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Estimation of Blood Cellular Heterogeneity in
Newborns and Children for Epigenome-Wide

Association Studies

Paul YousefiAQ9 , Karen Huen, Hong Quach, Girish Motwani, Alan Hubbard,
Brenda Eskenazi, and Nina HollandAQ2 *

School of Public Health, University of California, Berkeley, CaliforniaAQ3

Confounding by cellular heterogeneity has
become a major concern for epigenome-wide
association studies (EWAS) in peripheral blood
samples from population and clinical studies.
Adjusting for white blood cell percentage esti-
mates produced by the minfi implementation of
the Houseman algorithm (minfi) during statistical
analysis is now an established method to
account for this bias in adults. However, minfi
has not been benchmarked against white blood
cell counts in children that may differ substan-
tially from the reference dataset used in its esti-
mation. We compared estimates of white blood
cell type percentages produced by two meth-
ods, minfi and differential cell count (DCC), in
a birth cohort at two time points (birth and 12
years of age). We found that both minfi and

DCC had similar trends as children aged, and
neither count method differed by sex among
newborns (P>0.10). However, minfi estimates
did not correlate well with DCC in samples
from newborns (q 5 20.05 for granulocytes;
q 5 20.03 for lymphocytes). In older children,
correlation improved substantially (q 5 0.77 for
granulocytes; q 5 0.75 for lymphocytes), likely
due to increasing similarity with minfi’s adult
reference data as children aged. Our findings
suggest that the minfi method may provide suit-
able estimates of white blood cell composition
for samples from adults and older children, but
may not currently be appropriate for EWAS
involving newborns or young children. Environ.
Mol. Mutagen. 00:000–000, 2015. VC 2015
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INTRODUCTION

Epigenome-wide association studies (EWAS) have

increasingly been used to identify novel biological mech-

anisms that contribute to disease status or respond to

environmental exposures. Several large-scale DNA meth-

ylation assays have been developed in recent years,

including methylated DNA immunoprecipitation

(MeDIP), reduced representation bisulfite sequencing

(RRBS), and whole genome bisulfite sequencing (wgBS)

[Weber et al, 2005; Meissner et al, 2008; Lister et al,

2009; Laird, 2010], but due to its reliability, relatively

low cost, and broad coverage, the Illumina Infinium

HumanMethylation450 BeadChip
VR

(450K) has been

widely adopted in population-based EWAS [Teschendorff

et al., 2009; Bibikova et al., 2011; Sandoval et al., 2011;

Liu et al., 2013].

Unlike genetics, epigenetic markers may change over

time or in response to exposures. DNA methylation in

particular undergoes widespread remodeling in utero
[Foley et al, 2009; Perera and Herbstman, 2011; Hughes,

2014]. For this reason and because early life exposures

have been hypothesized to contribute differential risk

towards later life ill health, performing EWAS at birth or

in young children has been of great interest to investiga-

tors. Several EWAS, including those for prenatal expo-

sure to smoking and arsenic [Joubert et al., 2012;

Koestler et al., 2013], have quantified DNA methylation

in cord blood. This strategy to assess epigenetic perturba-

tion as near as possible to the prenatal period remains a

high priority in light of the fetal origins of human disease
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hypothesis [Barker, 1998; Essex et al., 2013; Armstrong

et al., 2014; Babenko et al., 2014].

Whole blood is a desirable matrix to use for EWAS as

it is readily available and has been obtained for many

human studies with a wide variety of initial aims (includ-

ing past genome-wide association studies (GWAS))

[Michels et al, 2013; Chadwick et al, 2014; Liang and

Cookson, 2014; Lowe and Rakyan, 2014]. However, as

EWAS are more commonly performed in blood, there is

growing awareness that heterogeneous white blood cell

type populations may bias results due to confounding

[Liang and Cookson, 2014; Lowe and Rakyan, 2014].

Because DNA methylation may vary by cell type, analy-

ses involving health outcomes or exposures that also co-

vary with cell type may be confounded. The consequence

of such bias has been clearly demonstrated by Jaffe and

Irizarry [Jaffe and Irizarry, 2014], who found that many

published associations between blood-based CpG methyl-

ation and age were no longer statistically significant after

adjustment for cell composition.

Several approaches have been proposed to address con-

founding bias in EWAS due to varying white blood cell

type composition. One method is to restrict DNA methyl-

ation measurement to isolated populations of white blood

cells. In practice, this requires performing fluorescence-

activated cell sorting (FACS) prior to DNA isolation and

subsequently quantifying DNA methylation signal in iso-

lated cell populations. While appealing theoretically, this

approach is not feasible for large population-based studies

that rely on banked samples.

One alternative involves estimation of the relative pro-

portions of different cell types, allowing for statistical

adjustment for cellular mixture during data analysis. The

performance of this approach depends largely on the qual-

ity of the estimate of cell type proportions. The most reli-

able white blood cell count is performed either by

automated hematology analyzer, as part of a complete

blood count (CBC), or retrospectively by microscopic dif-

ferential cell count (DCC) using histologically stained

blood smear slides.

However, since many epidemiologic studies do not

have direct white blood counts, there is growing interest

in computational approaches that estimate cell type pro-

portions based on DNA methylation data. In 2012,

Houseman et al. were the first to develop such a computa-

tional method, using 27k BeadChip results from n 5 46

isolated white cell samples from an unknown number of

blood donors as a reference dataset [Bibikova et al.,

2009; Houseman et al., 2012]. The updated version, pro-

duced by Jaffe and Irizarry [Jaffe and Irizarry, 2014]

(referred to here as the minfi method), has seen the most

widespread use because it was incorporated in a popular

bioinformatic software pipeline for 450K data, and made

several adjustments to specifically improve performance

for 450K BeadChip data including the addition of a 450K

BeadChip reference dataset (see Methods for details). The

minfi method is appealing in the context of EWAS stud-

ies because it can be readily implemented with no addi-

tional cost or data collection. However, the cell type

estimates produced by minfi have not yet been systemati-

cally validated against a gold standard cell count, such as

CBC or DCC. Additionally, minfi uses a small (n 5 6)

cell-sorted 450K dataset from middle-aged Swedish men

in its estimation procedure that may not be an appropriate

reference when estimating cell composition in infants and

children [Reinius et al., 2012].

Here, we conduct a comparison of the estimates of the

relative abundance of white blood cell types produced by

two methods, minfi and DCC, with randomly selected

samples from a large epidemiologic cohort followed by

the Center for the Health Assessment of Mothers and

Children of Salinas (CHAMACOS) study at birth and at

12 years of age with 450K BeadChip data. We report

findings showing that reference data and other assump-

tions should be carefully considered prior to utilizing

computationally derived white blood cell estimates in

EWAs studies in cord samples.

MATERIALS ANDMETHODS

Study Population

The CHAMACOS study is a longitudinal birth cohort study of the

effects of exposure to pesticides and environmental chemicals on

the health and development of Mexican-American children living in the

agricultural region of Salinas Valley, CA. Detailed description of the

CHAMACOS cohort has previously been published [Eskenazi et al.,

2003, 2004]. Briefly, 601 pregnant women were enrolled in 1999–2000

at community clinics and 527 liveborn singletons were born. Follow up

visits occurred at regular intervals throughout childhood, including a

visit at 12 years of age that included only male child participants. For

this analysis, we include the subset of subjects that had 450K BeadChip

data available at birth (n 5 151) and matched data for the 12-year follow

up (n 5 60). DCC analysis included the subset of subjects with a whole

blood smear slides available at the birth (n 5 111) and 12-year visits

(n 5 45). Both newborns and 12-year olds included in the sample were

healthy at the time of blood collection according to the study protocol,

and confirmed by abstracted medical records and questionnaires. All

subjects included in the subset were Latino in ancestry and 94.0% had

at least one Mexican-born parent. Study protocols were approved by the

University of California, Berkeley Committee for Protection of Human

Subjects. Written informed consent was obtained from all mothers and

assent was provided at the 12-year visit.

Blood Collection and Processing

Whole blood was collected in BD vacutainers (Becton, Dickinson

and Company, Franklin Lakes, NJ) containing either heparin anticoagu-

lant or no anticoagulant. Whole blood smear slides were prepared from

heparinized blood using the push-wedge blood smearing technique

[Turgeon, 2011] and stored at 2208C until staining. Aliquots of blood

clot were stored at 2808C until DNA isolation.
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DNA Preparation

DNA isolation was performed using QIAamp DNA Blood Maxi Kits

(Qiagen, Valencia, CA) according to manufacturer’s protocol with small,

previously described modifications [Holland et al., 2006]. Following iso-

lation, all samples were checked for DNA quality and quantity by Nano-

drop 2000 Spectrophotometer (Thermo Scientific, Waltham, MA). Those

with good quality (260/280 ratio exceeding 1.6) were normalized to a

concentration of 55 ng ml21.

450K BeadChip DNAMethylation Analysis

DNA samples were bisulfite converted using Zymo Bisulfite Conver-

sion Kits (Zymo Research, Irvine, CA), whole genome amplified, enzy-

matically fragmented, purified, and applied to Illumina Infinium

HumanMethylation450 BeadChips (Illumina, San Diego, CA) according

to manufacturer protocol. The 450K BeadChips were handled by

robotics and analyzed using the Illumia Hi-Scan system. DNA methyla-

tion was measured at 485,512 CpG sites.

White Blood Cell Composition Estimation

White cell composition was characterized by two different methods

in whole blood.

Di¡erential Cell Counts (DCC)

Whole blood smears were stained utilizing a DiffQuik
VR

staining kit, a

modern commercial variant of the Romanovsky stain, a histological stain

used to differentiate cells on a variety of smears and aspirates. This

staining highlights cytoplasmic details and neurosecretory granules,

which are utilized to characterize the differential white blood count. The

staining kit is composed of a fixative (3:1 methanol: acetic acid solu-

tion), eosinophilic dye (xanthene dye), basophilic dye (dimethylene blue

dye) and wash (deionized water). For consistency and to ensure the best

results the slides were all fixed for 15 min at 238C (room temperature),

stained in both the basophilic dye and eosinophilic dye for five seconds

each and washed after each staining period to prevent the corruption of

the dye.

Slides were scored for white blood cell type composition by Zeiss

Axioplan light microscope with 1003 oil immersion lens. Scoring was

conducted at the perceived highest density of white blood cells using the

standard battlement track scan method, which covers the entire width of

a slide examination area. The counts for each of the five cell types (lym-

phocytes, monocytes, neutrophils, eosinophils, and basophils) were

recorded by a dedicated mechanical counter. At least 100 cells were

scored for each slide. Scoring reliability was initially validated by

repeated scoring of 5 sets of 100 cells from the same slide with excel-

lent reproducibility (CV� 5%).

Min¢ Cell Count Estimation

Results from the 450K BeadChip analysis were stored as raw IDAT

files, and read into the minfi (v1.10.2) Bioconductor R package [Aryee

et al., 2014] using the read.450k.exp function. Estimation of the six

(CD81 T and CD41 T lymphocytes, CD561 natural killer cells,

CD191 B cells, CD141 monocytes, and granulocytes) different white

blood cell types was performed using the default implementation of the

estimateCellCounts function. Briefly, this function takes a user-supplied

target 450K BeadChip dataset, combines that with the cell-sorted Rein-

ius reference dataset available in the FlowSorted.Blood.450k Bioconduc-

tor package (v1.2.0) [Jaffe; Reinius et al., 2012] and quantile normalizes

the combined data. The reference dataset has n observations from i ¼ 6

subjects at each of j ¼ 6 different separated cell types. Six hundred cell

type informative CpG sites are chosen in the reference dataset, by com-

paring the mean methylation in a given cell type to the mean methyla-

tion of all five remaining cell types for CpG sites assayed. One hundred

CpGs are chosen to distinguish each of the j cell types. These represent

the 50 CpG sites with the greatest T statistic that were hypermethylated

and the 50 CpG sites that were most hypomethylated compared to other

cells. This results in a 6003n matrix of CpG site methylation subset

from the full reference dataset, called S0. Within S0, the relationship

between indicators for each cell type and DNA methylation is then esti-

mated, producing a vector of coefficients, called ~B0, of length j. Individ-

ual level predictions of cell type proportion, C�, are then fit in the

corresponding user submitted dataset, S1, using the coefficients estimated

in S0 by the following equation:

C� ¼ ~B
T

0
~B0

� �21
~B

T

0 S1

Detailed description of the algorithm has previously been published

[Houseman et al., 2012; Jaffe and Irizarry, 2014].

Statistical Analysis

All statistical analyses were performed using R statistical computing

software (v3.1.0) [Team, 2013]. Differences in means by age and sex

were assessed by Mann-Whitney U-Test. The linear relationships

between cell type estimates by the two methods were determined using

the Spearman correlation coefficient.

RESULTS

Estimates of white blood cell composition by the two

different methods implemented, minfi and DCC, are sum-

marized in Table T1I. The minfi method estimated the rela-

tive percentages of six white blood cell types (CD81 T

and CD41 T lymphocytes, CD561 natural killer cells,

CD191 B cells, CD141 monocytes, and granulocytes) in

samples from n 5 151 newborns and again for 60 of the

same children at age 12. Microscopic differential cell

count (DCC) of these newborns (n 5 111) and 12-year

olds (n 5 45) used banked available whole blood smear

slides to count the frequency of five types of easily visu-

ally identifiable blood cells (lymphocytes, monocytes,

neutrophils, eosinophils, and basophils) (see Methods for

details).

Cell Composition Estimates by Age and Sex

By the minfi method, the mean percentage estimates of

all cell types except CD41T lymphocytes were signifi-

cantly different between newborn and 12-year old sam-

ples (P< 0.01) (Table I). Estimates of granulocytes

represented the largest percentage of cell types in new-

born samples (mean 5 55.0%), while lymphocytes (CD81

T and CD41 T lymphocytes, and natural killer cells)

were noticeably less frequent (mean 5 37.2%, P< 0.01)

(Fig. F11A). In minfi estimates from 12-year olds, granulo-

cyte and lymphocyte populations became much more

comparable, with means 49.1 and 46.1%, respectively

(P 5 0.21).

By the DCC method, the mean percentage of all but

one cell type (eosinophil granulocytes) also differed sig-

nificantly between newborns and 12-year olds (Table I).
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For newborns, mean DCC counts were 63.6% for granu-

locytes and 29.2% for lymphocytes (P< 0.01; Fig. 1B).

By 12 years of age, the gap in the frequency of cell types

narrowed (46.9 and 46.8%, respectively; P 5 0.57).

In newborns, there was no difference in cell type distri-

butions by sex (P> 0.10) by either minfi estimates

(n 5 58 girls, n 5 93 boys; Fig.F2 2A) or DCC direct analy-

sis (n 5 58 girls, n 5 53 boys; Fig. 2B). At age 12 only

boys were sampled (Nminfi 5 60; NDCC 5 45) so the com-

parison by sex was not possible.

Comparison of Cell Composition Estimates by minfi
and DCC

Three cell type populations (Fig. F33) were used for more

direct comparison of the two methods of assessment of

TABLE I. Summary of White Blood Cell Type Percentage Estimates by Two Methods, Differential Cell Count (DCC) and minfi
in Newborn and 12-Year-Old Child Blood Samples

Newborns 12-year olds

N Mean (%) Min Max N Mean (%) Min Max P value

Minfi

CD81 T 151 7.1 1.6 13.5 60 14.3 4.6 24.7 <0.01a

CD41 T 151 13.7 3.5 25.6 60 13.9 2.4 27.1 0.90

NK cells 151 4.2 0 17.4 60 8.5 0 21.4 <0.01a

B Cells 151 12.2 1.9 24.1 60 9.4 5.1 16.7 <0.01a

Monocytes 151 11.1 4.4 15.8 60 7.1 3.1 11.9 <0.01a

Granulocytes 151 55.0 34.1 67.7 60 49.1 35 80.7 <0.01a

DCC

Lymphocytes 111 29.2 0.3 36 45 46.8 21.4 84.1 <0.01a

Monocytes 111 6.9 3 10.8 45 6.2 2.8 12.2 <0.01a

Neutrophils 111 60.4 54 67.2 45 42.7 9.7 68.5 <0.01a

Eosinophils 111 2.9 0.5 5.3 45 4.1 0 15 0.20

Basophils 111 0.2 0 2 45 0.1 0 3.9 0.04a

aCell types with mean percentages significantly different (P< 0.05) between ages by Mann–Whitney U test.

Fig.1. Box plots of percent cell composition estimated by minfi and dif-

ferential cell count (DCC) in samples from newborns and 12-year olds.

The minfi estimates are taken from n 5 151 newborns and 5 60 12-year

old boys, and have summed estimates of CD81 T, CD41 T, natural

killer cells, and B cells into a single category of lymphocytes for compar-

ison. The DCC estimates are taken from n 5 111 newborns and n 5 45

12-year olds, and have summed proportions of neutrophils, eosinophils,

and basophils into category of granulocytes. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.] AQ8
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white blood cell composition. For the minfi method, the

frequencies for CD81 T, CD41 T, natural killer cells,

and B cells, were summed to give an estimate of lympho-

cytes. For DCC, proportions of neutrophils, eosinophils,

and basophils were summed to give an estimate of

granulocytes.

In samples from newborns, those estimates by minfi

and DCC had poor linear correspondence with one

another (Fig. 3). In fact, the Spearman rank correlation

coefficients calculated between minfi estimates and direct

DCC analysis of monocytes, granulocytes and lympho-

cytes ranged from 20.01 to 20.05 and were not statisti-

cally significant (Fig. 3). In scatterplots showing

comparison between the two methods, the minfi method

appeared to overestimate the proportion of lymphocytes

(mean 5 37.2%) relative to that by DCC (mean 5 29.2%)

and reference levels from newborns that range from 19-

29% (Figs. 3A–3C) [Dallman, 1977; Nathan and Oski,

1981]. However, minfi also appears to overestimate the

percent of monocytes (mean 5 11.1%, reference 5 5–7%)

and gives a smaller percentage of granulocytes (minfi

mean 5 55.0%, DCC mean 5 63.6%, reference 5 32–

83%). The minfi estimates also had greater variability in

newborn samples, standard deviations (SDs) ranging from

2.3 to 8.8, compared to DCC estimates with SDs from

1.8 to 3.6.

However, the two estimates of cell counts were much

more consistent in older children than in newborns. At 12

years of age, the means and standard deviations of all

comparable cell populations, including granulocytes, lym-

phocytes and monocytes, were similar by both approaches

(Fig. 1). The Spearman correlation values for 12-year-old

subjects ranged from 0.26 to 0.77 and were significant for

granulocytes and lymphocytes (both P< 0.001), and

approached significance for monocytes (P 5 0.08) (Fig.

3). Scatterplots comparing the estimates by minfi and

DCC at 12 years of age also showed the trend between

methods to be linear with comparable amounts of

variance.

DISCUSSION

Here, we present a detailed comparison of the leading

method for estimating white blood cell composition,

minfi, against results from a well-established clinical cell

counting procedure, DCC, in samples from Mexican-

American children at two time points to produce adjust-

ment covariates in a whole blood EWAS analysis. While

both methods yielded similar results in 12-year olds,

minfi estimates and DCC were quite different in new-

borns. Our findings suggest that the algorithms applied by

minfi may not be appropriate for cell type estimation in

newborns and young children.

Longitudinally, as children aged from birth to 12-years

old, we observed similar trends by both minfi and DCC.

Fig. 2. Box plots of percent cell composition estimated by minfi and dif-

ferential cell count (DCC) for girls and boys in samples from newborns.

The minfi estimates are taken from n 5 151 newborns (n 5 58 girls and

n 5 93 boys). They have summed estimates of CD81 T, CD41 T, natu-

ral killer cells, and B cells into a single category of lymphocytes for com-

parison. The DCC estimates are taken from n 5 111 newborns (n 5 58

girls and n 5 53 boys). They have summed proportions of neutrophils,

eosinophils, and basophils into category of granulocytes. [Color figure

can be viewed in the online issue, which is available at wileyonlineli-

brary.com.]
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Each found that granulocyte levels were higher than lym-

phocytes at birth, but became comparable with one

another by 12 years of age (Fig. 1). This change corre-

sponds with age-specific reference values, which demon-

strate high levels of granulocytes (32-83%) relative to

lymphocytes (19–29%) in newborns [Dallman, 1977;

Nathan and Oski, 1981]. The levels of these two cell

types vary noticeably postnatally and through early child-

hood, reaching a peak difference at 24 months, but stabi-

lizing to adult levels around 9–12 years of age (28–48%

for lymphocytes and 33–76% for granulocytes) [Dallman,

1977; Nathan and Oski, 1981].

Among older children, we found that minfi and DCC

estimates were consistent with one another and mean esti-

mates by both methods fell within published age-specific

reference values [Dallman, 1977; Nathan and Oski,

1981]. However, minfi and DCC estimates differed

greatly in newborns. In fact, we saw a negative correla-

tion and linear trend across methods for each comparable

cell type (Figs. 3 and 3) suggesting that the algorithm

Fig. 3. Scatter plot of cell type percentages by minfi and differential cell

count (DCC) methods in cord samples for monocytes (A), granulocytes

(B), and lymphocytes (C). Also, plots of 12 year samples for monocytes

(D), granulocytes (E), and lymphocytes (F). Estimate of linear trend by

regression shown in blue with 95% confidence interval in gray. Exact lin-

ear correlation, slope 5 1 and intercept 5 0, shown in dotted red for refer-

ence. Spearman rank correlation, q(P value), shown in bottom right

corner for each comparison. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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implemented by minfi may have difficulty estimating cell

composition in samples from newborns.

This deviation is likely explained by the reference data-

set used in its prediction model, which is derived from

six middle-aged Swedish men. The composition of this

reference dataset is crucial to minfi’s performance: it is

used to both identify CpGs differentially methylated by

cell type and fit a regression model to those informative

sites. The coefficients estimated in the reference data, ~B0,

establish the linear relationship between methylation at

the informative sites and cell composition, which is used

for prediction in the target dataset. A key assumption of

this method is that the magnitude of the ~B0 is consistent

between the reference and target data. In many situations,

this may not be an unreasonable assumption to make.

Because the sites used to fit ~B0 are chosen by their asso-

ciation with cell type, one may expect them to perform

cell type specific functions that would be consistent over

time. However, given the poor performance of the minfi

estimator in newborns, it seems likely that consistent

effect of ~B0 in an adult reference does not hold for young

children and impacts the estimator’s accuracy. White

blood cell populations are still maturing in the early post-

natal period and are known to change greatly in relative

abundance [Dallman, 1977; Nathan and Oski, 1981;

Cheng et al., 2004]. Further, DNA methylation is known

to vary greatly over embryogenesis and may still be

changing during early life [Guo et al, 2014; Smith et al,

2014]. Should the relationship between these two factors

be inconsistent between early childhood and later life,

this would result in biased minfi estimates.

Similar bias could occur if the consistent effect

assumption does not hold across other biological host fac-

tors, such as gender or racial/ethnic ancestry. Both leuko-

cyte populations and DNA methylation are known to vary

by such factors [Hsieh et al., 2007; Lim et al., 2010;

Adkins et al., 2011; McCarthy et al., 2014]. The current

minfi reference data may be particularly susceptible to

these forms of bias because all subjects are men of north-

ern European descent. However, these biases are likely

not as pronounced as those introduced by age in young

children since the minfi estimates in CHAMACOS boys

of Mexican ancestry are relatively accurate at age 12. Fil-

tering out sites that vary by ethnicity or sex when fitting
~B0 could potentially reduce bias further, resulting in more

accurate estimates of cell composition. Similarly, sites

that vary by age could be excluded, an approach that has

been used previously to identify candidate metastable epi-

alleles [Harris et al., 2013]. However, given the lack of

variation of the current Swedish male reference dataset

over any of these potentially biasing factors, it is prefera-

ble to expand or generate a new reference that would

have observations from early childhood, and that vary by

race and ethnicity.

In conclusion, our comparison of the minfi method for

estimating white blood cell composition against a cyto-

logical differential cell count demonstrates that minfi can

robustly estimate cell populations in children as young as

12 years of age. However, minfi did not perform well in

samples from newborns that are important targets of

future EWAS because of interest in prenatal epigenetic

changes due to exposure or physiological effect on future

health. We hypothesize that this is due to low generaliz-

ability of the reference dataset currently used in the minfi

estimation and suggest that improvement of this dataset

would likely enhance its predictions in young children.

We encourage using caution when applying the minfi

method in populations that deviate substantially in white

cell composition and/or methylation patterns from the

current minfi reference data, such as by sex, racial/ethnic

ancestry, and age in particular. Future work should

explore further other factors, such as environmental expo-

sures, that may also impact the validity of the minfi

estimates.
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