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Abstract
The process of encoding a visual scene into working memory has previously been studied using
binary measures of recall. Here we examine the temporal evolution of memory resolution, based
on observers’ ability to reproduce the orientations of objects presented in brief, masked displays.

Recall precision was accurately described by the interaction of two independent constraints: an
encoding limit that determines the maximum rate at which information can be transferred into
memory, and a separate storage limit that determines the maximum fidelity with which
information can be maintained. Recall variability decreased incrementally with time, consistent
with a parallel encoding process in which visual information from multiple objects accumulates
simultaneously in working memory. No evidence was observed for a limit on the number of items
stored.

Cueing one display item with a brief flash led to rapid development of a recall advantage for that
item. This advantage was short-lived if the cue was simply a salient visual event, but was
maintained if it indicated an object of particular relevance to the task. These cueing effects were
observed even for items that had already been encoded into memory, indicating that limited
memory resources can be rapidly reallocated to prioritize salient or goal-relevant information.

Introduction
Working memory (WM) refers to a short-term store for the maintenance and manipulation
of information obtained from the senses (Baddeley and Hitch, 1974; Cowan, 1995; Logie,
1995; Miller et al., 1996). While primary sensory representations are continuously
overwritten by new input, representations in WM are both longer-lasting and more durable
(Sperling, 1960; Phillips, 1974), providing a protected workspace for input to inform
perceptual judgements, decision making and action selection.

The process by which sensory input is transferred into WM is an important topic of both
behavioral and neurophysiological study (Duncan et al., 1994; Chun and Potter, 1995; Enns
and Di Lollo, 1997; Jolicoeur and Dell’Acqua, 1998; Palva et al., 2011). In the visual
domain, the time course of transfer has been explored using a masking procedure in which a
stimulus array is replaced, after a variable exposure duration, by a pattern mask (Breitmeyer,
1984). This overwrites preceding sensory input thereby halting its encoding into visual WM.
A subsequent test of recall of the array provides an estimate of how much information was
transferred in the period of exposure preceding the mask (Shibuya and Bundesen, 1988;
Gegenfurtner and Sperling, 1993; Woodman and Vogel, 2005; Vogel et al., 2006).
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This technique has demonstrated that encoding into WM is slower when there are more
elements in the array, indicating a limit on processing capacity. Studies using this procedure
have estimated the encoding rate to be on the order of 20–100 ms per item. However, the
correct interpretation of this figure is debated. It may be a direct reflection of a serial
process, in which integrated object representations are transferred one-by-one into WM
(Hoffman, 1979). Alternatively it may be an indirect measure of a capacity-limited parallel
process, in which visual input is continuously encoded into WM at a rate determined by total
stimulus load (Shibuya and Bundesen, 1988). It has proven difficult to distinguish between
these two hypotheses, in part because previous studies were based on binary (correct/
incorrect) measures of recall performance.

In contrast to this binary approach, methods for examining the fidelity with which visual
information is stored are becoming of increasing importance in WM research (Palmer, 1990;
Alvarez and Cavanagh, 2004; Wilken and Ma, 2004; Bays and Husain, 2008; Zhang and
Luck, 2008; Bays et al., 2009; Fougnie et al., 2010; Elmore et al., 2011; Brady et al., 2011).
One consequence of this new approach has been a reconsideration of the traditional concept
of WM capacity as reflecting a limited number of independent memory “slots” (typically 3–
4) each storing one object (Pashler, 1988; Luck and Vogel, 1997; Cowan, 2001). Newer
models instead propose a unitary working memory resource that is distributed between
elements of a visual scene: the more items are stored, the less precisely each can be recalled
(Alvarez and Cavanagh, 2004; Wilken and Ma, 2004; Bays and Husain, 2008; Bays et al.,
2009). Critically, these models allow for flexibility in allocation, such that WM resources
can be preferentially directed towards a salient or behaviorally-important object to enhance
the resolution of its storage (Bays and Husain, 2008, 2009).

Here we investigated the temporal evolution of working memory precision, based on
observers’ ability to reproduce the orientations of objects presented in masked displays of
varying size and duration. We characterize two independent constraints on WM capacity: a
storage limit that determines the maximum fidelity with which visual information can be
maintained, and an independent encoding limit that sets the rate at which this capacity is
filled.

We further examined the process of memory reallocation by cueing a single item within the
memory array. The results demonstrate changes in recall precision consistent with a
redistribution of resources towards the cued item, with a corresponding cost to uncued items.
The time course of reallocation depends on the behavioural relevance of the salient cue
event, indicating a competition between bottom-up and top-down influences for control of
the contents of WM. Recall precision provides a simple but effective index to track the
deployment of working memory resources over time.

General methods
Procedure

A total of 68 subjects (25 male, 43 female, aged 18–36 yrs) participated in the study after
giving informed consent. All subjects reported normal color vision and had normal or
corrected-to-normal visual acuity. Stimuli were displayed on a 21″ CRT monitor with a
refresh rate of 140 Hz. Subjects sat with their head supported by a chin-rest and viewed the
monitor at a distance of 60cm. Eye position was monitored online at 1000 Hz using an
infrared eye tracker (SR Research Ltd., Canada).

In all experiments, a trial began with the presentation of a central fixation cross (white, 0.75°
of visual angle) against a gray background. Once a stable fixation was recorded on the cross,
a memory array was presented, consisting of a number of colored oriented bars (0.3° x 2°)
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randomly distributed around fixation at eccentricities in the range 3°–6°, with a minimum
centre-to-centre separation of 3° between items (example in Fig 1a). Each bar had a different
color, and each bar’s orientation was independently chosen at random from the full range of
possible orientations (0°–180°).

The duration of display of the memory array was varied between trials and experiments. At
the end of this exposure period, the memory array was replaced by a pattern mask, presented
for 100 ms. A single (probe) bar was subsequently presented at fixation, with a color
corresponding to one of the items in the preceding memory array. Subjects used an input
dial (PowerMate USB Multimedia controller, Griffin Technology, USA) to adjust the
orientation of the probe item to match the remembered orientation of the item of the same
color in the memory array (the target). The probe’s initial orientation was randomly
assigned. Accuracy was stressed, and responses were not timed. Any trial on which gaze
deviated more than 2° from the central cross during presentation of the memory array was
aborted and restarted with new feature values.

Analysis
A measure of recall error was obtained on each trial in each experiment by calculating the
angular deviation between the orientation reported by the subject and the correct (target)
orientation. For each combination of subject and display time (and cue validity in Exps 2–4)
we calculated the recall bias, defined as the mean of the recall error, and precision, defined
as the reciprocal of the standard deviation of the error. As in previous studies (Bays et al.,
2009, 2011; Gorgoraptis et al., 2011), we used the definition of standard deviation for
circular data given by Fisher (1995), and subtracted from the precision estimate the value
expected by chance (i.e. if the subject had responded at random on each trial).

To quantify the contribution of different sources of error to overall precision estimates in
each experiment, we applied a probabilistic model introduced by Bays et al. (2009) (see also
Zhang & Luck, 2008). This model attributes the distribution of responses on the
reproduction task to a mixture of three components (illustrated in Fig 3a) corresponding to:
reporting the target orientation (top); mistakenly reporting one of the other (non-target)
orientations in the memory array (middle), and responding at random (bottom). Orientations
of all memory array items are recalled with Gaussian variability.

Mathematically the model is described by the following equation:

where θ is the true orientation of the target item,  the orientation reported by the subject,
and k is the von Mises distribution (the circular analogue of the Gaussian) with mean zero
and concentration parameter κ. The probability of reporting the correct target item is given
by α. The probability of mistakenly reporting a non-target item is given by β, and {φ1, φ2,…
φm} are the orientations of the m non-target items. The probability of responding randomly
is given by γ = 1 − α − β .

Maximum likelihood estimates of the parameters α, β, γ and κ were obtained separately for
each subject and experimental condition using an expectation-maximization algorithm. The
optimization procedure was repeated from a range of different initial parameter values to
ensure that global maxima were obtained. Concentration κ was converted to the more
familiar standard deviation, σ, according to the method of Fisher (2005).
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Hypotheses regarding the effects of experimental parameters (exposure duration, array size)
on recall precision and on each component of the mixture model were tested by analysis of
variance (ANOVA). In Exps 2–4, t-tests were used to test for precision advantages for valid
over invalid or neutral trials, and for neutral over invalid trials.

Analysis code is available online at http://www.sobell.ion.ucl.ac.uk/pbays/code/JV10/

Experiment 1
This experiment investigated observers’ ability to reproduce from memory the orientations
of objects presented in masked displays of varying size and duration. Previous studies
testing recall of memory arrays with unmasked displays have shown that the precision with
which each visual item is stored declines rapidly as the number of items increases (Wilken
and Ma, 2004; Bays and Husain, 2008; Bays et al., 2009). Fig 1b illustrates three hypotheses
regarding the encoding of information into memory that are consistent with this finding.

One possibility (illustrated top) is that all items are initially encoded at a fixed rate, but a
limit on memory capacity means that precision reaches a plateau at a maximum value that
depends on the total number of items in the array. Thus when two items are stored, each is
recalled with lower precision than if only one is stored. An alternative possibility (middle) is
that the maximum precision of storage is independent of memory load, but encoding is faster
when there are fewer items; hence precision may still depend on array size unless the display
time is very long. The final possibility (bottom) is that both the maximum storage precision
and the rate of encoding into memory depend on array size, with the two processes
independently influencing precision of recall for any given display time.

Methods
32 subjects participated in Exp 1. The procedure is illustrated in Fig 1a. The number of
items in the memory array varied between subjects, with array sizes of 1, 2, 4 or 6 items
each tested in a different set of 8 subjects. Each item’s color was chosen randomly from a
set of easily-distinguishable colors (black, white, red, green, blue, yellow, magenta, cyan).
The duration of display of the memory array varied between trials. Each subject completed
800 trials in total, consisting of 100 randomly-interleaved trials at each of 8 different display
durations: 25, 50, 75, 100, 125, 300, 500 and 1000 ms. At the end of this exposure period,
the memory array was replaced by a pattern mask for 100 ms, then by a blank interval of
1000 ms, followed by a single probe bar at fixation.

We calculated recall bias and precision for each combination of subject and display time
based on error in reporting the target orientation. To capture the relationship between recall
precision (P) and display duration (t) we fit an equation of the form:

A system obeying this RC equation (named after the Resistor-Capacitor electronics circuit
which displays the same behaviour) has the property that the rate of increase ( ) at time t is
directly proportional to the difference between the current and maximum values (i.e. the
“unfilled” capacity):
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The temporal evolution of recall precision can therefore be fully described by just two
parameters: the maximum precision Pmax , and the initial rate . In previous studies (Bays
and Husain, 2008; Bays et al., 2009) using unmasked displays, the relationship between
precision of storage and the number of items stored was accurately captured by a power law:
P ∞ N−λ. For each subject in the present study we obtained least-squares fits of a power law
relationship between number of items (N) and each of the parameters describing precision
(Pmax and ).

To examine the contribution different sources of error made to recall in this experiment, we
fit a probabilistic model to the response data (see General Methods). Because the model
fitting is data-intensive, and trials were divided between a large number of different memory
array durations, for the purposes of this analysis we binned trials into one of three duration
ranges: short (25–50 ms), intermediate (75–300 ms) and long (500–1000 ms).

Results and Discussion
The fidelity of recall can be characterized by two parameters, bias and precision. Bias
indicates a systematic tendency to deviate from the correct target orientation in the same
direction from trial to trial. No significant biases were observed for any array size or
exposure duration (p > 0.05). Precision measures the degree to which responses cluster
around the correct orientation: a precision of zero indicates that responses are randomly
distributed relative to the target.

Consistent with previous findings, recall precision declined as the number of items in the
memory array increased (Fig 2a, symbols; F1,30 = 40.2, p < 0.001). In addition, precision
varied substantially with exposure duration (F1,30 = 90.7, p < 0.001). Examining
performance for each set size independently (different colors in Fig 2a), a consistent pattern
was observed, consisting of an initial rapid rise in recall precision as exposure was increased
from the minimum duration, followed by saturation at longer display times as precision
approached an asymptotic level.

More specifically, the relationship between precision and display time at each set size was
accurately captured by an RC curve (Fig 2a, dotted lines), in which the rate of increase in
precision at each time point is proportional to the remaining “unfilled” capacity, i.e. the
difference between current and asymptotic precision values (see Methods).

Each RC curve is described by two parameters: an initial rate (plotted in Fig 2b),
corresponding to the slope of the curve at time zero, and a storage limit (Fig 2c)
corresponding to the maximum value to which the curve asymptotes at long durations. Both
the storage limit and the initial rate declined significantly with increasing number of items
(limit: F1,30 = 28.4, p < 0.001; rate: F1,30 = 52.4, p < 0.001), consistent with the hypothesis
illustrated in Fig 1b, bottom.

Fig 2b shows the relationship between encoding rate and the number of items in memory
(N). A power law provided a good fit to the data (R2 = 0.93), with the power constant being
almost exactly one (λ = 1.01 ± 0.14). Thus this result is consistent with a simple inverse
relationship between encoding rate (initial rate of change of precision, ) and array size, i.e.

.

By contrast, the relationship between number of items and maximum precision (the storage
limit) was very different. Previous studies (Bays and Husain, 2008; Bays et al., 2009) using
long exposures have observed a power law relationship (P ∞ N−λ) relating the number of
items in an array (N) to the precision with which each item is stored (P). A similar
relationship was observed in the present study (green line, Fig 2c; R2 = 0.96). But although
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the power constant that best fit the data (λ = 0.60 ± 0.12) was consistent with that obtained
in a previous study based on an orientation discrimination task (λ = 0.69; Bays & Husain,
2008), it was significantly different from that between number of items and rate of encoding
(t6 = 3.7, p = 0.007).

Thus, although both storage and encoding into working memory can be related to N by a
power function, encoding rate fell more rapidly with increasing number of items (compare
Figs 2b and 2c).

The precision measure used thus far to describe performance is a non-parametric statistic
reflecting the fidelity of recall of the target orientation, independent of any particular model
of the underlying response distribution. To investigate how different possible sources of
error contribute to memory precision at different exposure durations, we applied to the data
a previously-developed probabilistic model (Bays et al., 2009; Bays et al., 2011; Gorgoraptis
et al., 2011) that describes the response distribution in terms of three different types of error
(illustrated in Fig 3a; see General Methods for details).

The first source of error is Gaussian variability in recall of the target orientation (Fig 3a,
top). Black symbols in Fig 3b plot the standard deviation of the Gaussian error component
for each set size as a function of display duration (short: ≤ 50 ms; intermediate: 75–300 ms;
long: ≥ 500 ms). Consistent with previous results, recall variability increased significantly
with increasing number of items (F1,30 = 5.8, p = 0.022). Furthermore, recall variability
decreased significantly with increasing exposure time (F1,30 = 5.0, p = 0.034).

A second source of error arises in multiple-item arrays, where subjects on occasion
mistakenly report the orientation of one of the non-target items in the preceding array (Fig
3a, middle). Results of a previous study (Bays et al., 2011) indicated that these errors are
due to misbinding, i.e. errors in recalling which color belongs with which orientation
(Treisman, 1998; Wolfe and Cave, 1999; Wheeler and Treisman, 2002; Robertson, 2003;
Allen et al., 2006). The frequency of binding errors is shown by the blue symbols in Fig 3b.
Consistent with previous results, misbinding frequency increased with increasing memory
load (F1,30 = 49.2, p < 0.001). Binding errors were also more frequent at the briefest display
times (short v intermediate: F1,30 = 8.7, p = 0.006), but their frequency subsequently
appeared to plateau at a value determined by array size (intermediate v long: F1,30 = 0.7, p =
0.73).

A final source of error corresponds to responses randomly distributed relative to target and
non-target orientations (Fig 3a, bottom). These errors may occur when no information about
the target orientation has been stored and subjects simply ‘guess’ at random. Like
misbinding errors, random responses (red symbols in Fig 3b) increased in frequency with
increasing number of items in the array (F1,30 = 21.1, p < 0.001), making a substantial
contribution to the response distribution at the largest set sizes (48% of responses for 6 item
arrays at the shortest display times).

Crucially, however, the frequency of random responses fell rapidly towards zero as exposure
duration increased, with no indication of a plateau as observed for misbinding (short v
intermediate: F1,30 = 36.8, p < 0.001; intermediate v long: F1,30 = 9.4, p = 0.005). This
finding is important for comparison with studies that have attempted to measure WM
storage capacity based on very briefly displayed (≤200ms) memory arrays (e.g. Zhang and
Luck, 2008; Anderson et al., 2011; see General Discussion).

In this experiment, we used presentation of a masking stimulus as a probe into the time
course of WM encoding. One assumption of this approach is that replacing the memory
array with a pattern mask halts encoding of the memory items, but does not significantly
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disrupt the visual information that has already entered working memory storage. An
alternative possibility is that there exists a “window of integration” over which period visual
information from the array and the mask cannot be fully differentiated, resulting in a noisy
representation of the array entering memory.

This possibility was convincingly addressed by a previous study using the same masking
technique to probe WM (Vogel et al., 2006). If the effects of masking a briefly-presented
array are due to sensory integration it should not matter in which order the mask and array
are presented; however, these authors showed that a mask that strongly disrupted recall
when presented after the array had no effect on performance when presented before. This
strongly supports the conclusion that performance costs associated with presenting a mask
after the array (as in the present study) are primarily due to halting encoding before WM
capacity is reached, rather than sensory integration between the mask and array.

Experiment 2
Previous studies have demonstrated that memory resources can be flexibly allocated to
prioritize storage of a cued array item (Bays and Husain, 2008; Gorgoraptis et al., 2011).
Exp 2 was designed to investigate the time-course of this cueing effect.

Methods
16 subjects participated in Exps 2A & B (8 in each). Each trial began with presentation of a
fixation cross followed by a memory array, as in Exp 1. The memory array on each trial
consisted of two colored bars (one blue, one red) with randomly-selected locations and
orientations. A white disk (the cue) was briefly flashed at the location of one of the two
items simultaneously with the onset of the memory array (25 ms duration, 2.5° diameter;
example in Fig 4a).

The duration of the memory array varied between trials, with each subject completing 150
trials at each of 4 different display durations (100, 200, 400, 800 ms), randomly interleaved.
This allowed us to examine the consequences of initial cuing on performance over time. At
the end of this exposure period, the memory array was replaced by a pattern mask for 100
ms, followed by a single probe bar at fixation. Subjects adjusted the orientation of the probe
bar to match the item of the same color in the memory array. Central fixation was enforced
as above.

For subjects in Exp 2A, the cue was predictive of the subsequent probe: on two out of three
trials (randomly-interleaved) the color of the probe item corresponded to the memory item
cued by the white disk. For subjects in Exp 2B, the cue was non-predictive: the probe item
was equally likely to have the color of either item in the memory array.

Note that, in line with previous studies (e.g. Vogel et al., 2006), Exp 1 included a blank
retention interval following the mask, before presentation of the probe stimulus. In tasks
examining recall of unmasked stimuli such a retention interval is necessary to prevent short-
lived iconic memory traces contributing to performance, but as iconic memory is also erased
by a pattern mask (Sperling, 1960; Coltheart et al., 1983) this delay is not essential to the
present experiments. Therefore, to ensure any cueing effects observed in Exp 2 reflected
allocation of resources during array presentation rather than processes occurring during
maintenance (e.g. shifts of attention within the memory representation; Griffin and Nobre,
2003), the retention interval was not included in Exp 2 or the subsequent cueing
experiments.
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Results and Discussion
In this experiment, subjects were tested on their recall of two-item memory arrays, similar to
those in Exp 1. Simultaneous with the onset of the memory array, one item was highlighted
by a very brief flash (the cue; Fig 4). The effect of this cueing event on the subsequent
encoding and storage of the array items was examined by comparing recall performance for
the cued and non-cued items (Fig 5). The post-cue display time was varied to assess the
evolution of cued/non-cued differences in the time following the cue event.

Fig 5a shows recall precision for cued (black) and non-cued items (red) in Exp 2A, in which
the cue was predictive of which item would be probed (cued items were probed twice as
frequently as non-cued items). No differences in recall precision were observed when
exposure time was brief (≤ 200 ms; t7 < 1.1, p > 0.16), but for display durations of 400 ms
and longer a significant recall advantage was observed for the cued item (t7 > 2.3, p < 0.03).

Fig 5b shows performance in Exp 2B, which was identical except that the cue was non-
predictive of the probe (recall was tested for cued and non-cued items with equal frequency).
In this case, a small recall advantage for the cued item was observed at 400 ms (t7 = 2.2, p =
0.034) but the effect was short-lived, with no evidence for a difference in recall at 800 ms (t7
= 0.5, p = 0.61).

The observation of a precision advantage for the flashed item even when the flash was
irrelevant to the memory task implies that a recall advantage can develop “bottom-up” in
response to salient elements in the visual environment. However, the effect of task-irrelevant
cues was rapidly abolished with continuing presentation of the array, while the effect of
predictive cues was maintained, consistent with an additional “top-down” mechanism
enhancing storage of items that are relevant to current goals.

Experiment 3
Because the cue was presented simultaneously with onset of the memory array in Exp 2, the
observed effects on recall could reflect either preferential encoding or preferential allocation
of memory to the cued item. To distinguish between these possibilities, in Exp 3 the cue was
presented only after the memory array had been visible for 1000 ms (Fig 4b), sufficient time
for both items to be fully encoded into memory.

Methods
12 subjects participated in Exps 3A & B (6 in each). The protocol was identical to Exp 2
except that the memory array was displayed for 1000 ms before cue onset, so encoding of
the array itself could not be a limiting factor on performance (Fig 4). The cue was displayed
for 25 ms, and subsequent duration of the memory array following the cue event varied
between trials as above. Each subject completed 200 trials at each of 4 different post-cue
display durations (100, 200, 400, 800 ms) as well as 200 trials in a baseline (0 ms) condition
where the mask was displayed at 1000 ms without a preceding cue event. All trial conditions
were randomly interleaved. As above the cue was predictive of the subsequent probe in Exp
3A and non-predictive in Exp 3B.

Results and Discussion
Fig 5c shows recall precision for cued and non-cued items when a predictive cue was
presented after 1000 ms, as a function of the subsequent post-cue display time.

As expected, in a baseline (0 ms) condition with no cue, array items were recalled with
similar precision (1.6 rad−1) to that observed in Exp 1 for the same array size and display
time (1.3 rad−1). This is consistent with our prediction that encoding of both items into
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memory would be completed by the time of cue presentation in this experiment.
Nonetheless, following presentation of the cue, a significant recall advantage developed for
the cued item (Fig 5c). Note that this effect of cueing was present at a shorter post-cue
exposure duration than when the cue was presented at onset (200 ms: t5 = 2.6, p = 0.02), as
well as being observed at subsequent time points (400 ms: t5 = 3.0, p = 0.015; 800 ms: t5 =
1.9, p = 0.054).

The effects of a non-predictive cue at 1000 ms are shown in Fig 5d. A significant cue
advantage was observed, again at a shorter exposure duration (200 ms: t5 = 3.3; p = 0.023)
than for a cue at onset. However, as when a non-predictive cue was presented at onset (Fig
5b) the advantage for the cued item was abolished at longer post-cue display times (400ms:
t5 = 0.3, p = 0.40; 800ms: t5 = 1.3, p = 0.13).

The differences in time course between predictive and non-predictive cue effects confirm
the findings of Exp 2 that recall precision is influenced by both “bottom-up” (salience-
based) and “top-down” (goal-based) mechanisms. The present results further demonstrate
that the enhancement of recall for cued items can occur even once both items have been
fully encoded into memory, indicating a reallocation of previously-allocated memory
resources to reflect the change in relative priority of the stimuli.

To investigate which of the possible sources of error was responsible for the difference in
recall precision between cued and non-cued items, we applied the probabilistic model
illustrated in Fig 3a to the data from Exps 2 & 3. A significant interaction between cue
validity and post-cue duration was observed for the standard deviation of the Gaussian error
component (F1,19 = 6.7, p = 0.018), indicating that variability was lower for cued than non-
cued items at longer post-cue durations. No significant validity or validity × duration effects
were observed for non-target (F1,19 = 2.4, p = 0.14) or uniform (F1,19 = 0.6, p = 0.45)
components of the model. Hence the effects of cueing do not reflect changes in the
probability that the cued item is stored, but rather the resolution of its storage.

Experiment 4
The results of Exps 2 & 3 suggest that working memory resources can be rapidly reallocated
to a cued item in order to store it with greater fidelity. A strong prediction of this hypothesis
is that the increase in recall precision for a cued item will coincide with a decrease in
precision for other items, which now receive a smaller proportion of memory resources. In
order to test this hypothesis, in Exp 4 we interleaved cue trials, in which we predicted
memory resources would be preferentially allocated to the item highlighted by the flash,
with baseline (neutral-cue) trials designed to encourage equal distribution of resources
between items.

Methods
8 subjects participated in Exp 4. Experimental parameters were chosen to maximize cueing
effects, based on results of the previous experiments: cues were predictive of the probe and
presented after 1000 ms, followed by a post-cue exposure duration of 400 ms. The protocol
was identical to Exp 3A, except for the addition of a neutral-cue condition in which white
disks were flashed at the locations of both array items. Both items were flashed on these
trials to control for general alerting effects of the cue event, independent of which item is
cued. Each subject completed 608 trials in total, consisting of 304 valid-cue trials (probe
matched the cued item), 152 invalid-cue trials (probe matched the non-cued item), and 152
neutral-cue trials (both items were cued), randomly interleaved.
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Results and Discussion
As expected, cueing condition had a substantial effect on the precision with which array
items were recalled (Fig 6a). Recall for cued items, on valid trials, was significantly better
than the baseline precision measured on neutral cue trials (t7 = 2.1, p = 0.04). Consistent
with the resource reallocation hypothesis, baseline performance was in turn superior to recall
of non-cued items, measured on invalid trials (t7 = 3.7, p = 0.004).

Fig 6b shows the best-fitting parameters of the probabilistic model (Fig 3a) obtained for
responses in each cueing condition. Non-target (blue symbols) and random responses (red
symbols) made negligible contribution to the response distribution (< 3% of responses), and
did not vary between cue conditions (F2,14 < 2.4, p > 0.13). In contrast, variability in the
Gaussian response component varied significantly with cue condition (F2,14 = 5.6, p =
0.016), in a manner consistent with the overall effect on precision (valid < neutral: t7 = 2.1,
p = 0.04; neutral < invalid: t7 = 1.8, p = 0.05).

These results confirm that the increase in storage resolution observed for the cued item
comes at the cost of a decrease in resolution for the uncued item, consistent with a partial
withdrawal of limited memory resources from the low priority item and their reallocation to
the item with greater relevance to the task.

General Discussion
Previously, studies of working memory encoding have been based on techniques such as
change detection (Pashler, 1988; Luck and Vogel, 1997; Woodman and Vogel, 2005; Vogel
et al., 2006) or whole report (Sperling, 1960; Shibuya and Bundesen, 1988; Gegenfurtner
and Sperling, 1993) which are intended to measure whether or not a stimulus is stored in
WM. However, a growing body of evidence indicates that this binary classification is
insufficient as a description of WM storage, because stored items can also vary in the
fidelity of their representation (Palmer, 1990; Wilken and Ma, 2004; Alvarez and Cavanagh,
2004; Lakha and Wright, 2004; Awh et al., 2007; Bays and Husain, 2008; Zhang and Luck,
2008; Bays et al., 2009; Fougnie et al., 2010; Bays et al., 2011; Gorgoraptis et al., 2011). In
the present study we combined masked presentation of a memory array with a reproduction
task in order to assess the precision with which briefly-presented visual information is
represented in WM.

Time course of encoding and storage in working memory
In Experiment 1, we observed effects of presentation duration on recall precision (Fig 2) that
were accurately described by the interaction of two separate constraints: a processing limit
that determines the encoding rate at which visual input enters WM, and a storage limit that
sets the maximum precision with which this input can be maintained.

Following prolonged exposure to a visual array, recall should be constrained by limits on
storage only. At the longest display durations, the precision with which each visual item was
recalled declined monotonically with the number of items in the array. As observed in
previous studies (Bays and Husain, 2008; Bays et al., 2009), this relationship between
precision and memory load was accurately described by a power law (Fig 2c). The results
are consistent with a limit on the total amount of visual information that can be maintained
in WM.

In contrast, when a visual array is presented very briefly, the quality of subsequent recall
should depend primarily on how rapidly visual information can be transferred into WM. At
the shortest exposure durations, the precision of recall was significantly reduced compared
to prolonged exposure, but precision was still highly dependent on the total number of items
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to be encoded. Rather than a power law, the initial rate of rise in precision was found to have
a simple inverse (1/N) relationship with the number of items in the array (Fig 2b), consistent
with a limit on processing capacity that is independent of the previously-identified limit on
storage.

This same inverse relationship between processing rate and set size is the basis of an
influential model of visual attention (TVA) which has had considerable success in
reproducing many classical results in visual search and divided attention (Bundesen, 1990;
Bundesen and Habekost, 2008). TVA is an example of a parallel model, in which multiple
stimuli are processed simultaneously in a race for storage in working memory, as distinct
from serial models in which stimuli are selected one at a time for attentional processing
followed by transfer to WM (Hoffman, 1979; Wolfe, 1994).

Sources of error in recall: variability, misbinding and guessing
Both parallel and serial models are consistent with an increase in recall performance with
exposure duration, as observed in the present study, but they make different predictions
regarding the distribution of errors in the reproduction task. To investigate, we applied to
our data a probabilistic model of response selection (Bays et al., 2009) which assigns errors
to one of three components (Fig 3a): Gaussian-distributed errors due to variability in recall
of the target orientation, “binding errors” where the orientation of one of the other non-target
items is erroneously reported, and random errors which are unrelated to any of the
orientations in the memory array.

According to a serial model of WM encoding, reducing the encoding time results in a
stepwise decrease in the number of items present in memory, and hence an increase in
random responding (i.e. guessing). However, each item that gains access to memory has
already been fully processed to the maximum possible resolution, so this model predicts no
effect of exposure duration on the variability of the Gaussian error distribution.

In fact, both random responding and variability declined with increasing exposure duration
(Fig 3b). The changes in variability rule out a strictly serial model, in which items are
transferred to WM only once their processing is complete. Indeed, substantial effects of
exposure duration on recall variability were observed even when there was only one item in
the display, indicating gradual accumulation of visual information into a single WM
representation.

At the briefest presentation times there was evidence for a substantial frequency of random
responses, particularly with larger arrays. While superficially this appears inconsistent with
a process in which all array items are encoded simultaneously into WM, parallel models
such as TVA typically incorporate a stochastic element, such that different items are
encoded at different rates from trial to trial (Bundesen, 1990). As a result, at any given
moment during encoding, each item will be at a different stage of representation in working
memory. For very brief presentations, therefore, encoding of some items may be at such an
early stage that responses are indistinguishable from chance.

Consistent with this hypothesis, random responses declined to negligible levels as exposure
time increased (Fig 3). At the longest exposures the frequency of random responding was
equivalent to less than one item per array, indicating that information eventually
accumulated in WM about every item presented. However, the evidence for incomplete
encoding of larger arrays even with exposures as long as 300 ms may have important
consequences for studies that attempt to measure WM storage capacity based on very briefly
displayed memory arrays.
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Our findings suggest that recall errors following brief exposures may reflect incomplete
encoding of array stimuli into working memory, as opposed to limits on its capacity. This
may in part explain why some recent studies using exposures of ≤200 ms have obtained
results that, interpreted in terms of capacity, would indicate working memory can hold only
~2 colors or orientations at one time (Zhang and Luck, 2008; Anderson et al., 2011), a
finding not supported by the present results nor by previous studies using >500 ms
presentation times (e.g. Bays et al., 2009; Fougnie et al., 2010; Gorgoraptis et al., 2011).

The habitual use of short exposure durations in working memory studies appears to have
arisen with two aims in mind: (1) minimizing eye movements during the exposure period,
and (2) limiting the contribution of long-term memory (LTM) to recall. Shifts of gaze
between display elements could potentially disrupt encoding through saccadic suppression
of visual input, or bias storage towards the smaller set of fixated memory items. However,
these effects are best excluded by active monitoring of eye position (as in the present study)
rather than reducing display duration.

The possibility that activation of long-term memory representations may contribute to recall
performance is more difficult to exclude. However, selecting memory targets from a
continuous feature space (e.g. the 180° range of orientations in the present study) as opposed
to a small set of discrete features values (as common in change detection tasks, e.g. Luck &
Vogel, 1997) will tend to limit the usefulness of LTM representations as aides to recall.
More importantly, there is little evidence to suggest contamination by LTM is prevented by
using brief (e.g. 100 ms) displays. In particular, the smooth evolution of recall precision
with time observed in the present study (Fig 2a), does not support a two-stage process of
sequential encoding into WM and then LTM, but rather is consistent with a continuous
process of encoding visual information into a single capacity-limited store.

The third component of the response distribution corresponds to binding errors (Treisman,
1998; Wolfe and Cave, 1999; Wheeler and Treisman, 2002; Robertson, 2003; Allen et al.,
2006; Bays et al., 2011). These errors occur because accurate reproduction of the probed
item requires not only recall of the orientations in the preceding array, but also recall of
which orientation corresponds to the probed color. If the “binding information” which pairs
orientations with colors becomes corrupted, subjects may respond with the orientation of
one of the other, non-target items in the memory array.

These binding errors occurred with greatest frequency at the shortest exposure durations, but
importantly, unlike random errors, their frequency appeared to plateau at a constant level as
presentation time increased. This limiting frequency increased with array size, indicating
that binding errors became more prevalent as array size increased. Hence the overall decline
in recall performance with increasing memory load has two main components: an increase in
the variability with which individual features are stored, and a decline in the fidelity with
which bindings between feature dimensions are maintained. Similarly, both misbinding and
increasing variability contribute independently to the increase in recall error observed at
shorter encoding times (Fig 3b).

The observation of increases in both variability and misbinding with number of items in the
memory array, here and in previous studies (Bays and Husain, 2008, 2009; Bays et al., 2009;
Fougnie et al., 2010; Bays et al., 2011; Gorgoraptis et al., 2011), has been interpreted as
supporting a shared-resource model of visual working memory. According to this proposal,
a single memory resource is distributed between the elements of a visual scene. As more
items are stored, less resource is available per item, with the result that both object features
and feature bindings are maintained with decreasing fidelity.
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Time course of allocation and reallocation of working memory resources
A critical claim of the shared-resource account of WM is that the distribution of resources is
flexible, such that prioritized items can be allocated a greater share of resources and hence
be remembered with enhanced precision (Bays and Husain, 2008). This marks the clearest
point of contrast with the influential “slot” model of WM, in which every visual object is
either represented in its entirety in an individual memory slot, or else not stored at all
(Pashler, 1988; Luck and Vogel, 1997; Cowan, 2001).

In Experiments 2–4, we observed significant advantages in the precision of recall for a
memory array item cued by a brief flash (Figs 4 & 5). This effect was due to a decrease in
the variability with which the cued item was stored, rather than changes in the probability of
storage (Zhang and Luck, 2008), and this decrease was matched by a corresponding increase
in variability for the non-cued item (Fig 6), as predicted by a resource model.

A precision advantage for the flashed item was observed even when the flash was irrelevant
to the memory task, indicating an automatic “bottom-up” allocation of memory resources to
the location of the salient external event. However, varying the post-cue presentation time of
the memory array revealed that this bottom-up effect was short-lived: precision of cued and
non-cued items returned to equality within a few hundred milliseconds given continued
exposure to the array.

In contrast, if the flash was predictive of which item was most likely to be probed in the
subsequent test of recall, the advantage for the cued item was maintained even up to the
longest post-cue exposure durations (800 ms). This is consistent with the influence of an
additional “top-down” influence on working memory allocation, biasing the resource
distribution towards the goal-relevant item.

Crucially, while the importance of both bottom-up and top-down influences on encoding of
visual information is widely recognised (Posner, 1980; Bundesen, 1990; Desimone and
Duncan, 1995; Theeuwes and Burger, 1998; Kastner and Ungerleider, 2000; Lamy and
Zoaris, 2009; Bays et al., 2010), the present effects on recall precision were observed even
when the flash occurred during the maintenance phase of working memory storage, i.e. once
both items had been fully encoded into memory (Fig 5c & d). Indeed, even when the cue
was presented at the onset of the array, significant advantages for the cued item did not
develop until after encoding of both items was largely complete (with the result that the cue
effect was delayed compared to presentation during maintenance).

These results are consistent with a rapid reallocation of limited working memory resources.
Storage capacity, initially equally distributed between items, is partially withdrawn from the
uncued item, with a cost to the resolution of its representation in memory. This freed
capacity is used to encode additional information about the cued item, enhancing the
precision of its memory representation.

Conclusions
In this study, we have examined how the precision with which visual objects are stored in
working memory depends on the duration of their presentation. Recall performance was
limited by the rate at which visual information could be encoded into memory. Our findings
are consistent with a parallel encoding model in which multiple items are processed
simultaneously, resulting in increasingly precise representation in WM as exposure time
increases.

Recall was also constrained by an upper limit on the information stored about the array,
consistent with allocation of a limited resource of WM storage determining the maximum
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resolution with which each item can be maintained. Cueing individual items within the array
revealed flexible reallocation of storage, increasing the resolution of recall for visually-
salient or behaviorally-important items at the cost of reduced precision for lower priority
items. Such redistribution may allow an optimal allocation of memory resources to be
maintained in the face of frequent shifts in the behavioral relevance of objects in our visual
environment.
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Figure 1. Assessing effects of exposure duration on recall of orientation
(a) The recall task used in Exp 1. An array of colored oriented bars was presented for a
variable exposure duration, followed by a pattern mask. After a blank retention interval, a
probe bar appeared and subjects used a response dial to adjust its orientation to match the
item with the same color in the memory array (the target). The angular difference between
response and target orientations was taken as a measure of recall error.
(b) Three hypotheses regarding the evolution of recall precision with exposure time, as a
function of the number of items in the memory array. Here, lighter shades indicate more
items stored in memory. The top panel is based on an assumption of limited storage
capacity: as more items are stored the maximum-attainable precision declines. The middle
panel depicts the case of limited encoding capacity: eventually the same level of precision is
reached regardless of array size. Finally, the lower panel shows expected performance when
both storage and encoding capacities are limited. Compare these possible results with the
actual findings in Fig 2a.
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Figure 2. Temporal evolution of working memory precision
(a) Recall precision as a function of exposure duration and number of array items (N).
Precision is defined as the reciprocal of the standard deviation of error in the reproduction
task. Error bars indicate ± 1 SE. Dashed lines indicate RC curves (see Methods) with
parameters that best fit the temporal evolution of recall precision at each array size.
(b) The initial rate of encoding into memory was estimated from the rate parameter of the
fitted RC curve (inset). The initial rate (black symbols) declined with array size according to
a simple inverse relationship (i.e. rate proportional to 1/N, red curve).
(c) The upper lmiit on precision was estimated from the capacity parameter of each RC
curve (inset). This storage limit (black symbols) declined with array size more slowly than
encoding rate, following a power law relationship (i.e. maximum precision proportional to
N−λ, green curve).
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Figure 3. Components of error in the working memory task
(a) The distribution of responses was decomposed into a mixture of three separate
components: responses distributed with Gaussian variability around the correct (target, T)
orientation (top), responses distributed around the orientations of other, non-target (NT)
items in the memory array (middle), and random responses distributed uniformly
throughout the response space (bottom).
(b) Maximum likelihood estimates of parameters of the mixture model illustrated in (a), for
different array sizes and exposure durations. Gaussian variability in target responses (black
symbols) increases with array size but decreases with exposure duration. The frequencies of
non-target (blue) and random (red) responses also increase with array size. Note that random
responding declines rapidly with increasing exposure duration, but non-target (misbinding)
errors maintain a constant frequency at intermediate and long durations. Error bars indicate
± 1 SE.
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Figure 4. Assessing cueing effects on recall performance
(a) The recall task used in Exp 2. Memory arrays consisted of two randomly-oriented bars
(one red, one blue). A randomly-selected bar was cued by a briefly flashed white disk
presented simultaneously with the onset of the memory array. After a variable post-cue
display period, in which the memory array remained visible, a pattern mask was presented.
Subjects adjusted a probe bar to reproduce the orientation of one of the array items, as in
Exp 1.
(b) The recall task used in Exp 3. The procedure was identical to Exp 2, except that the
memory array was displayed for 1000 ms before one of the bars was cued, in addition to the
variable post-cue display period. In Exps 2A & 3A, the cue predicted which item would be
probed on 2/3 trials; in Exps 2B & 3B, the cue was not predictive of the probe.
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Figure 5. Time course of cueing effects on encoding and maintenance
(a) Recall precision as a function of exposure duration when a predictive cue was presented
at array onset, for trials on which memory was probed for the cued item (valid trials, black)
and non-cued item (invalid trials, red). Error bars indicate ± 1 SE. Asterisks indicate time
points at which there was a significant recall advantage for cued over non-cued items (p <
0.05). Dotted vertical line and shaded area indicate onset and duration of the cue event.
(b) Recall precision plotted as in (a), but for subjects presented with non-predictive (task-
irrelevant) cues. Note that, unlike for predictive cueing, the advantage for the cued item is
abolished at longer exposure durations.
(c) Recall precision for predictive cues presented after 1000 ms exposure to the memory
array, plotted as a function of post-cue display time. Note that high-resolution
representations of both items are already stored in memory at the time of cue presentation (0
ms condition). (□) indicates a cued-item advantage with borderline statistical significance (p
= 0.054).
(d) Recall precision for non-predictive cues after 1000 ms exposure. Note the cued item
advantage is again abolished at longer exposures.
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Figure 6. Recall of cued and non-cued items relative to baseline
(a) Recall precision in Exp 4 on invalid- and valid-cue trials, in which one array item was
cued with a flash, and on neutral-cue trials, in which both items were flashed. Cues were
presented after 1000 ms, and post-cue exposure was 400 ms. Single cues were predictive of
which item would be probed (valid trials twice as frequent as invalid). Asterisks indicate
significant differences, p < 0.05.
(b) Maximum likelihood estimates of parameters of the mixture model (illustrated in Fig 3),
for invalid-, valid- and neutral-cue trials. Note cueing condition is reflected in variability of
the Gaussian response component, while non-target and uniform components make
negligible contribution to errors.
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