91] observed no difference
in the bronchoalveolar lavage content of polynuclear cells and
other inflammatory markers between supplement and placebo
groups after O3 challenge. Similarly, Mudway et al. [92]
reported no effect of supplementation with vitamin C and
vitamin E on O3-induced neutrophilia in healthy individuals
responsive to O3. In contrast, asthmatic children heavily
exposed to air pollutants and supplemented with vitamin C
and vitamin E had significantly lower levels of IL-6 and IL-8 in
nasal lavage than children receiving placebo [98].

n-3 PUFA supplementation
Lung function and inflammatory response

The impact of n-3 PUFA supplementation on asthmatic
symptoms and exercise-induced bronchoconstriction has been
examined among asthmatic subjects in various recently
reviewed studies [12, 34, 99]. Most of these studies enrolled a
small number of asthmatic patients randomly assigned to
receive a high dose of n-3 PUFA (3–4 g of EPA) for a short
time-period (6–10 weeks); results were inconsistent. Studies
with longer intervention periods, from 6 months to 1 yr, also
led to inconsistent results with some studies showing
improvement in lung function [100, 101] or inflammatory
markers [101–103], or no effect [104]. The dosage and duration
of n-3 PUFA supplementation, and the type of asthmatic
patients differed between studies and may explain the
discrepancy between these studies [12, 34]. The Cochrane
database of systematic reviews identified 22 studies but
included only nine that fulfilled the inclusion criteria and
concluded that data were insufficient to determine the effect of
n-3 PUFA in asthma. None of these studies include informa-
tion on air pollution.

Cardiovascular effect

Increased intake of n-3 PUFA either from dietary sources or as
a pharmacological supplementation has been shown to
decrease the risk of mortality from coronary heart disease
[105]. In a randomised trial conducted in nursing home
residents, supplementation with 2 g?day-1 of fish oil (each 1 g
capsule contained 83.2 % of omega-3 fatty acids) significantly
decreased the effect of PM2.5 on time and frequency domain
parameters of HRV [106] This is one of two studies providing
evidence that oxidant stress is one of the mechanisms
explaining the effect of particle air pollution on the cardio-
vascular system [107]. The other study reported that statins
had a mitigating effect on the HRV effects of particulate air
pollution in subjects genetically susceptible to oxidative stress
(lacking the GSTM1 allele) [108].

Modifiers of an individual’s response to oxidative stress
Under the biological model of oxidative stress one would
expect factors that modify the response to oxidative stress to
also alter the effects of air pollution. Thus, nutritional status,
chronic diseases and genetic factors are candidates to
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determine susceptibility to oxidative stress-related effects of air
pollution [26] as all these conditions are related to poor
antioxidant defence.

Nutritional status

Antioxidant vitamin supplementation provides some protec-
tion against the adverse effect of O3 on lung function in
asthmatic children with slight deficiencies in these nutrients
[96], and to adults depleted in vitamin C [91]. In contrast,
vitamin supplementation did not protect against O3-induced
lung function decrement in well nourished subjects [109].

Chronic diseases

Most chronic diseases are associated with chronic inflamma-
tion [13, 27, 28, 110–112], which might increase susceptibility to
the additional oxidative stress caused by air pollution
exposure. In particular, subjects with asthma [29], chronic
obstructive lung diseases [113], diabetes [114] and cardio-
vascular diseases [115] have all been shown to have anti-
oxidant deficiency [13] and be more susceptible to the effects of
air pollution [108, 115]. As observed in the case of cigarette
smoke, a significant source of oxidative stress, air pollutants
would lower antioxidant defences, with deleterious health
consequences [116, 117]. Evidence of the potential beneficial
effect of antioxidants can be found in studies of elderly subjects
in which treatment with statins [108] and n-3 PUFA supple-
mentation [106] had a beneficial effect on response to
particulate exposure.

Genetic susceptibility

As oxidative stress is an important pathway activated/
involved in the adverse effects of air pollution, the genes
involved are of primary interest. Most studies have focused on
single gene polymorphisms; however, it is likely that there will
be a hierarchy of genes determining susceptibility, rather than
one individual gene driving this process [15].

GST enzymes: GSTM1, GSTP1

GST are phase II xenobiotic metabolising enzymes that
participate in the detoxification of ROS by catalysing their
conjugation with glutathione [118, 119]. The common null
allele of GSTM1 results in a complete lack of the enzyme and
reduced or no conjugation activity [120]. It has been associated
with an increase in asthma and wheezing among children
exposed to environmental tobacco smoke in utero, with a
decrease in lung function growth [121, 122], and also with a
rapid decline in lung function in smokers [123]. In addition,
polymorphic GSTM1 has been shown to act as a modifier of the
lung response to fire smoke [124] and O3 [125]. Antioxidant
supplementation with vitamin C and E appears to modulate
the effect of O3 in asthmatic children homozygous for the
GSTM1 null allele [97]. Allergen sensitive subjects with low
responsive genotypes show enhanced susceptibility to the
adjuvant effects of DEP [126]. A GSTM1 polymorphism has
also been shown to increase sensitivity to PM, as evidenced
by greater changes in HRV [108]. Moreover, glutaryl coenzyme
A inhibitors, i.e. statins, with known antioxidant and anti-
inflammatory properties mitigate against the effects of am-
bient particles on HRV in subjects lacking the GSTM1 allele
[107, 108].

Other genes
The Toll-like receptor 4 (TLR4; xr 4) gene has been implicated
in innate immunity and endotoxin susceptibility [127] and has
been hypothesised to play a role in O3-induced hyperperme-
ability [26]. TNF-a (Xr17) has been related to lung function
changes after O3 exposure [128] and to an increased risk of
asthma and wheezing that can be modified by O3 exposure
[129]. TNF has been identified as a candidate gene for O3-
induced airway inflammation and hyperresponsiveness [130].
Polymorphisms in TNF and lipoteichoic acid have been
associated with respiratory effects of O3 in humans [128].
Arginase II has been associated with an increased risk of
asthma in children, and the association appeared stronger
among children with a smoking parent [131] suggesting that
air pollutants could also play a role.

Gene–gene interactions
O3-induced acute effects on respiratory function have been
shown to be smaller in subjects with GSTM1 null and NOQ1
Pro/Pro genotypes [132]. Similarly, a study examining asthma
risk in a population highly exposed to O3 showed that the risk
of asthma was significantly associated with the NOQ1
genotype in subjects with the null genotype for GSTM1 [133].
Both genes have a specific function in antioxidative activities.

FURTHER EPIDEMIOLOGICAL RESEARCH
There is now substantial evidence that air pollution exposure
results in increased oxidative stress, alterations in immune
regulation and repeated inflammatory responses that over-
come lung defences to disrupt the normal regulatory and
repair processes [10, 15]. As summarised previously, despite a
plausible mechanistic model linking air pollution, oxidative
stress and dietary supplementation, evidence is not sufficient.
Further randomised controlled trials (RCTs) are needed in
order to better understand the potential protective effect of
nutrient supplementation on the effect of air pollution on
respiratory and cardiovascular functions and inflammatory
responses.

RCTs provide a good alternative to maximise contrast in
nutrient intake for evaluating the interaction of dietary factors
and air pollutants and should be conducted in both the
controlled setting and in free-living populations. A controlled
setting will allow assignment of air pollutant exposure and,
therefore, provide an accurate representation of the health
effects and potential modulating effects of supplementation,
while RCT conducted in free-living populations will have the
advantage of representing real-life conditions.

Susceptible subjects, such as those with pre-existing respira-
tory or cardiac disease, micronutrient deficiency or genetic
susceptibility, are the most likely to benefit from nutritional
intervention (see Modifier of response section); therefore, RCTs
should focus on these population subgroups. Short- and long-
term effects can be studied; however, the major challenge in
long-term effect studies is to assess the appropriate time-frame
of exposure for the induction of the disease and, therefore, the
relevant period and duration of the supplementation. There is
accumulating evidence that exposure during lung develop-
ment in foetal life and early childhood plays a major role, as in
the case of maternal smoking [134–136]. Therefore, RCTs of
pregnant females with specific risks (such as asthmatic or
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TABLE 1 Biomarkers of oxidative stress most commonly used in clinical and epidemiological studies

Type of

measurement

Biomarker Biological

sample

Laboratory technique Sensitivity and

specificity

Comments [Ref.]

TAC TRAP Plasma Fluorescence Good Measures the cumulative action of all antioxidants

present in plasma and body fluids

[140–142]

TRAP + R-PE Serum Possible artefactual

confounding TRAP: indirect measure

TRAP+R-PE: direct measure of peroxyl radical

attack on R-PE. Affected by protein

concentration

Plasma better than serum

Lipid

peroxidation

TBARS Tissue

Plasma

Serum

Spectrophotometry

Colourimetry

Fluorometry

Low specificity Easy to use

Indirect measure

[143, 144]

MDA-TBA

derivatisation

Plasma

Serum

EBC

Urine

TBARS

HPLC/MS

HPLC-UV/Vis

HPLC with fluorescence

detection

Low specificity

Good

Measures MDA, end product of lipoperoxidation.

MDA is generated mainly by arachidonic acid and

docosahexaenoic acid

With HPLC detection, MDA is not a specific

product of lipid peroxidation

[143–145]

Free MDA Plasma

Serum

HPLC

HPCE

Good

Good

Low amount of plasma needed

Fast and practical for clinical measurements

Low detection limit

[145, 146]

4-hydroxynonenal

4-hydroxy

Tissue

Blood

Urine

ELISA

GC/MS

Good HNE is a toxic product of lipid peroxidation and

second toxic messenger of free radicals

[147, 148]

Hydrocarbons:

ethane and

pentane

EBC GC Penthane: low

specificity

Ethane: good

Hydrocarbons are produced through peroxidation

of fatty acids in cellular biomembranes, by ROS

Ethane: faster chromatographic measurement

compared with other hydrocarbons; better

marker for lipid peroxidation

Background level of pentane and isoprene in

human breath difficult to separate pentane from

isoprene by chromatography

Possible contamination with ambient air ethane

and pentane

[149–152]

Conjugated

dienes

Plasma

Serum

Spectrophotometry

HPLC

Validity still

questionable

Other biological substances, even

polyunsaturated fatty acids, absorb in the same

UV region

CD generation continues ex vivo after sampling

Plasma CD is .90% derived from 9, 11

diene-conjugated linoleic acid from dietary

dairy products

[150, 153]

LDL oxidation Plasma Ex vivo LDL by CD assay

with spectrophoto-

metric determination

Good Measures the rate of CD formation

Cannot be known for certain whether the in vitro

situation accurately reflects in vivo events

Should reflect the antioxidant defence system.

Vitamin E has shown reasonably consistent

effects in increasing the resistance of LDL to

oxidation

[143, 153–155]

Plasma In vivo Good Faster and simpler to perform than the ex vivo

procedure

[156]

Serum LDL-BDC with

spectrophotometric

determination

Measures amount baseline diene conjugation

Oxidised LDL Plasma ELISA Poor These modifications may occur independently of

lipid peroxidation

Still unclear whether it can serve as a peripheral

marker High variability

[144, 152, 157]

Lipid

hydroperoxides:

CEOOH

Plasma HPLC assay with

chemiluminescence

detection

Not confirmed Not detectable in young healthy controls

Direct indicator of lipid peroxidation

[144, 158]

I. ROMIEU ET AL. AIR POLLUTION, OXIDATIVE STRESS AND NUTRITION

c
EUROPEAN RESPIRATORY JOURNAL VOLUME 31 NUMBER 1 185



Type of

measurement

Biomarker Biological

sample

Laboratory technique Sensitivity and

specificity

Comments [Ref.]

Eicosanoids F2-isoprostane Plasma HPLC Good These markers reflect respiratory tract integrity

between reactive nitrogen species and ROS

[143, 144, 152,

159, 160]Serum GC/MS

Interaction with other prostanoidsUrine ELISA

Potent biological activityEBC

8-iso-PGF2a is a major component of total F2

isoprostanes

In plasma, possibility of artefactual generation

due to arachidonic acid autoxidation

Better in urine - less interaction

PGE2 EBC HPLC/MS/MS Not flow dependent in healthy subjects [159–162]

Plasma ELISA

Sputum GC/MS Good

LTB4 EBC GC/MS Good LTB4 is a potent neutrophil chemoattractant and

may contribute to airway narrowing by

producing local oedema and increasing mucus

secretion

[159–161]

Plasma HPLC

Serum ELISA

Urine

Sputum

BAL

Nitrogen

reactive

species

Nitrite: NO2
-

Nitrate: NO3
-

EBC Colourimetry Good In healthy children, nitrite values are not related

to levels of exhaled NO

[159, 163–166]

Plasma Fluorometry

Both nitrite and nitrate quantificationIonic chromatography

GC/MS

HPLC

S-nitrosothiols Plasma Fluorometry Good Formed by glutathione peroxidise; a

selenium-dependent enzyme

[159, 167–169]

3-nitrotyrosine BAL GC/MS

DNA oxidation 8-OHdG Urine ELISA Poor May be influenced by the metabolic rate and

also by excision repair

[143, 170–173]

DNA CG/MS

GC/MS: level of 8-OHdG overestimatedHPLC/ECD

ELISA values higher than HPLC values

8-oxoGua DNA CG-MS

HPLC-ECD

HPLC-MS

Comet assay

ELISA

Good HPLC-ECD generally yields lower values

Enzymatic approach: FPG may detect lesions

other than 8-oxo-7, 8-dihydroguanine; the

method relies on indirect calibration

Reported strong correlation between overnight

and 24 h urinary 8-oxodGuo#

[174, 175]

8-oxodGuo 24 h urine CG-MS

HPLC-ECD

HPLC-MS

Comet assay

ELISA

Good HPLC-ECD generally yields lower values

Enzymatic approach: FPG may detect lesions

other than 8-oxo-7, 8-dihydroguanine; the

method relies on indirect calibration

Reported strong correlation between overnight

and 24 h urinary 8-oxodGuo#

[174, 175]

Modified comet

assay

DNA SCGE Good Measures DNA strand breaks

Proportion of DNA in the tail indicates the

frequency of breaks

Particularly sensitive to oxidative attack by H2O2

[143, 176]

HmdU Plasma ELISA Good Autoantibody to oxidised DNA [143, 177, 178]

Serum Product of thymine oxidation

Protein

oxidation

Protein carbonyl Plasma

Lung aspirate

Colourimetric method

ELISA

HPLC

Good Measures generic oxidation; does not differentiate

between those protein carbonyl arising directly

from protein oxidation and those formed by

adduction of other oxidised products

[143, 153, 179]

TABLE 1 Continued.
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atopic mothers) might provide some insight into the role of
antioxidants and n-3 PUFA as modulators of the air pollution
effect. In these studies, a major challenge is the accurate
assessment of air pollution exposure, oxidative stress, biomark-
ers of nutritional status and health outcomes. Standardisation of
these factors within and between studies is crucial to allow
comparability of results. In the following section some issues to
be considered in future studies will be discussed.

Air pollution exposure
Contrasts in exposure need to be maximised to be able to
distinguish between effects in the placebo group and smaller or
no effects in the supplemented groups. Depending on the study
design and hypotheses tested, either temporal or spatial contrast
should be large. Multicentre studies including areas with
contrasting air pollution levels and the enrolment of random
samples of participants within each centre might be an option.
Moreover, the design of the exposure assessment must take into
account the relationship between measured or measurable
markers of oxidant pollution and personal exposure to the
pollutant relevant to the hypothesis. For example, there are
often large indoor/outdoor ratios in O3 concentrations and
these can be very heterogeneous across homes. Personal O3

concentration may be very poorly correlated with ambient

levels in certain areas. It might be useful to measure the redox
activity of ambient pollutants or the antioxidant depletion rates,
as these may be the most relevant characteristics in the
hypothesised pathways of redox imbalance. Various assays
have been developed to measure the redox activity of particles,
such as OH radical formation or antioxidant depletion rates
[137]. However, the measurement methods may need further
development to be applicable in epidemiological studies, in
particular, for personal exposure assessment.

Biomarkers of oxidative stress
The advantage of using biomarkers is that they integrate both
the effects of oxidant exposure and the full range of antioxidant
protective mechanisms in vivo [30]. However, samples can be
oxidised during handling, processing and analysis, so there is
potential for artefacts in estimates of baseline levels of oxidation
markers. The magnitude of this problem varies between
biomarkers [31, 138]. Most of these biomarkers include
measures of lipid, DNA and protein oxidation. Recent review
articles provide broad coverage of this topic [30, 139]. Table 1
presents a summary of oxidative stress biomarkers useful for
clinical and epidemiological studies including: the type of
marker; the biological media for measurement; the laboratory
techniques most frequently used; an appreciation of its

Type of

measurement

Biomarker Biological

sample

Laboratory technique Sensitivity and

specificity

Comments [Ref.]

Other GSH Sputum Spectrophotometry Good GSH is a protective antioxidant against oxidative

stress

[159, 180–184]

Plasma

Level of GSH depends on biological sampleSaliva

BAL Reverse phase HPLC Good

EBC HPLC /with fluorescence

detection

Good

GSH/GSSG ratio Plasma Colourimetry Good Decrease in GSH/GSSG indicates chronic

oxidative stress

[153, 185]

Serum HPLC

NL

H2O2 EBC Spectrophotometry

Fluorometry

Chemiluminescence

Poor: high variation Concentration appears to be expiratory flow rate

dependent

Wide variability in mean exhaled H2O2

concentration in healthy nonsmoking adults

Other factors: exercise, food, beverage intake

[159, 186–188]

CC16 Serum Latex immunoassay Good These tests evaluate the integrity of respiratory

tract

[189–192]

BALF ELISA

Peripheral marker

CC16 protects the respiratory tract against

oxidative stress and inflammation

Thioredoxin Serum ELISA Good Thioredoxin is induced by oxidative stress and

secreted by cells

[193–195]

TAC: total antioxidant capacity; TRAP: total radical trapping antioxidant parameter; R-PE: R-phycoerythrin; TBARS: thiobarbituric acid-reactive substances; MDA-TBA:

malondialdehyde-thiobarbituric acid; HPLC: high performance liquid chromatography; MS: mass spectometry; EBC: exhaled breath condensate; UV/Vis: UV/visible

detection; HPCE: high performance capillary electrophoresis; HNE: 4-hydroxynonenal; GC/MS: gas chromatography/MS tandem; ROS: reactive oxygen species; CD:

conjugated dienes; LDL: low-density lipoprotein; BDC: baseline diene conjugation; CEOOH: cholesteryl ester hydroperoxides; PG: prostaglandin; LTB4: leukotriene B4;

BAL: bronchoalveolar lavage; NO: nitric oxide; 8-OHdG: 8-hydroxy-29-deoxyguanosine; ECD: electrochemical detection; 8-oxoGua: 8-oxo-7,8-dihydroguanine; FPG:

fasting plasma glucose; SCGE: single cell microgel electrophoresis; 8-oxodGuo: 8-oxo-7,8-dihydro-29-deoxyguanosine; HmdU: 5-hydroxymethyl-29-deoxyuridine; GSH:

reduced glutathione; GSSG: oxidised glutathione (disulfide form); NL: nasal lavage; BALF: BAL fluid(s). #: r50.93, p,0.01.

TABLE 1 Continued.
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sensitivity and specificity based on the literature review; and
some additional comments [140–195].

Biomarkers of exposure to antioxidant nutrients and
n-3PUFA
These biochemical indicators have the advantage of integrating
different food sources and providing a better estimation of the
internal dose, i.e. a closer indication of the amount of nutrient
available after absorption and metabolism [33]. They can also
be used in intervention studies to monitor compliance with the
supplement. However, they are subject to measurement errors
and sampling, storage, handling and laboratory analysis
and temporality issues need to be carefully considered [30].
Table 2 presents a summary of biomarkers of antioxidant
and n-3 PUFA intake used in clinical and epidemiological
studies including: the type of marker; the biological
media for measurements; the laboratory techniques most
frequently used; the characteristics and food sources of
these nutrient biomarkers; and some additional comments
[196–218].

Health end-points
The limited validity of symptoms of respiratory or cardiac
diseases has been extensively discussed [219, 220]. Objective
outcomes, such as lung function, nitric oxide in exhaled breath,
carotid intimae-media thickness, electrocardiographic abnorm-
alities or HRV, are less prone to bias and may be a good
alternative but their long-term predictive value is uncertain.
Biological indicators, such as pro-inflammatory markers (e.g.
IL-6, IL-4, TNF-a, IFN-c) in sera, exhaled breath and nasal
lavage, and peripheral inflammatory markers (e.g. cell counts,
fibrinogen, C-reactive protein, von-Willebrand factor, prosta-
glandin E2, plasminogen activator inhibitor, cell adhesion
molecules) might provide useful information about potential
mechanisms of air pollutant exposure. However, they are
subject to large within-person variability and limited specificity
as they are common to different end-points; therefore, serial
measurements over the study period are required. In addition,
intra-individual variability and the temporal frame need to be
considered for any of the transient end-points. A mechanistic
approach that includes evaluation of several end-points at the
clinical and biological levels seems most appropriate. Further
understanding of the crucial role of transcription factors, DNA
methylation and RNA control of gene expression will provide
new perspectives on the complex interaction of air pollutants
and nutritional factors.

CONCLUSION
Oxidative stress is one of the main mechanisms by which air
pollutants affect respiratory and cardiovascular health. Short-
term randomised supplementation trials suggest that anti-
oxidant vitamins and n-3 polyunsaturated fatty acids might
protect against the acute effect of these pollutants, particularly
in vulnerable subgroups [80, 96, 106]. However, the evidence is
still limited because of the small sample size in most studies
and the lack of comprehensive assessment of baseline nutri-
tional status and oxidative stress response. Future studies
should include randomised control trials of antioxidant or n-3
polyunsaturated fatty acid supplementation in susceptible
populations and measure clinical, as well as intermediate,
outcomes and biomarkers of oxidative stress and nutrient

intake considering factors, such as reproducibility, inter- versus
intra-person variability, detection limits and specificity and
sensitivity of these markers. Doses and duration are still under
debate but harmonisation between studies is desirable for
comparison purposes.
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