
Nik Watson- PhD
- Professor at University of Leeds
Nik Watson
- PhD
- Professor at University of Leeds
About
65
Publications
15,787
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,451
Citations
Introduction
A versatile PhD qualified chartered engineer with experimental and computational experience for process monitoring and sample analysis within the food, pharmaceutical, FMCG and oil sectors.
Current institution
Additional affiliations
December 2010 - present
Education
February 2006 - April 2010
September 2000 - May 2005
Publications
Publications (65)
The incorporation of Artificial Intelligence (AI) could deliver a new era in food manufacturing, marked by increased operational efficiencies, higher product quality, and better safety standards. This review offers an in-depth examination of the field's evolution, outlines the leading AI methodologies, and investigates their applications in food ma...
The agri-food sector is undergoing a comprehensive transformation as it transitions towards net zero. To achieve this, fundamental changes and innovations are required, including changes in how food is produced and delivered to customers, new technologies, data and physical infrastructures, and algorithmic advancements. In this paper, we explore th...
Background
Equal, diverse, and inclusive teams lead to higher productivity, creativity, and greater problem-solving ability resulting in more impactful research. However, there is a gap between equality, diversity, and inclusion (EDI) research and practices to create an inclusive research culture. Research networks are vital to the research ecosyst...
As energy demands and costs rise, enhancing energy efficiency in Food and Drink Cold Storage (FDCS) rooms is important for reducing expenses and achieving environmental sustainability ambitions. Forecasting electricity use in FDCSs can help optimise operations and minimise energy consumption by enabling door opening frequency, maintenance, and rest...
The assessment of food and industrial crops during harvesting is important to determine the quality and downstream processing requirements, which in turn affect their market value. While machine learning models have been developed for this purpose, their deployment is hindered by the high cost of labelling the crop images to provide data for model...
Apricot stones have high commercial value and can be used for manufacturing functional foods, cosmetic products, active carbon, and biodiesel. The optimal processing of the stones is dependent on the cultivar and there is a need for methods to sort among different cultivars (which are often mixed in processing facilities). This study investigates t...
In manufacturing environments, real-time monitoring of yoghurt fermentation is required to maintain an optimal production schedule, ensure product quality, and prevent the growth of pathogenic bacteria. Ultrasonic sensors combined with machine learning models offer the potential for non-invasive process monitoring. However, methods are required to...
Egyptian cotton is one of the most important commodities for the Egyptian economy and is renowned globally for its quality, which is largely assessed and graded by manual inspection. This grading has several drawbacks, including significant labor requirements, low inspection efficiency, and influence from inspection conditions such as light and hum...
In food production environments, the wrong powder material is occasionally loaded onto a production line which impacts food safety, product quality, and production economics. The aim of this study was to assess the potential of using Near Infrared (NIR) spectroscopy combined with Machine Learning to classify food powders under motion conditions. Tw...
The addition of incorrect agri-food powders to a production line due to human error is a large safety concern in food and drink manufacturing, owing to incorporation of allergens in the final product. This work combines near-infrared spectroscopy with machine-learning models for early detection of this problem. Specifically, domain adaptation is us...
Food contamination is a major concern for consumers and food businesses, especially when the contaminant is an allergen. This study focused on detecting and quantifying peanut powder in garlic powder using low-cost Near-Infrared sensors (S2.0-1550-1950 nm, and S2.5-2000-2450 nm) coupled with machine learning methods. Garlic and peanut powders of th...
Supervised machine learning techniques are increasingly being combined with ultrasonic sensor measurements owing to their strong performance. These techniques also offer advantages over calibration procedures of more complex fitting, improved generalisation, reduced development time, ability for continuous retraining, and the correlation of sensor...
Advances in industrial digital technologies have led to an increasing volume of data generated from industrial bioprocesses, which can be utilised within data-driven models (DDM). However, data volume and variability complications make developing models that captures the underlying biological nature of the bioprocesses challenging. In this study, a...
Background
The dairy industry requires substantial energy resources at all stages of production and supply to meet consumer needs in terms of quantity, quality and food safety. The expected future climate change effects will cause serious uncertainty to the dairy industry. Adapting to these upcoming conditions is a challenge and one that is compoun...
The interactions between proteins and polysaccharides are of considerable importance in the food industry. In this study, the effect of adding non-charged methylcellulose (MC), hydroxypropylmethylcellulose (HPMC), medium (GM) and high (GH) molecular weight guar gum and negatively charged sodium carboxymethylcellulose (CMC) was investigated on the r...
Meat products are popular foods and there is a need for cost-effective technologies for rapid quality assessment. In this study, RGB color imaging coupled with machine learning algorithms were investigated to detect plant and animal adulterants with ratios of from 1-50% in minced meat. First, samples were classified as either pure or adulterated, t...
Food and drink is the largest manufacturing sector worldwide and has significant environmental impact in terms of resource use, emissions, and waste. However, food and drink manufacturers are restricted in addressing these issues due to the tight profit margins they operate within. The advances of two industrial digital technologies, sensors and ma...
Beer fermentation processes are traditionally monitored through sampling and off-line wort density measurements. In-line and on-line sensors would provide real-time data on the fermentation progress whilst minimising human involvement, enabling identification of lagging fermentations or prediction of ethanol production end points. Ultrasonic sensor...
Egyptian cotton is one of the most important commodities to the Egyptian economy and is renowned globally for its quality, which is currently graded by manual inspection. This has several drawbacks including significant labour requirement, low inspection efficiency, and influence from inspection conditions such as light and human subjectivity. This...
Ultrasonic sensors are a low-cost and in-line technique and can be combined with machine learning for industrial process monitoring. However, training accurate machine learning models for process monitoring using sensor data is dependent on the feature selection methodology. This paper compares a convolutional feature extraction method to a traditi...
The fourth industrial revolution is set to integrate entire manufacturing processes using industrial digital technologies such as the Internet of Things, Cloud Computing, and machine learning to improve process productivity, efficiency, and sustainability. Sensors collect the real-time data required to optimise manufacturing processes and are there...
Beer fermentation is typically monitored by periodic sampling and off-line analysis. In-line sensors would remove the need for time-consuming manual operation and provide real-time evaluation of the fermenting media. This work uses a low-cost ultrasonic sensor combined with machine learning to predict the alcohol concentration during beer fermentat...
Sugar content is one of the most important properties of potato tubers as it directly affects their processing and the final product quality, especially for fried products. In this study, data obtained from spectroscopic (interactance and reflectance) and hyperspectral imaging systems were used individually or fused to develop non-cultivar nor grow...
Beer fermentation is typically monitored by periodic sampling and off-line analysis. In-line sensors would remove the need for time-consuming manual operation and provide real-time evaluation of the fermenting media. This work uses a low-cost ultrasonic sensor combined with machine learning to predict the alcohol concentration during beer fermentat...
Process manufacturing industries constantly strive to make their processes increasingly sustainable from an environmental and economic perspective. A manufacturing system model is a powerful tool to holistically evaluate various manufacturing configurations to determine the most sustainable one. Previously models of process manufacturing systems ar...
The quality of potato tubers is dependent on several attributes been maintained at appropriate levels during storage. One of these attributes is sprouting activity that is initiated from meristematic regions of the tubers (eyes). Sprouting activity is a major problem that contributes to reduced shelf life and elevated sugar content, which affects t...
Freeze-drying is an energy intensive unit operation used for the production of dehydrated foods, such as instant coffee and dried fruits, and results in high sensorial, nutritional and reconstitution properties of the final products. Understanding the relationships between operating conditions and product quality is essential to design processes th...
Effectively cleaning equipment is essential for the safe production of food but requires a significant amount of time and resources such as water, energy, and chemicals. To optimize the cleaning of food production equipment, there is the need for innovative technologies to monitor the removal of fouling from equipment surfaces. In this work, optica...
There is a need to understand the rheology and structure of emulsion-based systems under flow, as they determine quality attributes of foods such as texture, stability and taste. However, simultaneous rheo-optical investigations are challenging partially due the limited (and expensive) equipment available. An in-house rheo-optical device has been u...
The increasing availability of data, due to the adoption of low-cost industrial internet of things technologies, coupled with increasing processing power from cloud computing, is fuelling increase use of data-driven models in manufacturing. Utilising case studies from the food and drink industry and waste management industry, the considerations and...
Cleaning is an essential operation in the food and drink manufacturing sector, although it comes with significant economic and environmental costs. Cleaning is generally performed using autonomous Clean-in-Place (CIP) processes, which often over-clean, as suitable technologies do not exist to determine when fouling has been removed from the interna...
Food and drink production equipment is routinely cleaned to ensure it remains hygienic and operating under optimal conditions. A limitation of existing cleaning systems is that they do not know when the fouling material has been removed so nearly always over-clean, incurring significant economic and environmental costs. This work has studied the us...
Ultrasound has been used to intensify the extraction of phenolic compounds from many agro-food products. However, there is still a lack of understanding on how the ultrasonic energy is influenced by blends of different solvents and how this impacts the extraction process. This work studied the effect of ethanol, acetone and hexane blends on the ult...
Mixing is one of the most common processes across food, chemical, and pharmaceutical manufacturing. Real-time, in-line sensors are required for monitoring, and subsequently optimising, essential processes such as mixing. Ultrasonic sensors are low-cost, real-time, in-line, and applicable to characterise opaque systems. In this study, a non-invasive...
Circular economy (CE) thinking has emerged as a route to sustainable manufacture, with related cradle-to-cradle implications requiring implementation from the design stage. The challenge lies in moving manufacturing environments away from the traditional linear economy paradigm, where materials, energy and water have often been designed to move out...
: Food allergens present a significant health risk to the human population, so their presence must be monitored and controlled within food production environments. This is especially important for powdered food, which can contain nearly all known food allergens. Manufacturing is experiencing the fourth industrial revolution (Industry 4.0), which is...
Mixing is a ubiquitous operation in process engineering. It is not only used for combining materials, but also for promoting heat and mass transfer, increasing aeration, suspending solids, and modifying material structure. Measurement techniques have the potential to optimise industrial mixing processes and improve product quality by monitoring cri...
Collagen pastes are processed materials obtained through the swelling of minced bovine hides using acids into a fibrous swollen structure. Depending on the application, there is a need to improve the performance of these pastes in terms of rheological properties and mechanical strength of the final product. In this work, the addition of cellulose f...
Clean-in-Place is an autonomous technique used to clean the internal surfaces of processing equipment in the food and drink sector. However, these systems clean for a longer time than required with negative economic and environmental impacts. In this work, an ultrasonic sensor system was developed to monitor the cleaning of different food fouling m...
The electric power generation and oil/gas production industries have a strong interest in the physical characterization of conducting and non-conducting liquid films that are formed during the flow of liquids in pipes. Conducting and non-conducting liquid films do not lend themselves to the same characterization techniques due to the different requ...
Clean-in-place (CIP) processes are extensively used to clean industrial equipment without the need for disassembly. In food manufacturing, cleaning can account for up to 70% of water use and is also a heavy user of energy and chemicals. Due to a current lack of real-time in-process monitoring, the non-optimal control of the cleaning process paramet...
Powder clumps (cakes) has a significant effect on the flowability and stability of powders. Powder caking is mainly caused by moisture migration due to wetting and environmental (temperature and humidity) changes. The process of moisture migration caking involves creating liquid bridges between the particles during condensation which subsequently h...
Powder clumps (cakes) has a significant effect on the flowability and stability of powders. Powder caking is mainly caused by moisture migration due to wetting and environmental (temperature and humidity) changes. The process of moisture migration caking involves creating liquid bridges between the particles during condensation which subsequently h...
Cloud Manufacturing (CM) is a service oriented business model to share manufacturing capabilities and resources on a cloud platform. Manufacturing is under pressure to achieve cost and environmental impact reductions, as manufacturing becomes more integrated and complex. Cloud manufacturing offers a solution, as it is capable of making intelligent...
Acoustic microscopy employs focused acoustic waves, typically operating between the mega- and gigahertz frequency range to image a given sample. The manner in which acoustic waves propagate and are reflected is dependent on materials’ elastic properties. There are two key benefits of acoustic microscopy techniques. The first is that the contrast in...
Clean-in-place systems are largely used in food industry for cleaning interior surfaces of equipment without disassembly. These processes currently utilise an excessive amount of resources and time, as they are based on an open loop (no feedback) control philosophy with process control dependent on conservative over estimation assumptions. This pap...
This paper presents the implementation of a methodology incorporating a 3D CAD geometry into a 3D Discrete Element Method (DEM) code; discussing some of the issues which were experienced. The 3D CAD model was discretised into a finite element mesh and the finite wall method was employed for contact detection between the elements and the spherical p...
There is considerable literature on the thicknesses of falling liquid films, much of which is focussed on either flat plates or small diameter pipes. Many studies provide time series data of the film thickness at one or two points on the pipe wall. This paper reports on an investigation of the interfacial structure of falling liquid films (liquid R...
There is considerable literature on the thicknesses of falling liquid films, much of which is focussed on either flat plates or small
diameter pipes. Many studies provide time series data of the film thickness at one or two points on the pipe wall. This paper reports
on an investigation of the interfacial structure of falling liquid films (liquid R...
Ultrasound tomography systems utilise acoustic waves with a frequency between 18. KHz and 20. MHz and can be used to image industrial processes. The way in which the waves propagate through a system are dependent on the material properties of the system and any inhomogeneities and phase interfaces they encounter. This allows ultrasound tomography s...
Many structural components are subjected to either constant or temporal mechanical loads, such as a suspension bridge bolts and rail tracks. Methods are required to accurately and efficiently measure the stresses experienced by these components to ensure they can continue to operate in an effective and safe manner. Acoustic techniques can be used t...
Aerated chocolate products consist of solid chocolate with the inclusion of bubbles and are a popular consumer product in many countries. The volume fraction and size distribution of the bubbles has an effect on their sensory properties and manufacturing cost. For these reasons it is important to have an online real time process monitoring system c...
Here are presented the results of a novel approach to the measurement of enzyme reaction rates in which ultrasound velocity measurement is used. Our results show enzyme activity is observable, in the acoustic context, and that furthermore this offers the potential to estimate the rate of reaction over different substrate concentrations and temperat...
Here are presented the results of a novel approach to the measurement of enzyme reaction rates in which ultrasound velocity measurement is used. Our results show enzyme activity is observable, in the acoustic context, and that furthermore this offers the potential to estimate the rate of reaction over different substrate concentrations and temperat...
A new approach to the monitoring of granulation processes using passive acoustics together with precise control over the granulation process has highlighted the importance of particle-particle and particle-bowl collisions in acoustic emission. The results have shown that repeatable acoustic results could be obtained but only when a spray nozzle wat...
The aim of this work is to demonstrate that the structural and fluidic properties of polymer foam tissue scaffolds, post-fabrication but prior to the introduction of cells, can be engineered via exposure to high power ultrasound. Our analysis is supported by measurements of fluid uptake during insonification and imaging of the scaffold microstructu...
The underlying principles of acoustic scanning/acoustic microscopy are reviewed, underpinning a discussion of the operation and application of acoustic microscopy and scanning to food materials. The construction of a versatile scanning acoustic platform (VSAP) capable of imaging over a wide range of scales, from centimetres to micrometres, is descr...
Acoustic microscopy has been used for many years to image and measure the elastic properties of materials across a wide range of scientific disciplines. However the application of this technique in the food industry is scarce. In this paper we outline the operation of a reflection-mode acoustic microscope and discuss some of the issues relevant to...
High shear mixers/granulators are used in a variety of industries these days, a prime example been the pharmaceuticals. It is important to gain a fundamental understanding of the motion of particles inside these devices for smooth operations and strict quality control. This work shows a preliminary study on a laboratory scale granulator (MiPro, Pro...