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Abstract – Liberalized electricity markets, smart grids and high penetration of Renewable 
Energy Sources  necessitate the development of novel pricing schemes able to manage 
energy consumption (energy efficiency services) and harmonize unpredictable and volatile 
production with ad-hoc consumption (flexibility services). As a result, Energy Service 
Providers  can considerably lower the cost of energy that they purchase from the wholesale 
market and create new revenue streams, while end users (consumers) can lower their 
electricity bills and enjoy digital services via the use of the Energy Service Provider’s online 
software platform. Price-based Demand Side Management  techniques can trigger the 
desired behavioral changes and generate novel services and business models for the Energy 
Service Provider’s participation in congestion, balancing, peer-to-peer and other emerging 
flexibility markets. As we argue in this paper, the energy pricing schemes proposed so far 
(e.g. Real Time Pricing) do not provide strong enough financial incentives to consumers to 
modify their energy consumption habits (which leads to reduction of energy cost), as they 
are unfair and thus unable to effectively trigger behavioral changes and enter competitive 
flexibility markets. Based on this observation, we develop a Behavioral Real Time Pricing  
scheme, which offers an easily adjustable level of financial incentives to participating users 
by fairly rewarding the ones that make desirable behavioral changes in the way they 
consume electricity. Performance evaluation results demonstrate that the proposed billing 
scheme affects the behavior of the consumers much more efficiently than the traditional 
Real Time Pricing mechanism, outperforming the latter in all widely adopted metrics. Our 
billing mechanism is able to simultaneously: i) significantly reduce energy cost compared 
with Real Time Pricing (10%-30%), ii) slightly increase end users’ welfare (2%-4%) and iii) 
ensure fairness in the allocation of financial benefits among the end users. All these 
constitute our proposed billing mechanism much more competitive in the flexibility markets. 

Keywords: Smart grid, demand side management, dynamic pricing, flexibility markets, 
behavioral change, energy efficiency1 
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The aging infrastructure of the traditional power grid, the projected growth in global electric 
energy demand [1], [2], the increasing global environmental concerns and the circumstances 
in global economy [3] have triggered an increasing interest in energy efficiency [4]. The 
aforementioned developments have also motivated a high penetration of Renewable Energy 
Sources (RES) into the grid. The latter, however, results in high levels of uncertainty and 
variability in the energy production rate. Demand Side Management (DSM) is recognized as 
a promising tool able to improve energy efficiency and network stability. DSM techniques 
are deployed in order to incentivize electricity consumers to modify their Energy 
Consumption Curves (ECCs) in a more energy-efficient way, aiming to achieve a continuous 
and steady balance between production and consumption (cf. balancing market). 
Furthermore, the liberalization of electricity markets and the emergence of innovative 
business models ( [5], [6], [7], [8]) boost the importance of the trade-off between the quality 
of services (QoS) that an Energy Service Provider (ESP) offers and its profitability margins 
with respect to the new revenue streams that it can create. Therefore, the development of 
advanced DSM strategies, able to efficiently deliver more competitive energy services, is of a 
great importance. 

Energy consumers that participate in DSM programs take actions that can be classified into 
two categories: i) load shedding, by either adopting energy efficiency policies or following a 
more conservative consumption pattern, and ii) load shifting, by operating flexible 
appliances in off-peak hours. Both of the aforementioned strategies elevate the level of 
discomfort for the consumers. Therefore, for most consumers, financial incentives are key to 
the design of effective DSM programs. 

Intelligent energy pricing schemes are automated DSM strategies, which try to incentivize 
electricity consumers towards a consumption pattern that provides an attractive trade-off 
between their desired ECC and the one that is cost-efficient for the power system [9]. As 
analyzed in the next section, recent research has focused on the development of pricing 
schemes with the objective to efficiently schedule flexible loads. Historically, the energy 
pricing models started with flat electricity tariffs. Under this scheme, consumers are charged 
with an identical and time invariant price per energy unit and therefore, they are not really 
motivated to consume electricity in an efficient way. This leads to over-investments by the 
DSOs and/or TSOs in order to afford to meet the load demand and ensure grid stability [10]. 
The pricing scheme of Inclining Block Rates (IBR) was a first attempt to interact with the 
electricity consumers’ behavior. In the IBR scheme, the price per unit increases with the 
total energy that the user consumes, creating a barrier that prevents the over-use of energy 
and consequently an power shortage and/or network failures. The next step was the Time-
Of-Use (ToU) pricing method, which motivates consumers to shift loads into low pricing 
hours; however, a priori set prices do not reflect the real-time needs of the grid. Hence, it 
may result in congestion issues during the low-price hours. Real – Time Pricing (RTP) 
schemes ( [11], [12], [13], [14], [15]) have been proposed in order to directly connect the 
actual energy production, transmission and distribution costs with the retail energy price. On 
the other hand, RTP schemes still suffer from the ‘tragedy of the commons’ phenomenon 
[16], in which a consumer that changes her ECC (behavioral change in energy consumption) 
generates a benefit for the entire system. In the average case, only a small portion of this 
benefit is returned to her, while the major part of it is shared among all the consumers. In 



this regard, RTP schemes are not fair and do not efficiently incentivize behavioral changes. 
This issue is a major motivator for the design of our proposed Behavioral RTP (B-RTP) 
scheme towards efficiently engaging end users in DSM programs. 

 

Figure 1: Proposed architecture and business model for the energy flexibility units trading 

In Fig. 1, the role and use of the proposed B-RTP scheme for facilitating the trading of DSM 
units in flexibility markets is illustratively explained. In the assumed business model, the ESP 
purchases energy from the wholesale electricity market at a time- and volume-variant cost G 
in order to satisfy the demand of its customer portfolio (i.e. energy consumers). On the 
other hand, aggregated users’ flexibility (behavioral changes) can create a cost reduction ΔG. 
Subsequently the ESP can trade its ability to control the demand (e.g. reduce energy cost) as 
a commodity in various types of flexibility markets (e.g. congestion, balancing, voltage 
control, frequency control markets, etc.). This amount of ΔG can be fully returned back as a 
reimbursement/discount to the end users or a fraction of ΔG can also be used to increase 
the ESP’s profits. In this paper, we assume the former case for simplicity reasons.  

The objective of the proposed B-RTP scheme is the reduction of the energy system’s cost 
without deteriorating the users’ quality of experience (or else, aggregated users’ welfare). 
Moreover, B-RTP has to fairly allocate the cost reduction benefits among the users that 
create them, which is very important for the business success of the proposed pricing 
scheme. According to the extensive performance evaluation results presented in section V 
for the proposed personalized energy billing mechanism, B-RTP achieves an energy system’s 
cost decrease from 10% to 30% depending on the cost of energy in the wholesale market 
and the various users’ flexibility levels. For the majority of the simulation scenarios, the 
users’ quality of experience is not affected at all. Actually, in some cases, it is enhanced by a 
factor of 2-4%. Of course, in extreme simulation scenarios, in which flexibility need is crucial 
for the network’s operation, the quality of experience may be slightly deteriorated (but 



again within acceptable levels) at the expense of much better financial benefits returned 
back to the end users. Finally, B-RTP achieves to fairly allocate the financial benefits to all 
end users according to the degree of each one’s participation in the total energy system’s 
cost decrease. What’s more interesting is that the ESP can dynamically configure the trade-
off between the afore-mentioned Key Performance Indicators (KPIs) in order to achieve its 
optimal participation in the flexibility markets (cf. parameter ‘γ’).  

The remaining of this paper is organized as follows. In Section II, we briefly discuss the 
related work and we highlight the contributions of this paper. In Section III, we describe the 
proposed system model. In Section IV, we propose our innovative B-RTP scheme. In Section 
V, we evaluate our proposed billing scheme through extensive simulations, using the RTP 
scheme as a benchmark. Finally, in Section VI we conclude and discuss future work. 

II. Related Work 
In the context of open electricity markets and progressive business models in the smart grid 
sector, a pricing scheme has to fulfill specific requirements (by achieving an attractive trade-
off) such as: i) the consumer’s satisfaction (or else user’s welfare), ii) the stability/efficiency 
of the power grid (or else energy system’s cost), and iii) fairness (or else ensure that each 
user receives a financial reward, which is exactly proportional to her contribution in the 
energy system’s cost decrease).  

The first requirement is widely known as user’s welfare and is determined as the satisfaction 
(level of comfort) of user towards a given time instance of her ECC, minus the bill she has to 
pay for it. The users’ welfare achieved by a DSM program determines the willingness of a 
user to participate in the DSM program. In other words, it demonstrates which program 
leads to more competitive services in an open energy market. In [11], [17], [18] and [19] 
users’ welfare is considered as the system’s objective. In [11], a distributed algorithm is 
proposed, where users shed their consumption attempting to maximize their welfare as a 
response to price signals from the ESP. In [17] and [19], game-theoretic approaches are 
used, in which users shift or shed their loads with the objective to maximize their own 
welfare, while the ESP sets the real-time energy prices based on users’ decisions. [18] 
considers users that can operate both shiftable and curtailable loads with the same 
objective; however, prices are set a priori and the interaction between the ESP and the end 
users is not considered. Our paper’s novelty is that we examine user’s welfare together with 
the decrease of energy system’s cost and fairness KPI. 

The second requirement expresses the capability of a pricing model to incentivize energy 
consumers to adopt ECCs that minimize the production and distribution cost of the energy 
that they consume. In our case, this cost is the one that the ESP pays to the wholesale 
market in order to purchase the required energy to satisfy the aggregated ECC (i.e. demand) 
of its users. Therefore, this requirement is denoted as behavioral efficiency and it reflects 
which pricing model is able to fulfill the objectives that energy producers, DSOs, TSOs and 
BRPs set. In [20], [21], [22], [23] and [24] behavioral efficiency is evaluated in terms of 
reduction of the total energy cost. In [21], an online Electric Vehicle (EV) charging scheduling 
algorithm is proposed in order to minimize total energy cost, while in [22] an optimization-
based algorithm is proposed for the operation of different classes of devices with the 



objective to minimize the energy cost without sacrificing users’ comfort. Researchers in [23] 
consider both energy cost and users’ welfare as their system’s objective, while Soliman et al. 
in [24] present a game-theoretic approach to analyze the interaction between end users and 
the ESP in the presence of storage devices. The objective of the model is the minimization of 
energy cost. In [25], users schedule their consumption in order to reduce the system’s Peak-
To-Average Ratio (PAR), which is linked to system’s energy cost. On the other hand, users’ 
comfort is not taken into consideration. Again, our proposal goes one step further by 
considering all three above-mentioned KPIs at the same time.  

The third requirement is fairness. It refers to how fairly the system’s energy savings, which 
result from the behavioral changes of the participating users, are allocated among them. 
Baharlouei et al. in [14] propose a pricing model based on the principle that the users’ bills 
should be analogous with their contribution to the system’s energy cost reduction. Finally, 
the design of a pricing scheme should take into consideration the profitability of the ESP, if 
the business model facilitates this option [12], [26]. However, these fairness-related works 
admit that they sacrifice energy system’s cost decrease in order to achieve their objective, 
which is a problem that our proposed scheme addresses, too.  

In the majority of the aforementioned works, the sole objective is social welfare 
maximization, which is defined as the users’ comfort minus the system’s cost (or user 
welfare plus the ESP’s profits). In these pricing schemes, social welfare maximization 
generally comes with budget revenue (profit) for the ESP, which is not the case of the 
business model assumed in this paper. This paper considers cases, in which ESPs sell energy 
with (close to) zero profit to retail markets, such as: i) open markets with perfect 
competition [27] as analyzed in [28], ii) energy cooperatives [29] or islanded energy sharing 
communities [30], where energy prosumers share their energy in order to ensure the energy 
autonomy of the community, and iii) ESPs that participate in a flexibility market [5] and 
provide profitable flexibility services to DSOs, TSOs and BRPs. Furthermore, in contrast with 
the majority of related work, we consider that users are not just price takers; however they 
act as price anticipators. That is, they can have an impact on their energy bills exploiting 
their flexible appliances. 

Studies that propose DSM algorithms with active user participation use a user model in 
order to evaluate their algorithms’ performance. Many works ( [11], [12], [31], [32], [33], 
[34], [35], [36], [37]) exploit the assumed user model in order to design model-specific 
pricing schemes leveraging analytic solutions. However, the electricity consumer model is 
still unclear for the research community because there are no public large scale data from 
field trials. A comprehensive critique of this approach is presented in [38], [39]. In this paper, 
we propose a discriminative pricing scheme based on each user’s behavior, which preserves 
efficiency in terms of social welfare, while at the same time achieves a budget-balanced 
system (or profits close to zero), fairness and reduced system cost. The proposed algorithm, 
however, is not tuned to any specific user model. Rather, it performs equally well for any 
user model that fulfills some mild assumptions. These attributes make the proposed B-RTP 
an advantageous scheme for all above-mentioned business cases. Finally, it fits very well the 
latter case, where an ESP participates in a flexibility market, as it is able to motivate its users 
(customers) to adjust their ECCs according to the needs of the market while keeping them 



well-satisfied.  To the best of our knowledge, no other research work has dealt with this type 
of emerging business model considering at the same time the three above-mentioned KPIs. 
Conclusively, the contribution points of this paper can be summarized as follows: 

• A novel non-profitable energy pricing scheme, referred to as Behavioral Real-Time 
Pricing, which exploits as incentives its high levels of fairness to remarkably reduce 
the aggregated energy cost, while simultaneously slightly increasing user’s welfare. 
B-RTP quantifies the system cost reduction achieved by each end user’s load shifts 
and curtailments and rewards her accordingly. 

• A mechanism that parameterizes the proposed scheme, enabling it to dynamically 
adjust the degree of incentives. Thus, it indirectly controls the aggregated energy 
cost. This gives ESP the opportunity to dynamically select the best trade-off among 
the aforementioned three requirements according to its dynamically changing 
business needs. 

• A holistic comparison between the proposed B-RTP and a non-profit version of an 
existing RTP scheme that is widely adopted in the literature. We demonstrate that B-
RTP scheme achieves a more attractive trade-off among the aforementioned 
requirements by reducing the system’s cost, while preserving social welfare 
efficiency and enhancing fairness. 

 
III. System Model 

We consider a smart community, which consists of a set of electricity users (denoted as 𝑵) 
and an ESP. An electricity consumer can be a single smart home or a group of smart homes 
acting as a single unit. Each user 𝑖 ∈ 𝑵 is equipped with advanced Smart Meters that 
monitor her appliances’ ECCs and an Energy Management System (EMS) that schedules her 
energy consumption over the scheduling horizon, according to the preferences that she sets. 
We do not consider price-taking consumers as in [18]; on the contrary, users interact with 
the ESP in order to reach an agreement on the energy consumption schedules and energy 
prices. A communication network lies on top of the electric grid, enabling the message 
exchange between the users and a Price Controller (PC) installed at ESP’s premise. The PC 
receives each user’s i aggregate consumption and sends back to the users’ EMSs their energy 
bills. As we later analyze, our proposed architecture includes limited information disclosure 
from the energy consumers and thus preserves their privacy by following the same data 
exchange model as in [40].  

In order for an ESP to evaluate each end user’s behavioral change, 2 use cases are 
considered: i) Users’ “base” ECC is a priori known (before the behavioral changes that B-RTP 
will incentivize) and ii) Users’ “base” ECC is unknown. By “base”, we mean the 
natural/voluntary (unforced) consumption behavior of a user, in the absence of incentivized 
time varying penalties or rewards. B-RTP applies to the first use case. Examples of this use 
case are: 

• Working environments in which operations that include power consumption are 
scheduled and invariant from one day to another. 

• Direct contract between ESPs and a large industrial client with standard ECCs. 



• Aggregated consumption patterns of groups of users (which are accurate enough 
because of statistical multiplexing). 

 

The monetary gains from the reduction of total energy cost (ΔG) may be fully given as 
discounts to the end users, or other market stakeholders (e.g. ESPs) may acquire a certain 
fraction as their profit. In addition, stakeholders that participate in flexibility markets ([32]) 
obtain additional revenues from these markets for their ability to control energy 
consumption/cost. In this work, we consider the demanding subcase of a highly competitive 
environment (as in [28, Chapman]), where discounts are fully given to end users and 
revenues from flexibility markets are close to zero; the relaxation of this assumption is left as 
future work. 

 

Next, we present the user model and the energy generation cost model. Both models are 
widely adopted in the literature. Their purpose is only to facilitate the evaluation of the 
proposed B-RTP scheme through the comparison between B-RTP and RTP. Note that they do 
not constitute a novelty aspect, but rather emphasize that the proposed B-RTP is utility-
agnostic and thus can be applicable in any type of user and cost modeling. Finally, without 
harm of generality, we consider a discrete-time model with a finite horizon that models the 
scheduling period H. Each period is divided into T timeslots of equal duration.  

A. Demand Side Model 
Each user 𝑖 ∈ 𝑵 owns a set 𝑫𝒊 of household devices, and each device 𝑑 ∈ 𝑫𝑖 consumes 
energy 𝑥𝑖,𝑑𝑡  at time 𝑡 ∈ 𝑯. The total amount of energy, that all devices in Di consume at time 
t, is denoted as 𝑥𝑖𝑡. According to the literature ( [12], [18], [41]) a user’s devices can be 
categorized into three categories with respect to their load flexibility: curtailable, shiftable 
or non-adjustable. 

1. Curtailable Loads 

This category of loads includes appliances such as: heating, ventilation, and air conditioning 
(HVAC) system, building lights with adjustable volume, etc. We denote by 𝑫𝑐,𝑖 ⊆ 𝑫𝑖 the set 
of curtailable appliances of user i. For each device 𝑑 ∈ 𝑫𝑐,𝑖, each user 𝑖 ∈ 𝑵a priori declares 

a desired consumption schedule 𝑥𝚤,𝑑� = �𝑥𝚤,𝑑𝑡� , 𝑡 ∈ 𝑯,𝑑 ∈ 𝑫𝑐,𝑖� according to her preferences, 

and a minimum consumption level 𝑥𝑖,𝑑𝑡  , 𝑡 ∈ 𝑯,𝑑 ∈ 𝑫𝑐,𝑖  (see Eq. (1)). User’s satisfaction in 

every time slot t depends on the amount of energy that a curtailable device actually 

consumes, denoted as 𝑥𝑖,𝑑𝑡 , and on how close it is to the desired consumption 𝑥𝚤,𝑑𝑡� . 
Therefore, user i attains a utility 𝑈𝑖,𝑑𝑡 (𝑥𝑖,𝑑𝑡 ) in time interval t when her device d consumes 
𝑥𝑖,𝑑𝑡 , which varies according to her lifestyle and preferences.  

𝑥𝑖,𝑑𝑡 ≤ 𝑥𝑖,𝑑𝑡 ≤ 𝑥𝚤,𝑑𝑡�      (1) 



In order to have a benchmark for the evaluation of B-RTP, we use the concept of utility 
function, drawn from the fields of Microeconomics [42], which models the end users’ 
preferences regarding the operation of a device. In the case of curtailable devices, it is 
reasonable to assume that the users’ utility function is increasing (the more a user 
consumes, the more utility she perceives) and concave (the more a user consumes, the less 
the incremental added utility is). This approach is also in line with the vast majority of the 
literature (e.g. [11], [31], [43], [44]) where a quadratic form is usually considered for the 
utility function, expressed as: 

𝑈𝑖𝑡(𝑥𝑖𝑡,𝜔𝑖
𝑡) =  �

𝜔𝑖,𝑑
𝑡 · 𝑥𝑖𝑡 −

𝑎
2

· (𝑥𝑖𝑡)2,   𝑖𝑓  0 < 𝑥𝑖𝑡 < 𝜔𝑖,𝑑
𝑡

𝑎
�𝜔𝑖,𝑑

𝑡 �2

2·𝑎
                     ,   𝑖𝑓  𝑥𝑖𝑡 > 𝜔𝑖,𝑑

𝑡

𝑎

  (2) 

In Eq. (2), a and 𝜔𝑖
𝑡 are predetermined parameters. 𝜔𝑖

𝑡 denotes the responsiveness of user i 
to financial incentives (flexibility) at time interval t in terms of reduction of her energy 
consumption, while parameter 𝑎 expresses how the rate of change of user’s utility changes 
as consumption changes. Another utility function, that is used by the literature ( [19], [45]), 

exploits 𝑥𝚤𝑡� in order to calculate the utility that user attains: 

𝑈𝑖𝑡�𝑥𝑖𝑡� = �
−�𝑥𝑖𝑡 − 𝑥𝚤𝑡��

2
,    𝑖𝑓 0 ≤ 𝑥𝑖𝑡 ≤ 𝑥𝚤𝑡�

0,                 𝑖𝑓 𝑥𝑖𝑡 > 𝑥𝚤𝑡�
    (3) 

In order to combine the advantages of the two aforementioned functions, we use a utility 
function, which is mathematically expressed as: 

𝑈𝑖,𝑑𝑡 �𝑥𝑖,𝑑𝑡 � = �
𝑈max,𝑖,𝑑
𝑡 − 𝜔𝑖,𝑑

𝑡 · �𝑥𝑖,𝑑𝑡 − 𝑥𝚤,𝑑𝑡� �
2

,    𝑖𝑓 0 ≤ 𝑥𝑖,𝑑𝑡 ≤ 𝑥𝚤,𝑑𝑡�

𝑈max,𝑖,𝑑
𝑡     ,             𝑖𝑓 𝑥𝑖,𝑑𝑡 > 𝑥𝚤,𝑑𝑡�

   (4) 

𝑈max,𝑖,𝑑
𝑡  denotes the maximum user satisfaction concerning appliance 𝑑, i.e. the one 

achieved when she consumes her desired load. The proposed utility function of Eq. (4) is a 
composition of the two aforementioned functions and is able to: i) capture the 
heterogeneity in the flexibility among participating users, just as Eq. (2) does through (𝜔𝑖,𝑑

𝑡 ) 

and ii) explicitly correlate maximum user’s satisfaction with her desired consumption 𝑥𝚤,𝑑𝑡�  , as 
utility function of Eq. (3) is also able to do. In Eq. (4), 𝜔𝑖,𝑑

𝑡  is once again a predetermined 
parameter that captures the flexibility of user i concerning appliance 𝑑 in time slot t. More 
specifically, the lower the value of parameter 𝜔𝑖,𝑑

𝑡 , the more tolerant user will be towards a 
particular change in her desired energy schedule of device d. Fig. 2 depicts user’s i utility at 
time slot t as a function of 𝑥𝑖,𝑑𝑡  for a given 𝑈max,𝑖,𝑑

𝑡  and different values of 𝜔𝑖,𝑑
𝑡 .  



 

Figure 2: User’s i utility in timeslot t as a function of her/his energy consumption for various flexibility levels 

2. Shiftable Loads 

This category of loads includes appliances that can shift their consumption according to 
user’s preferences. Appliances such as: EVs, the dishwasher, the washing machine and the 
clothes dryer can be considered available for consumption shift. We denote by 𝑫𝒔,𝒊 the set 
of shiftable appliances of user i. For this type of appliances, energy consumer sets a desired 

operating schedule 𝑥𝚤,𝑑𝑡� , 𝑡 ∈ 𝑯𝒔� , where 𝑯𝒔� =  [𝑡𝚤,𝑑𝑎� , 𝑡𝚤,𝑑𝑏� ] is a time interval where  𝑡𝚤,𝑑𝑎�  is the 

timeslot at which it is desirable for the device to start and 𝑡𝚤,𝑑𝑏� , is the timeslot at which d 

normally finishes its task if it starts operation at 𝑡𝚤,𝑑𝑎� . Additionally, user i sets a deadline 𝑡𝑖,𝑑𝑙 , 
which is the latest time by which the task of device d should be completed. Thus, regardless 
of the shifts that will take place, the total energy consumption of user’s i device 𝑑 ∈
𝑫𝑠,𝑖  must reach a certain energy threshold 𝐸𝑖,𝑑 by 𝑡𝑖,𝑑𝑙 , that is, 

0 ≤ 𝑥𝑖,𝑑𝑡 ≤ 𝐸𝑖,𝑑 ,    ∀𝑡 ∈ �𝑡𝚤,𝑑𝑎� , 𝑡𝑖,𝑑𝑙 �     (5) 

∑ 𝑥𝑖,𝑑𝑡
𝑡𝑖,𝑑
𝑙

𝑡= 𝑡𝚤,𝑑
𝑎� =  𝐸𝑖,𝑑, ∀𝑖 ∈ 𝑵,𝑑 ∈ 𝑫𝒔,𝒊    (6) 

Therefore, regarding user’s i shiftable loads, we can define a feasible scheduling set 𝑋𝑖  that 
is, 



𝑋𝑖 = {𝑥𝑖| � 𝑥𝑖,𝑑𝑡
𝑡𝑖,𝑑
𝑙

𝑡= 𝑡𝚤,𝑑
𝑎�

=  𝐸𝑖,𝑑 ,    ∀𝑑 ∈ 𝑫𝒔,𝒊,  

               0 ≤ 𝑥𝑖,𝑑𝑡 ≤ 𝐸𝑖,𝑑  ,             ∀𝑡 ∈ �𝑡𝚤,𝑑𝑎� , 𝑡𝑖,𝑑𝑙 �, 

𝑥𝑖,𝑑𝑡  = 0,      ∀𝑡 ∈ 𝐻\�𝑡𝚤,𝑑𝑎� , 𝑡𝑖,𝑑𝑙 � }    (7) 

We assume that each user is fully satisfied when the operation of her device 𝑑 ∈ 𝑫𝑠,𝑖  does 

not deviate from her desired energy schedule 𝒙𝒊,𝒅� = �𝑥𝚤,𝑑𝑡� , 𝑡 ∈ 𝑯𝒔��, where 𝑯𝒔�=[𝑡𝚤,𝑑𝑎� , 𝑡𝚤,𝑑𝑏� ]⊆

𝑯𝒔 and 𝑯𝒔 = [𝑡𝚤,𝑑𝑎� , 𝑡𝑖,𝑑𝑙 ] ⊆ 𝑯. The degree (monetary value) of each user’s i dissatisfaction for 
every unit of energy that a shiftable device 𝑑 consumes in any other time slot (𝑡 ∈ 𝑯𝒔\𝑯𝒔� ) 
depends on user’s individual lifestyle and preferences. In the literature, this particular 
behavior of users is modeled by a disutility function ( [12], [17], [46],  [43], [47], [48], [49] ). 
In this paper, we assume that user’s dissatisfaction increases as her shiftable devices 
consume more energy at later hours in 𝑯𝒔, which intuitively means that her waiting time 
increases. Thus, we exploit the utility function used in [43], where user’s i dissatisfaction for 
her/his device 𝑑 is given by: 

𝐷𝑈𝑖,𝑑 = ∑ �𝛿𝑖,𝑑�
𝑡−𝑡𝚤,𝑑

𝑏�
· 𝑥𝑖,𝑑

𝑡

𝐸𝑖,𝑑𝑡∈𝑯𝒔 .        (8) 

In Eq. (8), 𝛿𝑖,𝑑 ≥ 1 is an adjustable control parameter. The higher the value of 𝛿𝑖,𝑑 the higher 
the dissatisfaction of user i for a given change in her desired energy schedule of device d will 
be. In other words, the lower the value of parameter 𝛿𝑖,𝑑, the more responsive user i will be 
to price incentives. As we did in the case of curtailable loads, we once again note that this 
utility function (Eq. 8) is used only for evaluation purposes and the proposed B-RTP is 
transparent to any utility function that fulfills the following properties: 

i. Non-decreasing functions. Users’ satisfaction increases with power consumption 
level until the latter reaches a certain threshold (𝑥�): 

𝜕𝑈
𝜕𝑥
≥ 0      (9) 

ii. The marginal utility (Eq. (10)) that users perceive is a non-increasing function: 

𝑉(𝑥) ≡ 𝜕𝑈
𝜕𝑥

     (10) 

𝜕𝑉
𝜕𝑥
≤ 0       (11) 

In any other case, convex optimization may not be applicable to solve the user’s problem, 
but rather some other heuristic algorithm (e.g. simulated annealing), which is out of the 
scope of this paper.   

3. Non-adjustable Loads 



Each user i a priori declares which of her devices fall into this category. These loads have 
predetermined consumption schedules and are not controllable by the EMS. We denote by 
𝑫𝒇,𝒊 the set of the devices that user i categorize as non-adjustable. Examples of this category 
of appliances are: refrigerator, freezer, TV, etc. For non-adjustable loads, we should have: 

𝑥𝑖,𝑑𝑡 = 𝑥𝚤,𝑑𝑡�   ,∀𝑖 ∈ 𝑵, 𝑡 ∈ 𝑯,𝑑 ∈ 𝑫𝒇,𝒊.    (12) 

B. Energy Cost Model 
In the literature [11], [12], [14], [15], [26], [31], [50], [51], in order for the pricing models to 
be evaluated, an increasing convex function G(x) is often adopted to (approximately) model 
the cost of energy that comes from conventional generation. Piece-wise linear functions and 
quadratic functions are two examples of cost functions. In this paper, we use a quadratic 
energy cost function, the mathematical expression of which is given by: 

𝐺𝑡 = 𝐺�∑ 𝑥𝑖𝑡𝑁
𝑖=1 � = 𝑎 · �∑ 𝑥𝑖𝑡𝑁

𝑖=1 �2 + 𝑏 · �∑ 𝑥𝑖𝑡𝑁
𝑖=1 � + 𝑐,   (13) 

where 𝑎 > 0, 𝑏, 𝑐 ≥ 0 are predetermined parameters that depend on the energy 
generators characteristics. This cost function models either the cost of the ESP to purchase 
the necessary energy units from the wholesale electricity market, or the actual cost of the 
ESP to produce energy by operating its own generation units. 

IV.  Proposed system  
We consider electricity consumers (users) that participate in a DSM program (which is 
modeled as a game). We suppose users are price anticipators, i.e. they are aware of the 
billing mechanism and they consider the impact of their actions on their electricity bills. 
Their objective is to maximize their payoff. User’s i payoff is defined as her individual 
welfare, which equals to the total utility attained, when her schedulable appliances consume 
a certain amount of energy (as analyzed in the previous section) minus her energy bill Bi 
given by Eq. (14). Thus, each user’s EMS calculates her energy consumption schedule by 
solving Eq. (15), and then informs ESP about the updated consumption schedule 𝑥𝑖. ESP, in 
turn, sets the energy prices so as to achieve an attractive trade-off among the three 
requirements that have been described in Section II. Its primary goal is to motivate 
consumers to change their ECCs through a fair billing scheme in order to reduce the total 
energy cost without sacrificing efficiency in terms of social welfare. Social Welfare (SW) is 
defined as the aggregate users’ comfort minus the total energy cost (Eq. (16)). Users and ESP 
repeat the aforementioned steps until the process converges to the Nash Equilibrium (NE).  

𝑊𝑖 =  ∑ ∑ 𝑈𝑖,𝑑𝑡𝑇
𝑡=1 (𝑥𝑖,𝑑𝑡 )𝐷𝑐,𝑖

𝑑=1 − ∑ �𝐷𝑈𝑖,𝑑 �𝑡𝚤,𝑑𝑎� , 𝑡𝚤,𝑑𝑏� , 𝑡𝑖,𝑑𝑙 ,𝑥𝑖,𝑑𝑡 ��𝐷𝑠,𝑖
𝑑=1 − 𝐵𝑖   (14) 

𝑥𝑖 = arg max 𝑊𝑖      (15)  

Subject to (1), (7), (12) 

SW = ∑ �∑ ∑ 𝑈𝑖,𝑑𝑡𝑇
𝑡=1 (𝑥𝑖,𝑑𝑡 )𝐷𝑐,𝑖

𝑑=1 − ∑ 𝐷𝑈𝑖,𝑑 �𝑡𝚤,𝑑𝑎� , 𝑡𝚤,𝑑𝑏� , 𝑡𝑖,𝑑𝑙 ,𝑥𝑖,𝑑𝑡 �𝐷𝑠,𝑖
𝑑=1 �𝑁

𝑖=1  - ∑ 𝐺𝑡𝐻
𝑡=1   (16) 

 
In what follows, we start by presenting the RTP scheme and follow with the description of 



our proposed B-RTP scheme. The RTP scheme will be used in Section V as a benchmark, in 
order to evaluate the performance of B-RTP. 

 

1. State-of-the-art Real-Time Pricing (RTP) scheme 

In the initial phase of the RTP ( [12], [15]) algorithm, ESP collects the desired schedule 𝑥𝚤�  of 
each user i from their EMSs, and calculates their nominal energy bills 𝐵�𝑖,𝑅𝑇𝑃 , ∀𝑖 ∈ 𝑵. In 
order to do so, ESP exploits Eq. (17) to calculate the price (average cost) per unit of energy at 
each time interval t as 

𝜌𝑡 = 𝐺�∑ 𝑥𝑖
𝑡𝑁

𝑖=1 �
∑ 𝑥𝑖

𝑡𝑁
𝑖=1

 .     (17) 

ESP, through the communication infrastructure, informs its customers about the energy bills, 
calculated by  

𝐵𝑖,𝑅𝑇𝑃 =  ∑ 𝜌𝑡 · 𝑥𝑖𝑡𝑁
𝑡=1      (18) 

Eq. (17) corresponds to a non-profit version of RTP ( [12], [15]). In [12], it is proven that 
social welfare is maximized when 𝜌𝑡 is set to the marginal cost of energy, (i.e. 
𝑑𝐺(∑ 𝑥𝑖𝑡𝑁

𝑖=1 ) 𝑑(∑ 𝑥𝑖𝑡𝑁
𝑖=1 )⁄ ). However, in this case, social welfare maximization comes with 

budget revenue, which violates the budget-balance property of the assumed business model 
(cf. Section II). Thus, in order to evaluate B-RTP, we exploit a non-profit RTP version 
according to Eq. (17). The algorithm of RTP scheme is summarized in Table I, where k is an 
index for the algorithm’s iterations.  

TABLE I. ALGORITHM FOR THE CALCULATION OF THE ENERGY BILLS AND THE ENERGY CONSUMPTION 
SCHEDULES IN RTP 

1 Initialization: 𝑘 = 1, 𝑥𝑖𝑘 =  𝑥𝚤𝑘�, 𝐵𝑖,𝑅𝑇𝑃𝑘 = 𝐵�𝑖,𝑅𝑇𝑃 
2 Repeat 
3       k → k+1 
4       For each user 𝑖 ∈ 𝑵 
5             Receive 𝐵𝑖,𝑅𝑇𝑃𝑘  from ESP 
6            Repeat            
7                   Update 𝑥𝑖𝑘  
8                   𝐵𝑖,𝑅𝑇𝑃𝑘  is updated through (17), (18) 
9                   Calculate 𝑊𝑖

𝑘 using (14) 
10             Until Reach solution of (15) subject to (1), (7) and (12) 
11       End for 
12       Calculate 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 = 𝑚𝑎𝑥�𝑥𝑖

𝑡,𝑘+1 − 𝑥𝑖
𝑡,𝑘�            ∀𝑖 ∈ 𝑵, 𝑡 ∈ 𝑯 

13 Until 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 < 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦     
14 End 
 

2. Proposed Behavioral Real-Time Pricing (B-RTP) scheme 



B-RTP model is a hybrid billing mechanism that is able to take full advantage of users’ 
flexibility. This is achieved through a personalized billing policy, which rewards  consumers’ 
behavioral change (i.e. ECC adjustment) in a fair manner. In more detail, consumers receive 
a discount in their energy bill, which is equal or proportional to their contribution to the 
total energy cost reduction. Users that do not change their ECCs do not receive similar 
treatment and may even be penalized in cases of emergency situations, in which a 
significant energy cost reduction is demanded (e.g. network congestion, lack of energy in 
islanded mode, etc.). In these cases, as our evaluation results will show, ESPs using B-RTP are 
able to participate in various types of flexibility markets ( [5] [6]) without sacrificing user’s 
welfare and fairness. 

As in RTP algorithm, in the initialization phase of B-RTP users set their desired consumption 
schedules 𝑥𝚤�  (desired ECC). Based on those, ESP calculates  𝐵�𝑖,𝑅𝑇𝑃 ,∀𝑖 ∈ 𝑵, using Eqs. (17) - 
(18), and communicates them to the users. Each user, in turn, having knowledge of the 
method of her energy bill’s calculation, keeps updating her ECC until she reaches the 
solution of Eq. (15). This process is repeated (as depicted in Table I) until its convergence to 
the final (actual) ECCs and energy bills. As it is obvious from the above, the valuation of an 
ECC for a specific user i (e.g. the evaluation of RTP price from Eq. (17)) is not a standalone 
process. The bill of each user i depends on the ECCs of the other users in set N, as Eq. (18) 
depicts for RTP. RTP scheme, as well as other DSM algorithms (e.g. [12], [14], [31]), considers 
that users determine their ECCs sequentially and subsequently, ESP determines the 
valuation of the ECCs until the convergence of this iterative process. In more detail, in each 
and every iteration of the aforementioned process, a user i is implicitly but adequately 
informed (through the billing system) about the decisions (ECCs) of the users that acted 
before her  and exploits this information to update her 𝑥𝑖𝑡. 

In the case of B-RTP, as far as the shiftable loads are concerned, this sequential process 
creates an advantage for the users who act first over those who act later. For example, two 
equally flexible users with identical ECCs would be similarly responsive to a specific financial 
incentive given by the ESP. However, if the one that acts first shifts a load from a peak-hour 
to a low-cost time interval, the second user will not be able to do the same, as that would 
lead to a reverse peak. Thus, the first user will get a discounted energy bill, while the second 
user will not. Consequently, users’ order of action plays a major role in the final energy 
schedules and energy bills. To overcome this problem, we exploit and enhance [52], in which 
users act in parallel and therefore they decide their actions without knowing what the 
others do in each iteration of the aforementioned process. Thus, in every iteration k of B-
RTP, all users, based on the same information on billing mechanism, calculate their energy 
schedule by solving Eq. (15) simultaneously. This approach, may temporarily create reverse 
peaks, since every user, in order to achieve a larger total cost reduction and receive a larger 
discount in her energy bill, shifts her shiftable loads to low–cost hours. In order to overcome 
this problem, in each iteration k, we impose a restriction in the changes that users are 
allowed to make in their energy schedules. In more detail, the updates are done so that 
shifts are done in an incremental way, satisfying, 

�𝑥𝑖
𝑡,𝑘 − 𝑥𝑖

𝑡,𝑘−1� < 𝜃𝑘 · 𝑥𝑖
𝑡,𝑘−1,    (19) 



where 𝜃𝜅 < 1 is a parameter that sets the upper bound of the volume of shift that a user can 
make in a certain step k of B-RTP. If there is a reduction in total energy cost after users’ 
decisions(i.e. no peak shifting), 𝜃𝑘+1 will remain the same as in iteration k. Otherwise, if the 
reduction of the total cost of the system is negligible, i.e. 𝐺𝑘+1 > 𝐺𝑘 ∗ (1 − 𝜀) for some 
small ε > 0, B-RTP will continue in the next step with a smaller 𝜃𝑘+1 =  𝜃𝑘 · 𝜁, where 0 < ζ 
< 1 in order to approach the equilibrium more accurately. The iterations continue until θ 
gets sufficiently small (𝜃 < 𝜃𝑚𝑖𝑛)(i.e. users are allowed to change a negligible fraction of 
their energy schedules).  

At step k of B-RTP, each user i alters her desired/initial energy schedule 𝑥𝚤�  into 𝑥𝑖𝑘, according 
to her flexibility and the B-RTP’s billing. This leads to a total energy cost reduction  

𝛥𝐶𝑘 = ∑ �𝐺�∑ 𝑥𝚤𝑡�𝑁
𝑖=1 � − 𝐺 �∑ �𝑥𝑗

𝑡,𝑘−1�+ 𝑥𝑖
𝑡,𝑘𝑁

𝑗=1
𝑗≠𝑖

��𝑇
𝑡=1   

 (20) 

Through B-RTP, ESP rewards each user i for her contribution to total energy cost reduction, 
by an energy bill discount  

𝛥𝐵𝑖𝑘 =  

∑ �𝐺�∑ �𝑥𝑗
𝑡,𝑘−1�𝑁

𝑗=1
𝑗≠𝑖

+𝑥𝚤𝑡��−𝐺�∑ �𝑥𝑗
𝑡.𝑘−1,�+𝑥𝑖

𝑡,𝑘𝑁
𝑗=1
𝑗≠𝑖

��𝑇
𝑡=1

∑ �∑ �𝐺�∑ �𝑥𝑗
𝑡,𝑘−1�+𝑥𝚤𝑡�𝑁

𝑗=1
𝑗≠𝑖

�−𝐺�∑ �𝑥𝑗
𝑡,𝑘−1�+𝑥𝑖

𝑡,𝑘𝑁
𝑗=1
𝑗≠𝑖

��𝑇
𝑡=1 �𝑁

𝑖=1

· 𝛥𝐶𝑘 (21) 

In Eq. (21), the numerator represents the energy cost reduction that user’s i behavioral 
change generated in step k of B-RTP. Note that each user acts knowing only what the rest of 
the users have done in the previous iteration k-1 of B-RTP and having no knowledge of their 
actions in the current iteration. The denominator equals to the summation of every user’s 
corresponding contribution and thus we have ∑ 𝛥𝐵𝑖𝑘𝑁

𝑖=1 = 𝛥𝐶𝑘. Therefore, the energy bill 
discount that each user receives is a fraction of the total energy cost reduction, and equal to 
her contribution. 

In order to combine the volume-aware pricing that RTP proposes and the incentives that B-
RTP offers, we designed a hybrid billing mechanism which, in every iteration k, calculates the 
𝐵𝑖,𝐵−𝑅𝑇𝑃𝑘  of each user i according to  

𝐵𝑖,𝐵−𝑅𝑇𝑃𝑘 =  𝐵�𝑖,𝑅𝑇𝑃 − 𝛾 · 𝛥𝐵𝑖𝑘 − (1 − 𝛾) · (𝐵�𝑖,𝑅𝑇𝑃 − 𝐵𝑖,𝑅𝑇𝑃𝑘 )  (22) 

Here, 𝐵𝑖,𝑅𝑇𝑃𝑘  denotes the energy bill of user i in step k of the algorithm in case that ESP 
applies the RTP model (according to Table I). By studying Eq. (22), we observe that for γ = 0, 
B-RTP is reduced to the RTP model, while for 𝛾 = 1, the total cost reduction that is derived 
from the behavioral change of a user is converted into an equivalent reduction in her energy 
bill. In case 0 < 𝛾 < 1, a fraction γ of the cost reduction derived from the behavioral change 
of a user is converted into discount in her bill and the remaining fraction 1-γ is allocated to 
all participating users according to RTP. In case that 𝛾 > 1, B-RTP actually penalizes the set 



of users who are more reluctant to deviate from their desired energy schedule, in order to 
further favor the flexible users. 

By replacing Eqs. (18) and (21) into Eq. (22) for 𝛥𝐵𝑖𝑘  and 𝐵𝑖,𝑅𝑇𝑃𝑘  , respectively, one can easily 

prove that ∑ 𝐵𝑖,𝐵−𝑅𝑇𝑃𝑘𝑁
𝑖=1 = 𝐺�∑ 𝑥𝑖

𝑡,𝑘𝑁
𝑖=1 �, which means that our scheme is budget-balanced 

and does not generate surplus or deficit of money. B-RTP is summarized in Table II. As 
researchers in [52] prove, the convergence time of the algorithm of B-RTP is approximately 
the same for different number of consumers. Moreover, the impact of the number of 
flexible appliances per user on convergence time is negligible. Finally, the convergence of 
the following algorithm is proved in [52]. 

TABLE II. ALGORITHM FOR THE CALCULATION OF ENERGY BILLS AND THE ENERGY CONSUMPTION SCHEDULES IN 
B-RTP 

1 Initialization: 𝑘 = 0, 𝑥𝑖𝑘 = 𝑥𝚤� , 𝐵𝑖,𝐵−𝑅𝑇𝑃𝑘 =  𝐵𝚤,𝑅𝑇𝑃� , ∀𝑖 ∈ 𝑵, 𝜃 = 𝜃0,𝜃𝑚𝑖𝑛,ε, ζ 
2 While 𝜃𝑘 > 𝜃𝑚𝑖𝑛 do 
3       Calculate 𝐺𝑘 
4       𝑘 → 𝑘 + 1 
5       For each user 𝑖 ∈ 𝑵 
6             Receive 𝐵𝑖𝑘  
7             Repeat 
8                   Update 𝑥𝑖𝑘  
9                    𝐵𝑖,𝐵−𝑅𝑇𝑃𝑘  is updated through (17), (18), (21) and (22) 
10                   Calculate 𝑊𝑖

𝑘using (14) 
11             Until reach solution of (15) subject to (1), (7), (12), (19) 
12       End for 
13       Calculate 𝐺𝑘+1 
14       If 𝐺𝑘+1 > 𝐺𝑘 ∗ (1 − 𝜀) 
15             𝜃𝑘+1 =  𝜃𝑘 ∗ 𝜁 
16       Else 
17             𝜃𝑘+1 =  𝜃𝑘 
18 End 

 
V. Performance Evaluation 

In this section, we evaluate our proposed B-RTP scheme using the state-of-the-art RTP 
scheme as a benchmark. We consider a system consisting of N = 10 energy consumers, each 
of whom operates two curtailable and four shiftable devices. The selection of the 6 
categories of devices was done in order to include in the evaluation all possible types of 
loads. More specifically, each energy consumer may conserve energy through the 
curtailment of the operation of an A/C and a lighting system, and additionally shift the 
operation of an oven, a washing machine, a spin dryer and the charging of an EV. Moreover, 
every user characterizes some of her appliances as non-adjustable loads. In more detail: 

• Lights: We assume that each household is illuminated by 14 bulbs, which can be 
either LED (8W), CFL (14W) or incandescent bulbs (60W), and that users want the 
lights on from 18:00 until 24:00. Thus, user’s i total desired lighting energy 
consumption is randomly selected over the interval [0.672 – 5.040 kWh]. We 
assume that in every time slot, equal energy amounts are consumed. 



• A/C: Each user operates an A/C system from 14:00 until 22:00. Single A/C units come 
in different sizes and use from 500 to 1500 watts. User’s i total desired A/C energy 
consumption is randomly selected over the interval [4.0-12.0 kWh]. As we did with 
the lights, we assume that equal energy amounts are consumed in every time slot 

• Oven: We consider that users classify the oven as a shiftable device. Ovens use 1000 
to 5000 watts and are assumed to require at most one hour to complete their task. 
Therefore, user’s i total desired oven’s energy consumption is randomly selected 
over the interval [1.0 – 5.0 kWh]. Users’ desired oven plug-in times vary from 17:00 
to 19:00. 

• Washing Machine: It falls into the category of shiftable appliances. Washing 
machines use 400 to 1300 watts and finish their task in less than an hour. User’s i 
total desired washing machine energy consumption is randomly selected over the 
interval [0.4-1.3 kWh]. Users’ desired plug-in times vary from 09:00 to 12:00. 

• Spin Dryer: It is also accounted as a shiftable device. The energy use of a spin dryer 
varies between 1800 and 5000 watts and it takes less than an hour for it to finish its 
task. User’s i total desired energy consumption is randomly selected over the 
interval [0.4-1.3 kWh]. Users’ desired plug-in times vary from 13:00 to 18:00. 

• EV: The battery capacity is randomly chosen over the interval [5.5-6 kWh] and the 
maximum charging rate is 2 kW. Thus, the minimum time that an EV demands in 
order to be charged is 3 hours. We assume that users desire their EV to start 
charging somewhere between 00:00 and 05:00 or 18:00 and 21:00, and to finish 
ideally in 3 hours. 

• Non-adjustable loads: We assume that users categorize as nonadjustable loads 
devices, such as the refrigerator, the TV, the freezer, the Wi-Fi Router, etc., which 
are meant to be ON whenever requested. Thus, users’ aggregate energy 
consumption of critical loads is randomly chosen from [3.6-11.4 kWh] at each 
timeslot.  

The above datasets are derived from [53], [54], [55] and are summarized in Table III. The 
aggregate desired ECC is presented in Fig. 3. The scheduling horizon consists of T = 24 time 
slots of hourly duration. For the stepsize, we set 𝜃0 = 0.95, 𝜁 = 0.50, 𝜀 = 0.001 and 
𝜃𝑚𝑖𝑛 = 0.01 throughout the simulations. Regarding the parameters of energy cost function 
in Eq. (13), 𝑏 and 𝑐 are usually set to 0, while the value of parameter 𝑎 varies from 10-4 to 
0.05 in [11], [14], [26], [31] and [51]. In this work, parameters 𝑏 and 𝑐 are also set 0, while 𝑎 
is chosen to be 0.01, 0.02 or 0.03, which is the usual case in the aforementioned works also. 
Moreover, in [56] parameter δ of Eq. (8) is set to 1 implying perfectly flexible energy 
consumers. In this paper, in order to evaluate B-RTP in scenarios of various flexibility classes 
of end users, 𝛿 varies from 1 to 1.5. For the same reason, we choose 𝜔 of Eq. (4) to vary 
from 0.1 to 6. 



 

Figure 3: Aggregate daily users’ Energy Consumption Curve 

TABLE III. ELECTRICITY CONSUMPTION OF HOUSEHOLDS’ APPLIANCES 

Appliance Power 
(kW) 

Type of 
device 

𝒕𝒊,𝒅𝒂�  Duration 
(h) 

𝒕𝒊,𝒅𝒃
�  Energy 

(kwh) 
- - Non-

adjustable 
00:00 24 24:00 [3.6-

11.4] 
Lighting [0.008-

0.060] 
Curtailable 18:00 6 24:00 [1.2-

5.0] 
A/C [0.5-1.5] Curtailable 14:00 8 22:00 [4.0-

12.0] 
Oven [1.0-5.0] Shiftable [17:00-

19:00] 
1 [17:00-

19:00] 
[1.0-
5.0] 

Washing 
Machine 

[0.4-1.3] Shiftable [10:00-
13:00] 

1 [10:00-
13:00] 

[0.4-
1.3] 

Spin Dryer [1.8-5.0] Shiftable [14:00-
19:00] 

1 [14:00-
19:00] 

[1.8-
5.0] 

EV [0.0-2.0] Shiftable [00:00-
05:00,18:00-

21:00] 

3 [03:00-
08:00,21:00-

24:00] 

[5.5-
6.0] 

 

In order to demonstrate the performance of the B-RTP model for different classes of energy 
consumers – ESP customers, we consider three use cases: 

a) Low Flexibility: Energy consumers are reluctant to change their energy consumption 
habits. Parameter 𝛿𝑖,𝑑 for each user 𝑖 ∈ 𝑵 and 𝑑 ∈ 𝑫𝒔,𝒊 is randomly selected over 



[1.20-1.50], while parameter 𝜔𝑖 is randomly chosen over [3,6]. Finally, in this use 
case, we consider users that set relatively strict deadlines, i.e. they allow their EMSs 

to schedule their shiftable loads not more than one to two hours after 𝑡𝚤,𝑑𝑏� . 
b) Medium Flexibility: Energy consumers are more price-sensitive than in the ‘Low 

Flexibility’ use case. Parameter 𝛿𝑖,𝑑 is randomly selected over [1.10,1.20] ∀ 𝑖 ∈
𝑵,𝑑 ∈ 𝑫𝒔,𝒊. Parameter 𝜔𝑖 is randomly chosen over [1.0,3.0]. Users set their 

deadlines two to four hours after their 𝑡𝚤,𝑑𝑏� .   
c) High Flexibility: In this use case, energy consumers are most willing to participate in 

DSM programs, even for a relatively small repayment. Parameter 𝛿𝑖,𝑑 is randomly 
selected over [1.00,1.10] ∀ 𝑖 ∈ 𝑵,𝑑 ∈ 𝑫𝒔,𝒊. Parameter 𝜔𝑖 is randomly chosen over 

[0.1,0.5]. Users set their deadlines two to six hours after their 𝑡𝚤,𝑑𝑏� . 
Without loss of generality, in all of the above cases, parameter 𝑈𝑚𝑎𝑥  in the utility function 
for curtailable loads is set to 0. Moreover, 𝑥𝑖,𝑑𝑡  is set to 0 ∀𝑖 ∈ 𝑵,𝑑 ∈ 𝑫𝒄,𝒊. In order to assess 

the performance of B-RTP algorithm, the following Key Performance Indicators (KPIs) are 
used: 

• Energy Cost (G), as defined in Eq. (13), which is the cost of ESP to acquire the 
electricity needed to fulfill the requirements of its customers. This is an index of how 
energy-efficient a pricing scheme is, that is, how successful it is in incentivizing 
customers to adopt energy-efficient habits. 

• Aggregate Users’ Welfare (AUW) is a KPI that expresses the competitiveness of an 
ESP that adopts a billing strategy in an open electricity market: 

𝐴𝑈𝑊 =  ∑ �∑ ∑ 𝑈𝑖,𝑑𝑡𝑇
𝑡=1 (𝑥𝑖,𝑑𝑡 )𝐷𝑐,𝑖

𝑑=1 − ∑ ∑ 𝐷𝑈𝑖,𝑑𝑡 �𝑡𝚤,𝑑𝑎� , 𝑡𝚤,𝑑𝑏� , 𝑡𝑖,𝑑𝑙 ,𝑥𝑖,𝑑𝑡 �𝑇
𝑡=1

𝐷𝑠,𝑖
𝑑=1 − 𝐵𝑖,𝑅𝑇𝑃�𝑁

𝑖=1  (23) 

• Fairness (𝐹𝑖) is a KPI that indicates the fraction of user’s i contribution to system cost 
reduction that she will be rewarded in terms of energy bill discount: 

𝐹𝑖 =  𝐷𝑖
𝑅

𝐷𝑖
𝐴 ,∀𝑖 ∈ 𝑵,     (24) 

where, 

𝐷𝑖𝑅 =  𝐵𝚤,𝑅𝑇𝑃� −𝐵𝑖
∑ �𝐵𝚤,𝑅𝑇𝑃� −𝐵𝑖�𝑁
𝑖=1

,∀𝑖 ∈ 𝑵    (25) 

represents the discount that user i receives in her energy bill as a portion of the total 
discount in all users’ bills, and 

𝐷𝑖𝐴 =

∑ �𝐺�∑ 𝑥𝑖
𝑡𝑁

𝑗=1
𝑗≠1

+𝑥𝚤𝑡��−𝐺�∑ 𝑥𝑖
𝑡𝑁

𝑖=1 ��𝑇
𝑡=1

∑ �∑ �𝐺�∑ 𝑥𝑖
𝑡𝑁

𝑗=1
𝑗≠1

+𝑥𝚤𝑡��−𝐺�∑ 𝑥𝑖
𝑡𝑁

𝑖=1 ��𝑇
𝑡=1 �𝑁

𝑖=1

   (26) 

represents the discount achieved by user i, i.e. her contribution to system cost reduction, as 
a fraction of the summation of all users’ corresponding contributions. This is calculated 
employing the concept of Shapley value from cooperative Game Theory [57]. In this regard, 



user’s impact in the reduction of system cost is measured through the comparison of the 
total energy cost in: 1) the case in which user i performs the alterations in her ECC, 2) the 
case in which user i follows her desired ECC. Values of 𝐹𝑖 close to 1 indicate a fairer 
correlation between the behavioral change of user i and the reward that she gets for it. 

The adaptability of the Hybrid B-RTP(γ) scheme gives ESP the opportunity to select its own 
strategy with respect to users’ reward, by adjusting properly the value of γ. According to the 
price elasticity of its customers and the DR services it has to provide to the various smart 
grid market stakeholders, ESP will select a certain value of γ in order to achieve an attractive 
trade-off among the above KPIs. 

A. Low Flexibility Use Case 
In the Low Flexibility case, ESP needs to provide its customers with more generous financial 
incentives in order to motivate them towards more energy-efficient ECCs, as they are not so 
price-sensitive. Fig. 4 depicts the ratio between the energy cost G (across the whole time 
horizon) with hybrid B-RTP and the energy cost G with RTP as a function of γ. The graphs in 
Fig. 4, represent the cases of energy with low generation cots (c = 0.01), medium-cost 
energy (c = 0.02) and high-cost energy (c = 0.03). We notice that even in the low flexibility 
use case, B-RTP is able to bring  a cost reduction of 10% in comparison with RTP (for γ=2), in 
case of low- and medium-cost energy (c=0.01, c=0.02) and 13% in case of high-cost energy (c 
= 0.03). As cost of energy rises, it is reasonable for G to further decline, since the energy bills 
are higher and thus customers are more willing to exploit their schedulable loads.  

 

Figure 4: Ratio between G with B-RTP(γ>0) and G with RTP (γ=0) as a function of γ in Low Flexibility use case 



These results are expected for γ = 2, which could correspond to a case, for example, of an 
imminent congestion event in a certain area. As it is inferred from Eq. (22), values of γ 
greater than 1 imply that ESP over-rewards the more flexible users for their DSM actions, 
while it imposes a monetary penalty to the less flexible ones. Fig. 5 presents the ratio 
between AUW with B-RTP and AUW with RTP scheme as a function of γ. According to it, the 
aforementioned energy cost reduction does not come with any significant users’ welfare 
decrease even in the low flexibility use case. In fact, ESP could select γ to be up to 1.8 and 
AUW would not be lower than that under RTP scheme. This is explained firstly by the fact 
that a load shift or a load cut, which are the reasons of the decrease of a users’ comfort, are 
higher compensated by the ESP, when 𝛾 > 1. Moreover, even the more flexible users in this 
inelastic set of energy consumers manage a relatively small cost reduction ΔC. Thus, the 
penalties in the energy bills of the less energy efficient users are too small compared to their 
RTP bills to justify a large decrease in AUW. In other words, given that ESP’s customers are a 
set of inelastic users, increasing γ diminishes AUW by a slow rate. Hence, B-RTP (comparing 
to RTP), manages to reduce energy costs by 9-12%, depending on conventional energy 
generation cost level (c), without sacrificing at all the aggregate users’ welfare. ESP could 
continue increasing γ in order to further motivate users to shift or shed their loads and 
therefore achieve even higher energy cost reduction. However, this would be done at the 
expense of users’ welfare. Finally, we note in Fig. 5 that AUW reaches its peak for γ = 0.8 
independently of the value of c. Apparently, in case of high-cost energy (c = 0.03), the gap 
between AUW under B-RTP and AUW under RTP is larger, since the financial motivation for 
the users is larger. This leads them to more energy efficient actions (load shifts and cuts) and 
hence lower energy bills and finally higher AUW. In other words, the bill discounts are 
greater than their marginal utility, which they sacrifice to get them. 



 

Figure 5: Ratio between AUW with B-RTP(γ>0) and AUW with RTP (γ=0) as a function of γ in Low Flexibility use 
case 

In order to examine the impact of γ on users’ welfare in more detail, we depict in Fig. 6 the 
ratio between users’ welfare in case of 𝛾 ∈ [0 , 0.8 , 1, 1.5] and in case of RTP for every user 
𝑖 ∈ 𝑵 and c = 0.02. Ten users are sorted based on their flexibility, with i=1 denoting the 
more flexible user and i=10 the less flexible one2. Studying Fig. 6, we observe that, as we 
expected, 𝑊𝑖 of the less price inelastic users i increases with γ. On the other hand, RTP is in 
the best interest of price inelastic users, since not being willing to change their energy 
consumption patterns, it provides them with financial benefits that others created. As in Fig. 
5, in Table IV we establish the preference of users for B-RTP(γ=0,8) on average. Also, we 
note that in B-RTP(γ=1,5), even if price inelastic users are penalized in order for the flexible 
users to receive a generous bonus for their behavioral change, users’ welfare is marginally 
higher on average than in RTP in this low flexibility use case. 

 

                                                           
2 Flexibility is a function of parameters ω and δ, used in Eqs. (4) and (8), respectively, and also 𝑡𝚤,𝑑𝑎� , 𝑡𝚤,𝑑𝑏� , 
𝑡𝑖,𝑑𝑙  (i.e. users’ desired ECC). Thus, sorting users based on their flexibility is not a straightforward task 
and has been done approximately. This is why there is not a continuity in the variation of users’ 
welfare for a certain value of γ. This is also observed in corresponding graphs for the other use cases. 



 

Figure 6: Ratio between users’ welfare for various values of γ and users’ welfare for γ = 0 (RTP) in Low Flexibility 
use case 

TABLE IV RATIO BETWEEN AVERAGE USERS’ WELFARE FOR DIFFERENT VALUES OF γ  AND AVERAGE USERS’ 
WELFARE FOR γ=0 (RTP) IN LOW FLEXIBILITY USE CASE 

γ 0 (RTP) 0.8 1.0 1.5 
𝑼𝑾(𝑩 −𝑹𝑻𝑷(𝜸))

𝑼𝑾(𝑹𝑻𝑷)
�  

1 1.0094 1.0085 1.0039 

 

Fig. 7 depicts the Cumulative Distribution Function (CDF) of 𝐹𝑖 for different values of γ. Cost 
parameter c is set to 0.02. As analyzed above, 𝐹𝑖 is an index of how fairly the energy cost 
reduction is allocated to users. The fairest way of distributing energy savings among the 
users is represented by 𝐹𝑖 = 1. Fig. 7 shows that B-RTP (γ=1) is the fairest billing mechanism. 
This was expected as it incentivizes users towards an energy-efficient behavior so that they 
receive a generous discount in their bills. Under RTP (γ = 0), inflexible users benefit from the 
others’ actions and thus are not motivated to change their energy consumption behavior, 
while demand responsive customers see their actions not being sufficiently compensated. 
This discourages users to deviate from their desired ECC.  For gradually increasing γ the 
distribution of users around 𝐹𝑖 = 1 gets narrower (i.e. fairer billing) and for γ=0.8 (which 
maximizes AUW), it is much closer to 𝐹𝑖 = 1. For values of γ greater than 1, the distribution 
of users around 𝐹𝑖 = 1 starts getting wider again as we can see in case of γ = 1.5. Still, the 
mean value of 𝐹𝑖 (Table V) is closer to 1 than RTP, meaning that B-RTP(γ=1.5) is a fairer 
billing scheme than RTP on average. If ESP chooses to impose the fairest possible pricing 



scheme, B-RTP will manage a cost reduction of 6-7.5% comparing to RTP and a slightly higher 
AUW. 

 

Figure 7: CDF of 𝐹𝑖 among participating users under B-RTP for various values of γ  in Low Flexibility use case 

TABLE V MEAN VALUES OF 𝐹𝑖 FOR DIFFERENT VALUES OF γ IN LOW FLEXIBILITY USE CASE 

γ 0 (RTP) 0,8 1 1,5 
𝑭 1.2131 1.0379 1 0.9097  

 

B. Medium Flexibility Use Case 
 In the medium flexibility use case, the concept of Figures 8, 9, 10, 11 is similar to that of 
Figures 4, 5, 6, 7, respectively, of the previous low flexibility use case. In this use case, 
several of the ESP clients represent energy consumers with DR capability. They are more 
price-sensitive than in the former case but still not eager to change their energy behavior 
without a significant financial reimbursement. Thus, in Fig. 8, we observe that B-RTP 
achieves a larger energy cost reduction comparing to RTP scheme. Similarly to the low 
flexibility use case, as γ increases the cost reduction declines in almost linear fashion. 
However, for 𝛾 > 1.3, this happens at the expense of AUW (Fig. 9), which declines as the 
less flexible users are penalized so that the more flexible ones achieve a quite generous 
bonus. In this use case, users seem to be less tolerant to the increase of γ above 1. This is 
because users, being more price elastic comparing to the low flexibility use case, create a 
larger cost reduction, which translates into stricter penalties for the less DR-active users. 
Nevertheless, in case of c = 0.02, B-RTP reduces energy cost by up to 16% compared to RTP 
without sacrificing AUW (𝛾 = 1,3). In case of higher or lower cost of energy, this cost 



reduction is larger (21%) or smaller (11%) respectively. Here, we observe a larger gap 
between the 3 plots of Fig. 8 when we compare them with those of Fig. 4, since users are 
more price-responsive and higher energy costs lead them to even more load shifts and cuts 
in order for them to benefit from B-RTP.   

 

Figure 8: Ratio between G with B-RTP(γ>0) and G with RTP (γ=0) as a function of γ in Medium Flexibility use case 



 

Figure 9: Ratio between AUW with B-RTP(γ>0) and G with RTP (γ=0) as a function of γ in Medium Flexibility use 
case 

In Fig. 10 and Table VI, we can see that, as in the low flexibility use case, increasing γ benefits 
the more price elastic users, who take advantage of the billing mechanism and receive a high 
discount in their energy bills. On the other hand, the rest of the users experience a steeper 
downfall in their Welfare as γ increases compared to the previous use case. This can be 
interpreted, not only by the higher penalties these users have to pay, but also by the fact 
that they are not totally price inelastic energy consumers as in the low flexibility use case.   



 

Figure 10: Ratio between users’ welfare for various values of γ and users’ welfare for γ = 0 (RTP) in Medium 
Flexibility use case 

 

TABLE VI RATIO BETWEEN AVERAGE USERS’ WELFARE FOR DIFFERENT VALUES OF γ AND AVERAGE USERS’ 
WELFARE FOR γ=0 (RTP) IN MEDIUM FLEXIBILITY USE CASE 

γ 0 (RTP) 0,6 1,0 1,5 
𝑼𝑾(𝐁 − 𝐑𝐓𝐏(𝛄))

𝑼𝑾(𝑹𝑻𝑷)
�  

1 1.0149 1.0117 0.9911 

 

As in the low flexibility use case, we see in Fig. 11 and Table VII that B-RTP (γ=1) is the fairest 
billing mechanism, while RTP is the least fair among B-RTP schemes with parameter 
0 ≤ 𝛾 ≤ 1. Even B-RTP (γ=1.5) compensates in a fairer way more users than RTP does. So, 
ESP can choose γ=1 to efficiently incentivize its customers to alter their ECCs and achieve a 
cost reduction of 6.5, 12.5 or 17% over RTP, depending on energy generation cost parameter 
c. Alternatively, ESP could choose γ=0.6 to maximize AUW in cases of medium-cost and high-
cost energy and achieve a 7.5 and 11%larger cost reduction than RTP respectively in a fairer 
manner. In case of low-cost energy (c = 0.01), ESP in order to maximize AUW should select γ 
= 0.8 which results in a 5% cost reduction over RTP. 



 

Figure 11: CDF of 𝐹𝑖 among participating users under B-RTP for various values of γ  in Medium Flexibility use case 

TABLE VII MEAN VALUES OF 𝐹𝑖 FOR DIFFERENT VALUES OF γ IN MEDIUM FLEXIBILITY USE CASE 

γ 0 (RTP) 0,6 1 1,5 
𝑭 1.1239 1.0341 1 0.9504 

 

C. High Flexibility Use Case 
In this subsection, we examine the case when ESP’s customers are a set of highly price-
sensitive users, who are eager to exploit their schedulable loads in order to gain discounts in 
their energy bills. In this high flexibility use case, Figures 12, 13, 14, 15 are once again similar 
to their corresponding Figures 4, 5, 6, 7 of the low flexibility use case. Thus, Fig. 12 illustrates 
a downturn in energy cost comparing to RTP scheme. However, increasing γ diminishes AUW 
in much steeper fashion in comparison to the two former use cases (Fig. 13). This is because 
B-RTP (γ>1) will penalize users who are much more willing to provide flexibility services in 
order for them to get financially rewarded and not users who are price-inelastic. This result 
is very interesting from the ESP’s business perspective in case it participates in various types 
of flexibility markets, where DSM units can be sold in really competitive prices (e.g. to solve 
an imminent congestion problem). In the latter case, users would be more tolerant to a fine 
imposed to their energy bills. This is illustrated in Fig. 14 and Table VIII (c = 0.02), in which it 
is clear that the welfare of less flexible users decreases for γ=1.5. Conclusively, B-RTP 
reduces energy cost by 16 % over RTP when c = 0.01, by 24% when c = 0.02 and even by 27% 
when c = 0.03, while simultaneously managing to keep AUW above that of RTP. In case of B-
RTP(γ=0,5) which maximizes AUW for c = 0.02 or c = 0.03, the energy cost reduction reaches 



14% and 17%, respectively. In case of low-cost energy (c = 0.01) AUW is maximized for γ = 
0.6 and the equivalent cost reduction is 10.5% in comparison with RTP. 

 

Figure 12: Ratio between G with B-RTP(γ>0) and G with RTP (γ=0) as a function of γ in High Flexibility use case 



 

Figure 13: Ratio between AUW with B-RTP(γ>0) and AUW with RTP (γ=0) as a function of γ in High Flexibility use 
case 



 

Figure 14: Ratio between users’ welfare for various values of γ and users’ welfare for γ=0 (RTP) in High Flexibility 
use case 

TABLE VIII RATIO BETWEEN AVERAGE USERS’ WELFARE FOR DIFFERENT VALUES OF γ AND AVERAGE USERS’ 
WELFARE FOR γ=0 (RTP) IN HIGH FLEXIBILITY USE CASE 

γ 0 (RTP) 0,5 1,0 1,5 
𝑼𝑾(𝐁 − 𝐑𝐓𝐏(𝛄))

𝑼𝑾(𝑹𝑻𝑷)
�  

1 1.0236 1.0052 0.9432 

 

In the CDF of Fi (Fig. 15), we re-establish that B-RTP(γ=1) is the fairest billing mechanism, 
while RTP the least fair one. By gradually increasing γ and as it approaches 1, the distribution 
of users gets narrower (fairer pricing), until γ surpasses 1 and the users’ distribution starts 
widening again. We also notice that even B-RTP with γ=1.5 allocates the energy cost 
reduction to the users in a fairer way than RTP (Table IX). In more detail, B-RTP with γ=1.5 
overcharges some users for their energy consumption, although it charges users more fairly 
and thus it is a stronger motivator towards energy-efficient ECCs than RTP. This policy would 
bring a large cost reduction (e.g. 30% for c = 0.02) although it would decrease AUW (e.g. 6% 
for c = 0.02). This policy could be selected in the case of emergency situations (e.g. 
congestion issues in a specific network location, governmental policies to cope with energy 
poverty issues, etc.), when energy cost is requested to severely decrease at any cost. 



 

Figure 15: CDF of 𝐹𝑖 among participating users under B-RTP for various values of γ In High Flexibility use case 

TABLE IX MEAN VALUES OF 𝐹𝑖 FOR DIFFERENT VALUES OF γ IN HIGH FLEXIBILITY USE CASE 

γ 0 (RTP) 0.5 1 1.5 
𝑭 1.0873 1.0325 1 0.9819 

 

In the 3 use cases examined above, we demonstrated that B-RTP offers a much more 
attractive trade-off between widely accepted KPIs than the RTP scheme for all levels of 
energy generation cost and all levels of the end users’ elasticity. Based on these results, we 
consider B-RTP a very useful tool in the hands of an ESP, which can exploit it in order to 
participate in several types of flexibility markets (i.e. balancing, congestion management, 
voltage control, frequency control, N-1 adequacy) with efficient DSM services, while being 
fair towards its customers and without sacrificing the level of eligibility of its services in an 
open and competitive retail market. In emergency circumstances, where the stability of the 
system is at risk and the energy cost is about to increase dramatically (e.g. congestion 
market), an ESP making use of B-RTP, can carry through the task with a relatively smooth 
reduction of users’ welfare. 

 

VI. Conclusion 
In this paper, we focused on modern energy pricing models and argued that they do not 
fairly reward demand responsive users, who are more willing than others to adopt energy-
efficient habits. Thus, existing pricing models are not designed to trigger behavioral changes 



as they do not provide energy consumers with attractive incentives in the form of fair 
compensation. Motivated by this observation, we developed a hybrid billing mechanism, 
namely Behavioral Real Time Pricing. B-RTP disposes an adjustable level of rewarding users 
by offering them financial incentives to modify their ECCs. B-RTP can be a valuable tool in 
the hands of an ESP in order for the latter to employ innovative business models and 
respective revenue streams mainly by selling DSM units in various types of flexibility 
markets. It aims at motivating its customers to exploit their shiftable and curtailable devices 
in order to reduce the cost of conventional energy usage. Our evaluation uses a non-profit 
version of RTP as a benchmark and we show that B-RTP manages to prompt energy 
behavioral changes of users much more efficiently than RTP does. We assume in this work 
that the desired ECC is a priori known. In our future work, we will advance the model of B-
RTP in order to take into account use cases, where the desired ECC is unknown. Finally, we 
plan to study the impact of the B-RTP in: islanded microgrids, energy communities and 
innovative business models for ESPs towards the latters’ participation in the emerging 
flexibility markets. 
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