Nikos Logothetis

Nikos Logothetis
Max Planck Institute for Biological Cybernetics | KYB · Department of Physiology of Cognitive Processes

About

650
Publications
79,195
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
54,048
Citations
Citations since 2016
98 Research Items
20378 Citations
201620172018201920202021202205001,0001,5002,0002,5003,000
201620172018201920202021202205001,0001,5002,0002,5003,000
201620172018201920202021202205001,0001,5002,0002,5003,000
201620172018201920202021202205001,0001,5002,0002,5003,000

Publications

Publications (650)
Preprint
Full-text available
The therapeutic use of noradrenergic drugs makes the evaluation of their effects on cognition of high priority. Norepinephrine (NE) is an important neuromodulator for a variety of cognitive processes, including memory. The NE transmission fluctuates with the behavioral state and influences associated neural activity. Here, we addressed the role of...
Preprint
Transient phenomena play a key role in coordinating brain activity at multiple scales, however,their underlying mechanisms remain largely unknown. A key challenge for neural data science is thus to characterize the network interactions at play during these events. Using the formalism of Structural Causal Models and their graphical representation, w...
Preprint
Full-text available
Illusions are a powerful tool for studying the single neuron correlates of perception. Here, we introduce the neon color spreading (NCS) illusion in mice and report the neuronal correlates of illusory brightness, which has heretofore only been studied using human fMRI. We designed a novel NCS paradigm to evoke the percept of an illusory drifting gr...
Article
Full-text available
Significance Brainstem locus coeruleus (LC) noradrenergic neurons produce an arousal-related state characterized by a broadband increase in high-frequency oscillations. This perspective was built upon electrical or optogenetic stimulation that artificially activates LC neurons synchronously. This has led to the conceptual model that LC activation i...
Preprint
Transient recurring phenomena are ubiquitous in many scientific fields like neuroscience and meteorology. Time inhomogenous Vector Autoregressive Models (VAR) may be used to characterize peri-event system dynamics associated with such phenomena, and can be learned by exploiting multi-dimensional data gathering samples of the evolution of the system...
Article
Full-text available
A major debate about the neural correlates of conscious perception concerns its cortical organization, namely, whether it includes the prefrontal cortex (PFC), which mediates executive functions, or it is constrained within posterior cortices. It has been suggested that PFC activity during paradigms investigating conscious perception is conflated w...
Article
Full-text available
In the adult visual system, topographic reorganization of the primary visual cortex (V1) after retinal lesions has been extensively investigated. In contrast, the plasticity of higher order extrastriate areas following retinal lesions is less well studied. Here, we used fMRI to study reorganization of visual areas V2/V3 following the induction of p...
Preprint
Full-text available
Attention is central to learning stimulus-outcome relationships. In addition to its role in learning, attention has been conceptualized as a sensory filter that improves perception. It remains unexplored whether these two aspects of attention interact at the behavioral and neural level. Thus, we investigated how learning novel stimulus-outcome asso...
Article
Full-text available
Water restriction is commonly used to motivate rodents to perform behavioral tasks; however, its effects on hydration and stress hormone levels are unknown. Here, we report daily body weight and bi-weekly packed red blood cell volume and corticosterone in adult male rats across 80 days for three commonly used water restriction schedules. We also as...
Poster
This poster presents a general approach for event-based dynamic analysis in brain states, named DeSnap. The abstract can be found at: https://abstracts.g-node.org/conference/BC21/abstracts#/uuid/1a76348e-c7cd-4417-84bd-2805ed39d9ec
Article
Time series data sets often contain heterogeneous signals, composed of both continuously changing quantities and discretely occurring events. The coupling between these measurements may provide insights into key underlying mechanisms of the systems under study. To better extract this information, we investigate the asymptotic statistical properties...
Article
Full-text available
Rats have been used as animal models for human diseases for more than a century, yet a systematic understanding of basal biobehavioral phenotypes of laboratory rats is still missing. In this study, we utilize wireless tracking technology and videography, collect and analyze more than 130 billion data points to fill this gap, and characterize the ev...
Preprint
Full-text available
During sleep, cortical network connectivity likely undergoes both synaptic potentiation and depression through system consolidation and homeostatic processes. However, how these modifications are coordinated across sleep stages remains largely unknown. Candidate mechanisms are Ponto-Geniculo-Occipital (PGO) waves, propagating across several structu...
Article
Full-text available
Digitized neuroanatomical atlases that can be overlaid onto functional data are crucial for localizing brain structures and analyzing functional networks identified by neuroimaging techniques. To aid in functional and structural data analysis, we have created a comprehensive parcellation of the rhesus macaque subcortex using a high-resolution ex vi...
Article
The brainstem noradrenergic locus coeruleus (LC) is reciprocally connected with the prefrontal cortex (PFC). Coupling between LC spiking and the depolarizing phase of slow (1 - 2 Hz) waves in PFC field potentials during sleep and anesthesia suggests that LC drives cortical state transition. Reciprocal LC-PFC connectivity should also allow interacti...
Article
Full-text available
Cortical slow rhythmic activity, a hallmark of deep sleep, is observed under urethane anesthesia. Synchronized fluctuations of the membrane excitability of a large neuronal population are reflected in the extracellular Local Field Potential (LFP), as high-amplitude slow (∼1 Hz) oscillations (SO). The SO-phase indicates the presence (Up) or absence...
Article
Full-text available
An alerting sound elicits the Acoustic Startle Response (ASR) that is dependent on the sound volume and organisms’ state, which is regulated by neuromodulatory centers. The locus coeruleus (LC) neurons respond to salient stimuli and noradrenaline release affects sensory processing, including auditory. The LC hyperactivity is detrimental for sensori...
Article
Full-text available
The hippocampus has a major role in encoding and consolidating long-term memories, and undergoes plastic changes during sleep¹. These changes require precise homeostatic control by subcortical neuromodulatory structures². The underlying mechanisms of this phenomenon, however, remain unknown. Here, using multi-structure recordings in macaque monkeys...
Article
Full-text available
A Correction to this paper has been published: https://doi.org/10.1038/s41586-020-03068-9.
Preprint
Spike-field coupling characterizes the relationship between neurophysiological activities observed at two different scales: on the one hand, the action potential produced by a neuron, on the other hand a mesoscopic “field” signal, reflecting subthreshold activities. This provides insights about the role of a specific unit in network dynamics. Howev...
Preprint
The insula has been classically divided into vast granular, dysgranular and agranular sectors. Over the years, several distinct studies proposed subdivisions of these sectors, with however no consensus. We recently proposed a cyto- and myelo-architectonic partition in which each sector contained sharply delimited areas (Evrard et al. 2014 J Comp Ne...
Preprint
Full-text available
Digitized neuroanatomical atlases are crucial for localizing brain structures and analyzing functional networks identified by magnetic resonance imaging (MRI). To aid in MRI data analysis, we have created a comprehensive parcellation of the rhesus macaque subcortex using a high-resolution ex vivo structural imaging scan. The structural scan and its...
Chapter
The ability to non-invasively study the architecture and function of the human brain constitutes one of the most exciting cornerstones for modern medicine, psychology and neuroscience. Current in vivo imaging techniques not only provide clinically essential information and allow new forms of treatment but also reveal insights into the mechanisms be...
Preprint
Full-text available
Time series datasets often contain heterogeneous signals, composed of both continuously changing quantities and discretely occurring events. The coupling between these measurements may provide insights into key underlying mechanisms of the systems under study. To better extract this information, we investigate the asymptotic statistical properties...
Preprint
Full-text available
The brainstem noradrenergic locus coeruleus (LC) is reciprocally connected with the prefrontal cortex (PFC). Strong coupling between LC spiking and depolarizing phase of slow (1 - 2 Hz) waves in the PFC field potentials during sleep and anesthesia suggests that the LC drives cortical state transition. Reciprocal LC-PFC connectivity should also allo...
Article
Full-text available
Significance In a technical tour de force, we have created a framework demonstrating the underlying fundamental principles of bidirectional coupling of neuronal and neurotransmitter dynamical systems. Specifically, in the present study, we combined multimodal neuroimaging data to causally explain the functional effects of specific serotoninergic re...
Article
Functional magnetic resonance imaging (fMRI) is an extensively used method for the investigation of normal and pathological brain function. In particular, fMRI has been used to characterize spatiotemporal hemodynamic response to pharmacological challenges as a non-invasive readout of neuronal activity. However, the mechanisms underlying regional si...
Preprint
Full-text available
The noradrenergic locus coeruleus (LC) is crucial for controlling brain and behavioral states. While synchronous stimulation of LC neurons evokes a single activated cortical state with increased high-frequency power, little is known about how spontaneous patterns of LC population activity drive cortical states. Since LC neurons selectively project...
Preprint
Full-text available
In perceptual multistability, the content of consciousness alternates spontaneously between different interpretations of unchanged sensory input. The source of these internally driven transitions in conscious perception is unknown. Here we show that transient, low frequency (1-9 Hz) perisynaptic bursts in the macaque lateral prefrontal cortex prece...
Preprint
Full-text available
Multiple theories attribute to the primate prefrontal cortex a critical role in conscious perception. However, opposing views caution that prefrontal activity could reflect other cognitive variables during paradigms investigating consciousness, such as decision-making, monitoring and motor reports. To resolve this ongoing debate, we recorded from p...
Article
Full-text available
Extensive in vivo imaging studies investigate the hippocampal neural network function, mainly focusing on the dorsal CA1 region given its optical accessibility. Multi-modality fMRI with simultaneous hippocampal electrophysiological recording reveal broad cortical correlation patterns, but the detailed spatial hippocampal functional map remains lack...
Article
Full-text available
Significance The duration of cerebral ischemia is a key factor in determining the severity of brain damage and the course of action. Thus, an accurate and timely observation of the ischemic process is highly critical. Here we present a molecular neuroimaging approach that enables direct detection and real-time visualization of transient cerebral is...
Article
Full-text available
Significance We describe a quantitative and robust definition of a brain state as an ensemble of “metastable substates,” each with a probabilistic stability and occurrence frequency. Fitting this to a generative whole-brain model provides an innovative avenue for predicting where simulated brain stimulation can force transitions between different b...
Article
Significance Neuroimaging studies suggest differences in the underlying biology of sexual arousal associated with sex and sexual orientation, yet their findings are conflicting. Following a thorough statistical review of all significant neuroimaging studies, we offer strong quantitative evidence that the neuronal response to visual sexual stimuli,...
Article
Full-text available
Sensory input is inherently ambiguous but our brains achieve remarkable perceptual stability. Prior experience and knowledge of the statistical properties of the world are thought to play a key role in the stabilization process. Individual differences in responses to ambiguous input and biases toward one or the other interpretation could modulate t...
Article
Thanks to their versatile magnetic and luminescence features, lanthanide complexes have gained a central position in biomedical imaging as magnetic resonance imaging (MRI) contrast agents and optical imaging probes. In addition, appropriate chemical design allows modification of the magnetic relaxation properties of GdIII complexes and the optical...
Conference Paper
By making use of the second-level significance testing algorithm, higher criticism, we devise a novel and robust method to effectively detect weak signals in neurophysiological data including neuronal spiking, large deflections, and multiunit spiking activity. We detect and sort of the peaks by relying only on the intrinsic statistical distribution...
Preprint
Full-text available
Information processing in the brain is conducted by a concerted action of multiple neural populations. Gaining insights in the organization and dynamics of such populations can best be studied with broadband intracranial recordings of so-called extracellular field potential, reflecting neuronal spiking as well as mesoscopic activities, such as wave...
Article
Full-text available
The noninvasive estimation of neuronal receptive field (RF) properties in vivo allows a detailed understanding of brain organization as well as its plasticity by longitudinal following of potential changes. Visual RFs measured invasively by electrophysiology in animal models have traditionally provided a great extent of our current knowledge about...
Article
Full-text available
Discovering neural correlates of subjective perception and dissociating them from sensory input has fascinated neuroscientists for a long time. Bistable and multistable perception phenomena have exhibited great experimental potential to address this question. Here, we performed electrophysiological recordings from single neurons in lateral intrapar...
Article
Glutamate and γ-aminobutyric acid (GABA) are the most common neurotransmitters in the central nervous system. By exciting, inhibiting, and modulating neural elements and microcircuits, these chemicals critically regulate brain information processing and energy metabolism at different spatiotemporal scales. Although a great deal of work has been don...
Article
Full-text available
The role of lateral prefrontal cortex (LPFC) in mediating conscious perception has been recently questioned due to potential confounds resulting from the parallel operation of task related processes. We have previously demonstrated encoding of contents of visual consciousness in LPFC neurons during a no-report task involving perceptual suppression....
Article
Full-text available
Significance fMRI changes are typically assumed to be due to changes in neural activity, although whether this remains valid under the influence of neuromodulators is relatively unknown. Here, we found evidence that intracortical acetylcholine elicits distinct profiles of fMRI and electrophysiological activity in visual cortex. Two patterns of chol...
Article
Cognition fluctuates over relatively faster and slower timescales. This is enabled by dynamic interactions among cortical neurons over similarly diverse temporal and spatial scales. Fast and slow cognitive processes, such as reorienting to surprising stimuli or using experience to develop a behavioral strategy, are also sensitive to neuromodulation...
Article
Forming reliable memories requires coordinated activity within distributed brain networks. At present, neural mechanisms underlying systems-level consolidation of declarative memory beyond the hippocampal-prefrontal interactions remain largely unexplored. The mediodorsal thalamic nucleus (MD) is reciprocally connected with the medial prefrontal cor...
Article
Hippocampal ripple oscillations likely support reactivation of memory traces that manifest themselves as temporally organized spiking of sparse neuronal ensembles. However, the network mechanisms concurring to achieve this function are largely unknown. We designed a multi-compartmental model of the CA3-CA1 subfields to generate biophysically realis...
Article
Understanding the underlying mechanisms of the human brain in health and disease will require models with necessary and sufficient details to explain how function emerges from the underlying anatomy and is shaped by neuromodulation. Here, we provide such a detailed causal explanation using a whole-brain model integrating multimodal imaging in healt...
Article
Diffuse projections of locus coeruleus (LC) neurons and evidence of synchronous spiking have long been perceived as features of global neuromodulation. Recent studies demonstrated the possibility of targeted modulation by subsets of LC neurons. Non-global neuromodulation depends on target specificity and the differentiated spatiotemporal dynamics w...
Preprint
The non-invasive measurements of neuronal receptive field (RF) properties in-vivo allow a detailed understanding of brain organization as well as its plasticity by longitudinal following of potential changes. Visual RFs measured invasively by electrophysiology in animal models have traditionally provided a great extent of our current knowledge abou...
Article
Full-text available
Damage to the primary visual cortex (V1) leads to a visual field loss (scotoma) in the retinotopically corresponding part of the visual field. Nonetheless, a small amount of residual visual sensitivity persists within the blind field. This residual capacity has been linked to activity observed in the middle temporal area complex (V5/MT+). However,...
Article
Full-text available
Significance The spatial structure of correlated activity of neurons in lower-order visual areas has been shown to linearly decrease as a measure of distance. The shape of correlated variability is a defining feature of cortical microcircuits, as it constrains the computational power and diversity of a region. We show here a nonmonotonic spatial st...
Article
Full-text available
Spatial navigation depends on the hippocampal function, but also requires bidirectional interactions between the hippocampus (HPC) and the prefrontal cortex (PFC). The cross-regional communication is typically regulated by critical nodes of a distributed brain network. The thalamic nucleus reuniens (RE) is reciprocally connected to both HPC and PFC...
Preprint
Functional neuroimaging is a powerful non-invasive tool for studying brain function, using changes in blood-oxygenation as a proxy for underlying neuronal activity. The neuroimaging signal correlates with both spiking, and various bands of the local field potential (LFP), making the inability to discriminate between them a serious limitation for in...
Preprint
Full-text available
The “initial-dip” is a transient decrease frequently observed in functional neuroimaging signals, immediately after stimulus onset, and is believed to originate from a rise in deoxy-hemoglobin (HbR) caused by local neural activity. It has been shown to be more spatially specific than the hemodynamic response, and is believed to represent focal neur...
Article
Neural oscillations are ubiquitously observed in cortical activity, and are widely believed to be crucial for mediating transmission of information across the cortex. Yet, the neural phenomena contributing to each oscillation band, and their effect on information coding and transmission, are largely unknown. Here, we investigated whether individual...
Preprint
Correlated fluctuations of single neuron discharges, on a mesoscopic scale, decrease as a function of lateral distance in early sensory cortices, reflecting a rapid spatial decay of lateral connection probability and excitation. However, spatial periodicities in horizontal connectivity and associational input as well as an enhanced probability of l...
Preprint
Full-text available
Damage to the primary visual cortex (V1) leads to a visual field loss (scotoma) in the retinotopically corresponding part of the visual field. Nonetheless, a small amount of residual visual sensitivity persists within the blind field. This residual capacity has been linked to activity observed in the middle temporal area complex (V5/MT+). However,...
Article
Full-text available
Functional brain development is not well understood. In the visual system, neurophysiological studies in nonhuman primates show quite mature neuronal properties near birth although visual function is itself quite immature and continues to develop over many months or years after birth. Our goal was to assess the relative development of two main visu...
Preprint
Full-text available
The non-specific neuromodulation of the forebrain by the noradrenergic locus coeruleus (LC) is a foundation of wide-ranging theories of cognitive and systems neuroscience. The non-specificity is assumed because of the diffuse projections of the nucleus as well as the synchronous spiking of its neurons. Synchrony, however, has never been assessed in...
Chapter
Brain activity is continuously changing, among others reflecting the effects of neuromodulation on multiple spatial and temporal scales. By altering the input–output relationship of neural circuits, neuromodulators can also affect their energy expenditure, with concomitant effects on the hemodynamic responses. Yet, it is still unclear how to study...
Conference Paper
Full-text available
Purpose: Neuromodulators alter the input-output relationship of neural circuits and their energy expenditure, with concomitant effects on the hemodynamic response, and thereby neuromodulators can affect functional magnetic resonance (fMRI) signals as well. Yet, the effects of neuromodulation on fMRI responses are still unclear, limiting our ability...
Preprint
Neuronal coherence is thought to constitute a unique substrate for information transmission distinct from firing rate. However, since the spatial scale of extracellular oscillations typically exceeds that of firing rates, it is unclear whether coherence complements or compromises the rate code. We examined responses in the macaque primary visual co...
Article
We compare several major white-matter tracts in human and macaque occipital lobe using diffusion magnetic resonance imaging. The comparison suggests similarities but also significant differences in the tracts. There are several apparently homologous tracts in the 2 species, including the vertical occipital fasciculus (VOF), optic radiation, forceps...
Article
In primates, posterior auditory cortical areas are thought to be part of a dorsal auditory pathway that processes spatial information. But how posterior (and other) auditory areas represent acoustic space remains a matter of debate. Here we provide new evidence based on functional magnetic resonance imaging (fMRI) of the macaque indicating that spa...
Article
Full-text available
Brain activity is continuously changing, among others reflecting the effects of neuromodulation on multiple spatial and temporal scales. By altering the input-output relationship of neural circuits, neuromodulators can also affect the energy expenditure with concomitant effects on the hemodynamic responses. Yet, it is still unclear how to study and...