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ABSTRACT

In this paper, we use Monte Carlo simulations with a SIRD model parameterised from the literature
and test with many metrics if Benford’s Law is fulfilled in 4 different scenarios. The results confirm
that the Newcomb-Benford law could theoretically be an adequate tool to assess Covid-19 infected
data reporting. The challenges in using Benford’s law in epidemics reporting are posed by the
counting process in the real world where non malignant errors are introduced by lack of tests. One
should as such see Benford’s law not as fraud detection tool, than as a assistive tool to measure
reporting effectiveness in the real world.
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1 Introduction

The problem of valid reporting of case and death numbers became very topical during the current Covid-19 epidemic.
Valid numbers are needed to inform models to inform public health decisions all over the world.

But how does one assess the numbers publised globally under many different health administrations? One way to look
at the daily stream of infection and mortality data released all over the world would be to use the Newcomb—Benford
law. The Newcomb—-Benford law (or Benford’s law) often deals with finance and management, areas in which Benford’s
law can be used to detect fraud Nigrini (1999). Benford’s law was also recently used to detect fraudulent activity on
social media platforms such as Twitter Emerging Technology from the arXiv (2015).

The Newcomb—Benford law has been used in epidemiology before the current Covid-19 crisis engulfed the world
(Idrovo 2009, IDROVO et al. 2011, Gémez-Camponovo et al. 2016).

In early May 2020, a scientific paper reported that there was no data manipulation in the reporting of cases from China
(Koch & Okamura 2020). Lee et al. (2020) assessed Benford’s law on ten selected countries and came to the conclusion
that out of these ten only Japan violated Benford’s Law. Sambridge & Jackson (2020) on the other hand state that
Japan adhers well to the law. Idrovo & Manrique-Herndndez (2020) state that their results suggest that the Chinese
epidemiological surveillance system has had good data quality during the current health emergency. Anran Wei &
Vellwock (2020) also suggest that Benford’s law presented a valid method to measure variations on countries’ datasets
and indicates possible data aberations in Russia. Coeurjolly (2020) shows that the Newcomb-Benford distribution
cannot be rejected for his epidemiological data.

In order to shed some light on the use of the Newcomb—Benford law as a general framework in epidemiological data
reporting, this paper evaluates synthetic data, generated by a SIRD model, often used in simulating large scale infectious
disease modelling.
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We show that the first digits of data emanating from a SIRD model, parameterised from the literature on Covid-19,
follow the Newcomb-Benford distribution under certain conditions.

SIR type models are studying infectious disease and might use real data reporting to parameterise these models.
Anastassopoulou et al. (2020) parameterised a SIRD type model for Covid-19. SIR type models present an idealised
framework in which all infected and deaths are recorded. Human error can introduce aberrations to this perfect picture
as imperfect test systems are unable to count every infected (Brinks & Hoyer 2020, Lachmann et al. 2020). Nevertheless
if such models capture some epidemiological reality they should ideally show when Benford’s law is applicable.

If Benford’s law does not fit an idealised scenario, Benford’s law should be disregarded as a valid procedure to check
for data inaccuracies in epidemic disease reporting. If Benford’s law fits in certain scenarious on idealised synthetic
data, the testing of Benford’s law on official reporting might hint to problems in the reporting procedure and the data in
a real disease outbreak.

2 Benford’s Law

In one of the many papers on case reporting and epidemiology the authors of "Benford’s Law and COVID-19 Reporting"
used Benford’s law in order to detect fraud or flaws in data collection from different governments, basing analysis
on the frequency distribution of leading digits in many real-life sets of numerical data Collins (2017). According to
Benford’s law, the leading digits of a set of numbers will follow a probability distribution defined by:

d+1
P (d) = logyo(d + 1) — logyo(d) = logy, <d> 0

where d is the leading digit and d € {1;:::;9}. The probabilities can be seen in table 1. As pointed out by other
authors Fewster (2009), Smith (1998), Benford’s law tends to apply most accurately to data that spans multiple order of
magnitudes. The more orders of magnitude the data covers, the more Benford’s law tends to be accurate.

Leading Digit 1 2 3 4 5 6 7 8 9
Probability 0.301 | 0.176 | 0.125 | 0.097 | 0.079 | 0.067 | 0.058 | 0.051 | 0.046

Table 1: Benford’s distribution

Ghafari, et.al., cited Goodman (2016) and noted problems with the Benford measurement and COVID-19, writing:
"While this method can be used to test if data manipulation has occurred it does not give any information about the
deliberate absence of data, for example not reporting deaths from specific hospitals" Ghafari et al. (2020).

3 SIRD Model

The susceptible, infected, recovered, deceased ODE model has been used in many papers analysing Covid-19 (Cooper
et al. 2020, Boudrioua & Boudrioua 2020, Abou-Ismail 2020, Giordano et al. 2020). It is a simple ordinary differential
equation (ODE), an equation that involves some ordinary derivatives of a function.

it defines as:
ds SI

dt N
dl _ SlI I I
d~ N
2
R _ 2
dt
dD
dt
where S is the stock of susceptibles in the population, | is the stock of infected, R is the stock of recovered population
and D the number of deceased in the population, and N = S + | + R (with D leaving the model). is the average
number of contacts per person per time, multiPIied by the probability of disease transmission in a contact between a
susceptible and an infectious subject and = 5, where d is the average time period an individual is infectious.  is the
mortality rate.
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Figure 1: An example SIR model run with random parameters (Non cumulative). The Newcomb-Benford law
would be applicable to the growing phase of the infected. To the right a graph of the real world infections of Covid-19,
where the exponential rise would be the area where Newcomb-Benford law would then theoretically apply.

4 Implementation of the Monte Carlo Model SIRD simulations

A SIRD model was constructed as in equation 2. , and were initially parameterised by consulting (Anastassopoulou
et al. 2020). They parameterised their model with = 0:191, = 0:064 and = 0:01. In Anastassopoulou et al.
(2020)’s notation is in this document, is and is

We set up four different scenarios:

1.) Sampling uniformly a starting population between 10640 and 1439323776 susceptibles, 1 infected, 0 recovered and
0 dead , and randomised parameters drawn from a Gaussian: = 0:191( = 0:05), Gaussian: = 0:064( = 0:005)
and Gaussian: = 0:01( = 0:005). with being the standard deviation. Negative values were set to the mean.
Random initial suspeptible levels were choosen between the smallest and biggest nations on earth based on a Google
search: Tuvalu with 10640 inhabitants to China with 1439323776 people.

2.) Starting at fixed rate of 1439323776 susceptibles, 1 infected, O recovered and 0 dead, and randomised parameters
Gaussian: = 0:191( = 0:05), Gaussian: = 0:064( = 0:005) and Gaussian: = 0:01( = 0:005). with
being the standard deviation. Negative values were set to the mean.

3.) Starting at a random population of 10640 to 1439323776 susceptibles, 1 infected, O recovered, 0 dead and non
randomised parameters. = 0:191, = 0:064 and = 0:01.

4.) Starting at a random population of 0 to 20000 susceptibles, 1 infected , O recovered, O dead and non randomised
parameters. = 0:191, = 0:064 and = 0:01. This scenario was to find the lowest level a testable series can be
produced.

With this we wanted to empirically test how the Newcomb-Benford Law would perform on data produced by a SIRD
model. All runs were implemented on cumulative data and only on the infected part of the SIRD model.

In scenario 1 both starting population and SIRD model parameters were randomised and in scenario 2 just the influence
of randomised parameters on a country the size of China was assessed. Scenario 3 would be most likely reflect the
real world scenario were the infectious disease operates in different countries. Obviously as long as there is migration
between countries the real disease trajectory is working on the whole world, but due to travel restrictions, internationally
and nationally, the virus will always interact on smaller localised clusters, that then combine to a large scale effect as
the infectious disease spreads geographically. With Scenario 4 we tested how small a population would need to be, to
create a valid run with fixed SIRD model parameters.

Benford’s law tests were performed when:

1.) There was at least a magnitude change of more than 3, as Benford’s law gives better accuracy with data that is
spanning multiple orders of magnitude (Koch & Okamura 2020).

2.) The rise of the infected numbers increased by 10% daily accumulated (Koch & Okamura 2020)
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3.) This rising curve included a long enough time series of 50 days and more, to get big a enough sample size.

If these conditions were met, we then used the R-Studio packages BenfordTests, benford.analysis and kuiper.2samp to
test for Benford's law compliance on cumulative data. We checked adherence with Benford's lawf wgemerated

a random Benford series with rbenf, compared the two with Kuipers 2 sample test (Kuiper 1960), an Euclidean
Distance for Benford Distribution (Cho & Gaines 2007), a Hotelling T-square type goodness-of- t test (Hotelling
1931), Joenssen's JP-square Test (Joenssen 2013), Kolmogorov-Smirnov Test for Benford's Law (Kolmogorov n.d.),
Chebyshev Distance Test (maximum norm) for Benford's Law (Leemis et al. 2000), Judge-Schechter Mean Deviation
Test for Benford's Law (Judge & Schechter 2009), Freedman-Watson U-square Test for Benford's Law (FREEDMAN
1981), taken all Benford's law test values and generated a mean, median and a standard deviation of all generated tests.
Additionally we recorded the starting population level were appropriate, the approx slope (as determined by a simple
linear model) and the length of the rising series. We ran 100000 simulations for all scenarios.

Results were classi ed after Nigrini (Nigrini & Miller 2009) in the package benford.analysis, that ranks tests as having
close conformity (to Benford's Law), acceptable conformity, marginally acceptable conformity and nonconformity.

5 Results

The results in the scenarios with randomised parameters show that 33.187% in case of scenario 1 and 33.145% in
scenario 2 did not produce valuable series to test with Benford's law. This is most likely due to the fact that no viable
parameter combination were generated that maintained an infectious disease. This means not enough people would be
infected, so that in cumulative growth the disease would rise for 50 days or more, &% infected than the previous

day and also had a signi cant change in magnitude of the series.

With the unmanipulated parameters from the literature and modifying only the starting population, 0.006% in scenario
3 and 8.675% in scenario 4 did not produce testable series. The smallest viable start population in scenario 3 from
which a valid run was generated was 19258 without changing the parameteasmid and the biggest valid run was

at a population of 1,439,306,236. In scenario 4 the smallest testable run was generated at an intitial starting size of 1736
susceptibles and not one close conform run was generated. Further analytic plots can be found in gures 2,3,4 and 5.

Table 2: Results of the SIRD model runs in the categories: close conformity (CC) (to Benford's Law), acceptable
conformity (AC), marginally acceptable conformity (MAC) and nonconformity (NC) for scenarios 1 to 4. Scenario 1:
random starting population of 10,640 to 1,439,323,776 and randomised parameters, Scenario 2: xed starting population
of 1,439,323,776 and randomised parameters, Scenario 3: random starting 10,640 to 1,439,323,776 and non randomised
parameters. Scenario 4: random starting O to 20000 and non randomised parameters. "Failed" would not have a long
enough time series with 10% rises day by day for 50 or more days and a magnitude change of 3.

Scenario CC AC MAC NC SUM CcC AC MAC NC Failed runs

1 17005 42089 4763 2956 66813 25.45% 63.00% 7.13% 4.42% 33187
2 19434 39974 4397 3050 66855 29.07% 59.80% 6.58%  4.56% 33145
3 45297 54596 98 3 99994 45.30% 54.60% 0.10%  0.00% 6

4 0 21130 38688 31507 91325 0.00% 23.14% 42.36% 34.50% 8675
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6 Conclusion

The results of the SIRD models support the use of Benford's law in theory to test if cumulative Covid-19 data reporting
is accurate as long as several conditions are met. The data that is tested has to grow 10% or more, the data series is 50
or more days and the magnitude change is 3 or more.

Only by using an epidemiologically parameterised model Anastassopoulou et al. (2020) we could get good “Benford
coverage”, if random values around the parameterised values were used, we found that around 1/3 of test runs did not
meet the criteria for testing.

As SIR type models operate on the number of susceptibles in the system by multiplying them with the parameters

and the system depends on the starting conditions. As we recall the smallest number of susceptibles is 1736 in
Covid-19, if the selected parameters are equivalent to Anastassopoulou et al. (2020). In the real world small countries
(like Vatican City), counties and sectors that are disconnected from the bigger world might as such fail a Benford test as
the underlying disease dynamics (the starting population) do not support the dynamics that are neccessary to support a
Benford test on cumulative data.

Interestingly, when the model was fed with random parameters nearly 1/3 of tests failed (scenario 1 and 2), while when
the model was run with xed parameters and viable population sizes (scenario 3) there were a neglectable amount
of failed and non conform samples. This means in our opinion that the SIRD model was parameterised correctly
(Anastassopoulou et al. 2020) and this precision is needed to assess the actual epidemic with a SIRD model. We have
not yet had the time to run these tests on other infectious diseases like AIDS or Ebola.

In general, as Benford's law essentially only ts in an exponential rising epidemic curve, its use would be restricted
to only the periods in an epidemic before countermeasures are deployed and the infectious diseaRg halsian
(Delamater et al. 2019) of over 1. As governments and the World Health Organization (WHO), on classifying an
epidemic or a pandemic start to engage countermeasures (Simpson et al. 2020), these measures will start having a
negative force oM, depressing the pure exponential curve expected in an unmediated outbreak (Ma 2020). This
should cause aberrations from the exponential curve. This is a manipulation of the pure mathematical formula where
Benford's law can be mathematically proven to t. As such, unlike nancial data like accounting, disease outbreaks have
targeted countermeasures taking place that intend to interrupt exponential growth and as such affect the applicability of
Benford's law. On the other hand if Benford's law ts, one could hypothesise that countermeasures are yet unef cient.
So Benford's law, if reporting is effective, could well be used as an epidemiological measure of countermeasure
effectiveness, instead of using it as a fraud detection tool.

Strategies against disease outbreaks keep evolving Jester et al. (2018), and therefore unknown effects will be introduced
in the outbreak that will be hard to formalize in simple mathematics. As such, Benford's law testing is possibly on
shaky grounds in many real life reporting scenarios.

Benford's law is an empirical instrument, being useful, for example, in the case of one person making numbers up,
some accounting processes, some election data and many other sequences. Yet it seems as soon as a use is discovered,
its value is often then disputed. Its use in discovering fraudulent scienti c articles is challenged by Diekmann &

Jann Diekmann & Jann (2010). Its application for elections is questioned by (Deckert et al. 2010). In its application to
epidemics, Benford's law is sometimes used (see IDROVO et al. (2011), Gémez-Camponovo et al. (2016) and Idrovo
(2009) in response to Maynard & Bloor (2009)), but it is possibly a less robust analytical tool than in accounting. The
current ongoing Covid-19 pandemic is as such a good time to strengthen the case for the use of Benford's law in
epidemic data reporting.

A recent paper which used Benford's law to look at COVID-19 reporting data in Iran, the US and UK from February
to April 2020 (Ghafari et al. 2020), cited (Goodman 2016) and noted problems with the Benford measurement and
COVID, writing:

While this method can be used to test if data manipulation has occurred it does not give any
information about the deliberate absence of data, for example not reporting deaths from speci ¢
hospitals.

This is a broader issue embracing differences in how many tests are available and where they are available (for example,
in the UK it was primarily people that arrive in hospital that were tested Guardian (2020)).

Differing de nitions of what a case is could also in uence data reporting. Other parameters of analysis, such as the
UK's initial exclusion of care homes and reporting fewer cases on Monday and Sunday would also be uncomparable to
data received from other countries, where these conditions would not have been met. In accounting, where Benford's
law seems most applicable, receipts tend to exist or not; there should be less ambiguity over the number, if the category
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of what a number represents is clearly de ned (money) and most importantly accounting is an ongoing process all over
the world, while major pandemics are relatively rare and money can be counted and does not need a specialised test.

With respect to the matter of COVID-19, if there are no tests available or the government only tests people going
themselves to hospitals but ignores all other possible occurrences, the data is, as such, already manipulated or shaped by
the states doing the reporting.

It is important to note, however, that researchers interested in Benford's law and its application to COVID-19 do have
other techniques at their disposal together with a n-th order test. There are the digits distribution second order test
that tests the differences between the ordered (ranked) values in a data set Nigrini & Miller (2009), the summation
distribution by digits where the sums are expected to be equal Jamain (n.d.),Hall (n.d.), the Mantissa Arc Test that
computes the center of mass of a set of mantissae distributed on a unibeinéted.analysi¢n.d.), the mean absolute
deviation, MAD conformity Nigrini & Wells (2012) and the distortion factor that shows if the data has an excess of
lower digits (indicative of an understatement) or higher digits(indicative of an overstatement)Nigrini & Wells (2012). As
such, a Benford's law analysis has to take all these variable conditions under assessment, and therefore more resembles
an art than a science, even if some authors think this is not the case anymore (Banks 2000).

With the results we demonstrated in this paper that we can agree theoretically to the advice from Koch & Okamura
(2020), the international community could use Chinese data for calibration of models or for guidance in the lifting of
stay-at-home orders simply based on trust on a Benford's law test. On this point, we also tend to agree with Peng &
Nagata:

As the pandemic affects more and more people and has an increasingly deeper impact on economic
activities and social life at a global level, discussing the under-reporting of COVID-19 data becomes
especially relevant, both for the assessment of the situation severity and for the proposal of solutions
and means to overcome the crisis. Given that scholars, researchers, and policy-makers around
the world are dedicated to this cause, having accurate and reliable data at hand is of paramount
importance, as the quality of the data directly affects the quality of all analyses derived from them.

Future research should look at other valid SIR type models for other diseases, like AIDS and ebola and see if the
results hold here. Additionally the impact of Benford law testing should be analysed possible in a SIR type model
that includes stochasticity, geographical and time phasing were more and more susceptibles would be introduced into
the system. This would be more realistic than a simple SIRD model that assumes that all susceptibles are “available”
to the infectious agent immediately. Phased availability would lower the infectious disease growth most likely in the
beginning of a pandemic.

To develop a robust framework to check the validity of data reporting in future pandemics, Benford's law could be part
of that framework, but it would need to be understood in the real life context on how infectious illness reporting is
conducted.
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