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CHAPTER 3

Size-Based Analysis of Diet and Trophic 
Position of the White Shark (Carcharodon 

carcharias) in South African Waters

Nigel E. Hussey, Heather M. McCann, Geremy Cliff, 
Sheld on F. J. Dudley, Sabine P. Wintner, and Aaron T. Fisk

ABSTRACT

Understanding the diet and trophic ecology of apex predators is critical for effective ecosys-

tem management, but analysis is generally restricted by their low abundance, threatened status, 

and, hence, available data. To address this knowledge gap for the White Shark (Carcharodon car-
charias), we examined stomach content data (n = 225) and undertook preliminary stable isotope AQ1
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28 GLOBAL PERSPECTIVES ON THE BIOLOGY AND LIFE HISTORY OF THE GREAT WHITE SHARK

analysis (δ15N and δ13C) of muscle tissue (n = 21) of sharks sampled from KwaZulu-Natal, South 

Africa. Summarized stomach content analysis (SCA) data indentifi ed a size-based transition in 

diet, an increase in mammalian prey, and a corresponding decrease in teleost and elasmobranch 

prey with increasing size of shark. Multivariate analysis of SCA data by size class was signifi -

cant, but a high degree of overlap of functional prey groups across size classes was observed. The 

smallest sharks containing whale and seal prey were 194 and 209 cm precaudal length (PCL), 

respectively. Trophic position calculated from SCA data (TPSCA) ranged from 4.2 to 5.0 with 

sharks feeding across 0.8 trophic levels. Although TPSCA data were highly variable, there was 

a signifi cant linear relationship with increasing size of shark. Similarly, there was a signifi cant 

increase in δ15N of muscle tissue with size of shark and feeding across 1.4 trophic levels was 

predicted. Sharks >200 cm PCL had highly variable δ15N muscle tissue values (minimum, 14.7; 

maximum, 16.8), possibly indicating multiple feeding strategies. For δ13C, the two smallest ani-

mals (124 and 134 cm PCL) had lower δ13C values relative to all  other sharks except the largest 

individual. Because these sharks are newborn animals, this suggests interference of the maternal 

signature and may indicate that large individuals, including pregnant females, switch forage base 

and/or remain offshore for extended periods of time. 

INTRODUCTION

With the advent of industrial fi shing and the initial absence of multispecies management direc-

tives, stocks of marine predators have undergone drastic declines (Myers and Worm, 2003, 2005; 

Hutchings and Baum, 2005). For terrestrial systems, “top-down” effects of predator removal have 

been historically documented (Elton, 1927; Leopold et al., 1947; Paine, 1980), but our understand-

ing of equivalent processes in marine systems has been limited (Baum and Worm, 2009). Recent 

work, however, has started to recognize the need to defi ne the role of predators to better understand 

the processes maintaining ecosystem function, stability, and resilience and to determine the conse-

quences of continued overexploitation (Stevens et al., 2000; Myers et al., 2007; Heithaus et al., 2008; 

Baum and Worm, 2009). 

Quantifying diet provides an important tool to examine the role of an organism within the 

system it inhabits and the infl uence it exerts on potential prey populations (Cortés and Gruber, 

1990; Wetherbee et al., 1990). Diet data are also required to estimate trophic position and to 

generate size-based trophic profi les (Pauly et al., 1998; Cortés, 1999). These baseline data are 

required to develop predictive frameworks for monitoring prey or predator removal and/or pop-

ulation fl uctuations (Pace et al., 1999; Myers et al., 2007; Heithaus et al., 2008). Traditionally, 

SCA has been used to examine diet/trophic interactions through providing insights into the 

type of prey consumed and the diversity of prey consumed and enabling the calculation of stan-

dardized trophic position (Cortés, 1997 and 1999). Importantly, SCA can be used to determine 

how these parameters vary with sex and size (Lowe et al., 1996). More recently, chemical trac-

ers, for example the stable isotopes of nitrogen and carbon (15N and 13C), have been employed 

as a complementary tool to SCA (Vander Zanden et al., 1997; Fisk et al., 2002). Stable isotopes 

of a predator’s muscle tissue refl ect that of the prey consumed and foraging location and are 

generally long-term integrated measures (MacNeil et al., 2005; Hussey et al., 2011). Nitrogen 

isotopes are viewed as the most reliable measure of trophic position (Post, 2002), whereas car-

bon isotopes typically refl ect variation in baseline producers and therefore the foraging habitat 

of the predator (DeNiro and Epstein, 1978). 

The White Shark (Carcharodon carcharias) is one of the largest of all extant marine predators, 

attaining a maximum recorded total length of 6 m (see Chapter 7, this volume). It is distributed 

throughout temperate waters but is reported from both tropical and temperate regions (Compagno, 

2002). It is principally an epipelagic predator inhabiting coastal waters but is also known to reside 

AQ2

AQ3
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in oceanic waters (Weng  et  al., 2007a; Nasby-Lucas, 2009; Jorgenson  et  al., 2010; Chapters 11 

and 21, this volume) and undertake large-scale migrations (Bonfi l  et  al., 2005, 2010; Chapter 

21, this volume). With concerns over localized depletions of this species, the White Shark was 

afforded protection in South Africa, Australia, and the United States. It is listed as vulnerable by the 

International Union for Conservation of Nature and Natural Resources and included on Appendix II 

of the Convention on International Trade in Endangered Species, to restrict international trade in 

body parts. 

Because large predatory sharks can infl uence prey population dynamics and their range 

encompasses different management subareas and fi shing pressures, regional White Shark popula-

tions can potentially exert signifi cant control across multiple components of the marine ecosys-

tem (Hussey et al., 2011). To date, most research focused on the diet of White Sharks has either 

examined limited stomach content data (Bass et al., 1975; Klimley, 1985) or the localized feeding 

patterns and predatory behavior at seal colonies (Klimley et al., 1992, 1996, 2001; Martin et al., 

2005; Laroche et al., 2008; Chapter 9, this volume). Our knowledge of general diet and size-based 

diet/trophic position has remained limited with the exception of stomach content data presented by 

Tricas and McCosker (1984) and Cliff et al. (1989) and more recently nitrogen stable-isotope pro-

fi les reported by Estrada et al. (2006). This is not surprising considering the logistical diffi culties 

of studying free-ranging marine predators and the low natural abundance, threatened status, and, 

hence, available data for White Sharks (Tricas and McCosker, 1984; Malcolm et al., 2001). The 

objectives of this study were as follows:

 1. Examine size-based diet shifts and calculate ontogenetic trophic profi les using a comprehensive 

archived stomach content data set.

 2. Compare ontogenetic trophic profi les generated from stomach content data with those from nitrogen 

stable-isotope data (δ15N) of white muscle tissue.

 3. Investigate size-based switches in foraging location using carbon stable isotope data (δ13C).

This study was focused on the White Shark population off the coast of Southern Africa. 

MATERIALS AND METHODS

Stomach Content Sampling

Samples (225 sharks with reliable stomach content data) were obtained from White Sharks inci-

dentally caught in beach protection nets set at popular bathing beaches along the coast of KwaZulu-

Natal (KZN), South Africa between 1978 and 2009 (Figure 3.1). The nets were set approximately 

300–500 m parallel to the beach in water 10–14 m deep (Dudley et al., 2005). For specifi c details 

regarding net-servicing operations, refer to Cliff et al. (1988).

PCL was measured as the straight-line distance from the tip of the snout to the precaudal notch 

as defi ned by Dudley et al. (2005). Maturity stage was determined by the state of the reproductive 

organs according to Cliff et al. (1989). Stomach contents were sorted; prey was identifi ed to the 

lowest possible taxonomic level, counted, and weighed to the nearest 0.1 g. Suspected scavenging 

of prey items was documented. 

Diet Composition

Cumulative prey curves were used to assess the sample size suffi ciency for accurately describ-

ing total diet and diet by size class. The order of stomachs sampled was randomized 999 times, and 

the mean cumulative exponential of new prey items was plotted as a function of sample size. Diet is 

considered to be adequately described when the curve approaches an asymptote (Ferry and Cailliet, 

AQ4
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30 GLOBAL PERSPECTIVES ON THE BIOLOGY AND LIFE HISTORY OF THE GREAT WHITE SHARK

1996). To standardize our results with previous elasmobranch-diet studies, diet composition was 

calculated as percentage number (%N), percentage mass (%M), percentage occurrence (%O), and 

percentage index of relative importance (%IRI) (Hyslop, 1980; Cortés, 1997). 

For statistical analysis, prey were grouped according to functional prey categories defi ned by 

family and habitat  (Table 3.1). All analysis was conducted with data for both sexes pooled, because 

a one-way analysis of similarities (ANOSIM) found no signifi cant difference in overall diet compo-

sition between sexes (R = 0.023, p = 0.122). 

Size-Based Diet Shift

To examine whether White Sharks undergo a size-based diet shift, we evaluated differences in 

dietary composition of sharks in four successive size classes; <185 cm, 185–234.9 cm, 235–284.9 

cm, and >285 cm. Sizes were defi ned to provide maximum resolution to examine size-based diet 

shifts, while maintaining sample numbers per size class. Division by maturity was deemed unsuit-

able because of limited catches of mature sharks. Each dietary index, %N, %M, %F, and %IRI size 

class data were subjected to nonmetric multidimensional scaling based on a Bray-Curtis similar-

ity coeffi cient and one-way ANOSIM (White et al., 2004; Huveneers et al., 2007). Accepting that 

individual stomachs of large sharks typically contain only one or a few of the many indentifi ed prey 

items, dietary data for groups of three to fi ve individual sharks were pooled per size class prior to 

the above analyses, herein referred to as dietary samples (Platell and Potter, 2001; White et al., 

2004). Similarity percentage analysis was used to explore the dietary categories that contributed 

most to dissimilarity in diet between size classes (Clarke and Warwick, 2001).

AQ5
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Figure 3.1  Map of South Africa showing the KwaZulu-Natal coastline where White Sharks were incidentally 
sampled from KwaZulu-Natal Sharks Board beach protection nets.
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Stable Isotope Sampling and Analysis

Muscle tissue was sampled from sharks caught in beach protection nets between 2005 and 

2008 (n = 21). All sharks were removed from nets, transported to the KwaZulu-Natal Sharks 

Board main laboratory, and stored frozen until public dissection. White muscle tissue (~5 g) was 

excised anterior to the fi rst dorsal fi n adjacent to the vertebral column and stored frozen. Prior 

to stable isotope analysis, the muscle tissue was freeze dried and homogenized using a SPEX 

CertiPrep 8000-D ball milling unit (SPEX CertiPrep, Metuchen, NJ). Accepting the known 

effect of lipid content on δ13C values (DeNiro and Epstein, 1977), all muscle tissue samples were 

lipid extracted following the technique detailed by Hussey et al. (2010a). Between 400 and 600 

μg of both nonlipid-extracted (BULK) and lipid-extracted (LE) tissue per individual shark were 

weighed into tin capsules, and stable carbon and nitrogen isotope ratios were provided from a 

continuous fl ow isotope ratio mass spectrometer (Finnigan MAT Deltaplus; Thermo Finnigan, 

San Jose, CA, USA). 

Stable isotope abundances are expressed in δ values as the deviation from standards in parts per 

thousand (‰) using the following equation:

 δX = [(Rsample/Rstandard) − 1] × 1000 (3.1)

where X is 15N or 13C, and R is the ratio 15N/14N or 13C/12C. The standard reference material was 

atmospheric nitrogen for N2 and Pee Dee Belemnite carbonate for CO2. The analytical precision 

(standard deviation) based on two standards (n = 59 for each standard): NIST 8414 and internal lab 

fi sh muscle were 0.11‰ and 0.19‰, respectively, for δ15N and were 0.05‰ and 0.06‰, respectively, 

for δ13C. Paired t tests were used to examine directional changes in δ15N, %N, δ13C, %C, and C:N 

ratio between BULK and LE muscle tissue.

Size-Based Trophic Profi le

Trophic position of White Sharks using stomach content data (TPSCA) was calculated following 

Cortés (1999),

 TPSCA = 1 + (∑pi × TPi) (3.2)

 i = 1

where TPSCA is diet-calculated trophic position per dietary sample, pi is the proportion of each prey 

category in the total diet (expressed as %M), and TPi is the trophic position for each functional prey 

category. The trophic positions of functional prey categories were defi ned as: elasmobranch (3.65), 

teleost (3.24), cephalopod (3.2), crustacean (2.52), mollusk (2.1), bird (3.87), and mammal (4.02) 

based on Cortés (1999). The miscellaneous functional prey group was excluded from all trophic 

position calculations.

Both TPSCA for all dietary samples within the four defi ned size classes and mean TPSCA (± S.D.) 

per size class were calculated. Accepting that dietary samples consisted of consecutive increasing 

size animals, the mean PCL for each dietary sample was also calculated and plotted against the 

TPSCA estimate. 

To examine δ15N ontogenetic trophic shifts and to facilitate a comparison with TPSCA, δ15N 

data were plotted versus PCL for each shark, and mean (±S.D.) data were presented per size class. 

A trophic level was defi ned as 2.29‰ d15N according to Hussey et al. (2010a, 2010b) based on a 

semicontrolled experiment on large sharks. 

AQ6

7
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Size-based δ13C profi les were examined to explore possible switches in foraging location/base 

with increasing size of shark. This was undertaken based on reported gradients in δ13C in the marine 

environment off southern Africa (Hill et al., 2006; Hill and McQuaid, 2008):

 1. An increase in δ13C moving from KZN to the Western Cape

 2. Depleted δ13C values in offshore waters compared with coastal waters

RESULTS

Stomach Content Data

Diet Composition

The cumulative prey curve for all sharks combined indicated that the data were describing a 

general asymptotic relationship but stabilization was not achieved (Figure 3.2a). Cumulative prey 

curves for data divided by size class did not approach an asymptote. This indicated that more indi-

viduals would be required to provide a more accurate representation of diet by size class, particu-

larly for size class 4 animals (>285 cm PCL; Figure 3.2b–e).

A diverse range of prey items were consumed within the main functional prey groups: elasmo-

branch (n = 14), mammal (n = 5), teleost (n = 18), and cephalopod (n = 4) (Table 3.1 and Figure 3.3). 

Identifi ed prey items were of varying size, ranging from large unidentifi ed whale (mysticeti) and 

whale shark (Rhincodon typus) to small loligo squids, South African pilchards (Sardinops ocella-
tus), and unidentifi ed bivalves (Table 3.1).

In terms of %M, %F, and %IRI, elasmobranchs were the principal diet component of the small-

est White Sharks followed by teleost prey. Elasmobranch prey was dominated by the dusky shark 

(Carcharhinus obscurus), whereas teleost prey consisted of chub mackerel (Scomber japonicus) and 

sea breams (Sparidae) (Table 3.1). When considering %N, %F, and %IRI, cephalopods were also 

important to the diet of small sharks, specifi cally unidentifi ed squids (Figure 3.4a and Table 3.1). 

With increasing size class of White Shark, there was a marked increase in mammal prey for all 

calculated diet indices and a corresponding decrease in teleost, elasmobranch, and cephalopod prey 

(Figure 3.4; cephalopods for %N, %F, and %IRI only). Of the elasmobranch prey, dusky sharks 

remained the most important prey item of size class 2 and 3 sharks, but overall elasmobranch 

prey diversity increased (Table 3.1). Size class 2 White Sharks (185–234.9 cm) consumed the most 

diverse range of reef, pelagic, and benthic teleosts (Table 3.1). Within the diet of the large White 

Sharks (>285 cm), seal was the most numerous mammal prey item (%N), whereas whale contributed 

the most by mass (%M) (Figure 3.4, a and b). 

Size-Based Diet Shift

For all of the diet indices examined, White Sharks underwent a signifi cant size-based shift in 

diet (Figure 3.5). Multidimensional scaling ordination of the data showed a level of diet separation 

between size class 1 and 4 sharks, but a high degree of overlap between all size class sharks was 

evident as indicated by the low global R statistic values (Figure 3.5). Pairwise comparisons found 

that the diet of size class 1 sharks was signifi cantly different from all other size classes for all calcu-

lated indices (Figure 3.5). Similarity percentage analysis found that mammal prey was the principal 

dietary component driving this diet separation.

Shark and cephalopod prey principally occurred in the diet of sharks between 140 and 270 cm 

PCL (Figure 3.6). All of the main functional prey groups occurred in the diet of sharks measuring 

~200 and 250 cm PCL. Of the marine-mammal prey, dolphin was fi rst consumed by a shark of 177 cm 
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37SIZE-BASED ANALYSIS OF DIET AND TROPHIC POSITION OF THE WHITE SHARK

PCL, seal by a shark of 194 cm PCL, and whale by a shark measuring 208 cm PCL (Figure 3.6). Seal 

and whale were the dominant prey, occurring in the diet of sharks >300 cm PCL (Figure 3.6). 

Ontogenetic Trophic Profi le

Stomach Content Data (TPSCA)

Stomach content-calculated trophic position (TPSCA) varied from 4.2 to 5.0 (Figure 3.7a). 

Although TPSCA estimates were highly variable across the size range of animals examined 

(Figure 3.7a), there was a signifi cant increase in TPSCA with PCL (linear regression: r2 = 11.7%; 

F1,75  = 11.05, p = 0.001). Overall TPSCA predicted White Sharks of all sizes feeding across 

0.8 trophic levels. Mean size class TPSCA values predicted feeding across 0.3 trophic levels 

(Figure 3.7a).
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Figure 3.2  Randomized cumulative prey curve for White Sharks sampled from beach protection nets. (a) Size 
class 1 (<185 cm PCL). (b) Size class 2 (185–234.9 cm PCL). (c) Size class 3 (235–284.9 cm PCL). 
(d) Size class 4 (≥285 cm PCL). (e) All White Sharks combined.
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Stable Isotopes (δ15N and δ13C): Lipid Extraction Effects

Lipid extraction of White Shark muscle tissue resulted in a signifi cant increase in δ13C, %C, and 

C:N ratio, a signifi cant decrease in %N, and no change in δ15N values (Figure 3.8). Because lipid 

extraction resulted in a signifi cant increase in δ13C, LE data were used in all subsequent analysis.

Stable Isotope Data (TPSIA)

The values of δ15N increased from 13.4‰ to ~15.4‰ between animals of 124–200 cm PCL 

(Figure 3.7b). For animals >200 cm PCL, δ15N were variable, ranging between 14.9‰ and 16.6‰ 

(a)

30 cm

30 cm(b)

14 cm
(c)

(d)

(e)

Figure 3.3  Stomach contents retrieved from White Sharks incidentally caught in beach protection nets in 
KwaZulu-Natal, South Africa. (a) Unidentifi ed whale blubber and unidentifi ed dolphin (302-cm PCL 
female). (b) Unidentifi ed dolphin (177-cm PCL female). (c) Unidentifi ed whale blubber (325-cm PCL 
female). (d) Unidentifi ed seal and rubber boot (235-cm PCL male). (e) Unidentifi ed seal and milk 
shark (Rhizoprionodon acutus) (231-cm PCL female). PCL, precaudal length of the dissected shark.
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39SIZE-BASED ANALYSIS OF DIET AND TROPHIC POSITION OF THE WHITE SHARK

(Figure 3.7b). Overall there was a signifi cant linear increase in δ15N with PCL (r2 = 24.6%; F1,19 = 

7.51, p = 0.013). Nitrogen stable isotopes predicted that White Sharks of all sizes were feeding 

across 1.4 trophic levels. Mean size class δ15N values predicted feeding across 0.7 trophic levels.

Foraging Location (δ13C)

The δ13C values of the two smallest White Sharks, a female of 124.0 cm PCL (−16.76‰) and 

a male of 134.0 cm PCL (−15.99‰), were depleted and similar to the value for the largest animal, 

0%

20%

40%

60%

80%

100%
(c) % Frequency

0%

20%

40%

60%

80%

100%
(d) % IRI

(a) % Number (b) % Mass

1 2 3 4
Size class

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4

Size class Size class

1 2 3 4
Size class

0%

20%

40%

60%

80%

100%

1 2 3 4
Size class

0%

20%

40%

60%

80%

100%

1 2 3 4
Size class

Elasmobranch

Mammal

Elasmobranch

Mammal

Teleost

Cephalopod

Teleost

Mollusk
Cephalopod
Teleost
Mammal
Elasmobranch

0
20
40
60
80

0
5

10
15
20
25
30

0
10
20
30
40

0
10
20
30
40

0
20
40
60
80

100

0
5

10
15
20

0
5

10
15
20

Figure 3.4  Graphic summary of White Shark stomach content data. Percentage number (%N) (a) and per-
centage mass (%M) (b) contribution to total diet of each size class of shark, including detailed 
breakdown of main functional prey groups: elasmobranch (shark , ray ), teleost (reef , pelagic 
, benthic ), mammal (dolphin , seal , whale ), and cephalopod (octopus , squid , cuttlefi sh 
). (c and d) Percentage frequency (%F) (c) and percentage index of relative importance (%IRI) (d).
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Figure 3.5  Nonmetric multidimensional scaling of the White Shark stomach content data by size class for 
each diet index. (a) Percentage number (%N). (b) Percentage mass (%M). (c) Percentage fre-
quency (%F). (d) Percentage index of relative importance (%IRI). R, ANOSIM global R statistic and 
associated p value. Signifi cant pairwise tests (with p value in brackets) are detailed in each fi gure. 
The level of statistical signifi cance was set at α = 0.05.
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Figure 3.6  The relationship between White Shark length and occurrence of the functional prey groups. The 
vertical orange line indicates the smallest Australian/American White Shark with pinniped stomach 
content remains according to Tricas and McCosker (1984) [240 cm TL = ~198 cm PCL according 
to Cliff et al. (1989)].
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which measured 351.2 cm PCL (male shark: −16.00‰) (Figure 3.9). Overall, the data followed a 

parabolic shape, with a rapid increase in δ13C with size, followed by a plateau, with evidence for 

a decline in the largest animal (Figure 3.9). Sharks measuring between 160.0 and 280.0 cm PCL 

had a mean (±SD) δ13C value of −14.66‰ ± 0.43 with a minimum and maximum of −15.28‰ and 

−14.02‰, respectively. 

DISCUSSION

By analyzing the most comprehensive archival stomach content data available combined 

with preliminary stable isotope data, it was possible to defi ne size-based diet shifts and to gener-

ate ontogenetic trophic profi les of South African White Sharks. These data complement previous 
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Figure 3.7  The relationship between diet calculated trophic position (TPSCA) (a) and δ15N (TPSIA) trophic posi-
tion (b) with increasing size of White Shark. The grey dots in (a) are the calculated TPSCA for each 
dietary sample, and the black dots in (b) are δ15N values (TPSIA) for individual White Sharks. Mean 
(±SD) TPSCA and δ15N (TPSIA) per size class are shown (orange dots). The arrows indicate the tro-
phic range of the White Shark for individual animals and for mean size-class data.
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stomach content data from South Africa (Bass  et  al., 1975; Cliff  et  al., 1989, 1996; the data 

presented in this study amalgamates that in the latter two studies) and other geographic locali-

ties (Tricas and McCosker, 1984; Bruce, 1992; Fergusson et  al., 2000; Malcolm et  al., 2001) 

and stable isotope data for the eastern North Atlantic (Estrada et al., 2006) and Pacifi c Oceans 

(Kerr et al., 2006).

Diet data derived from stomach contents for White Sharks has typically been restricted by 

sample numbers (Bass et al., 1975; Tricas and McCosker, 1984; Bruce, 1992) and the occurrence of 

empty or everted stomachs (Bass et al., 1975; Cliff et al., 1989). Cumulative prey curves indicated 

that the overall data set provided a reasonable indication of the total diet of the White Shark but 

that diet by size class will require further investigation. As with many large predatory sharks, the 

White Shark exhibited generalist feeding behavior, incorporating a large number of prey items from 

several functional prey categories. This type of feeding is reported for other closely related lamnids 
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(Stillwell and Kohler, 1982; Joyce et al., 2002) and for many large carcharhinids (Wetherbee et al., 

1990; Simpfendorfer et al., 2001). Within the functional prey categories, prey diversity in terms 

of habitat of occurrence was also high; for example, the teleost group included reef, pelagic, and 

demersal species. This suggests that White Sharks forage in a number of habitats and/or opportunis-

tically forage if prey is abundant or easily available. Both Tricas and McCosker (1984) and Klimley 

(1985) reported near-shore pelagic and demersal teleost species in the stomachs of White Sharks. 

Furthermore, diving behavior documented from pop-up archival satellite tags indicates that White 

Sharks adopt various foraging modes, including feeding in the surface mixed layer, on the seabed, 

and at depth (Dewar et al., 2004; Weng et al., 2007a, 2007b; Nasby-Lucas, 2009; Chapter 22, this 

volume). The generalist feeding strategy of White Sharks is likely related to the availability of pre-

ferred prey, seasonal prey abundance, and/or the energetic requirements of an individual related to 

life stage. 

Typical of large predatory fi sh (Scharf  et  al., 2000), the White Shark demonstrated asym-

metric feeding behavior, whereby larger prey were consumed with increasing predator size, but 

small prey items were retained in the diet. Squid, loligo squid, chiroteuthid squid, and cuttlefi sh, 

for example, were found in the stomachs of sharks >244 cm PCL, as well as those of smaller ani-

mals. The fact that the diet of small White Sharks is a subset of the diet of larger individuals was 

a principal factor contributing to the high degree of overlap of functional prey categories across 

size classes. The occurrence of small prey in the diet of large sharks, however, may indicate that 

abundant small fi sh such as the South African sardine, Sardinops sagax, may be energetically 

viable prey when compared with the energetic costs of chase down, manipulation, handling, and 

the probability of prey capture associated with marine-mammal prey. The stomachs of three White 

Sharks, measuring, 227.8, 228.5, and 239.8 cm PCL contained 300, 300, and 477 sardines each. 

These feeding events are linked to the annual sardine run off the South African coast (Cliff et al., 

1996; Dudley and Cliff, 2010).

A clear size-based shift in diet was evident, even when considering the high degree of overlap in 

functional prey categories across size classes. The diet of the smallest White Sharks was focused on 

elasmobranches and teleosts, and the fi rst evidence for foraging on seals was an individual measur-

ing 194 cm PCL. This is in agreement with Tricas and McCosker (1984) for the size of White Sharks 

fi rst feeding on seal off Australia and the United States. Tricas and McCosker (1984) postulated 

that an ontogenetic development in dentition at approximately 3 m TL may account for the shift in 

predatory behavior. Whale and seal were the dominant prey occurring in the diet of White Sharks 

>3 m in this study, in agreement with Tricas and McCosker (1984) and Casey and Pratt (1985). 

Further comparative study into the dentition of White Sharks off California relative to South Africa 

and other geographically separated populations and how this relates to diet is required. The occur-

rence of seals in the diet of White Sharks >200 cm PCL is in agreement with observations on White 

Shark-seal predation events in the western cape (Martin et al., 2005; Chapter 9, this volume) and 

supports the hypothesis of White Sharks showing preference for marine mammals with increasing 

size (Tricas and McCosker, 1984; Casey and Pratt, 1985; Klimley, 1985). It is important to note, 

however, that White Sharks feeding on whale prey are typically scavenging events (McCosker, 

1985; Long and Jones, 1996; Dudley et al., 2000) and are therefore opportunistic in nature in con-

trast to directed predation on pinnipeds (Martin et al., 2005; Chapter 9, this volume). Stomach con-

tent data therefore indicate that White Sharks are opportunist, generalist predators similar to many 

large sharks (Ebert, 1994) but show size-based preference for large-bodied, energetically valuable 

prey. The abundance of seal prey (i.e., seal colonies) infl uences the movement and residency pattern 

of White Sharks >200 cm PCL, but when considering the diverse habitats occupied by prey identi-

fi ed from stomach contents, it does not constrain movement (Bruce et al., 2006; Chapters 11 and 

21, this volume). 

As would be expected, there was an increase in diet-calculated trophic position (TPSCA) 

and δ15N (TPSIA) with increasing size of shark, correlated with the size-based shift to mammal 
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prey. TPSCA calculated from dietary samples was highly variable across the size range of sharks 

sampled, similar to the fi ndings of Cortés (1999). This was likely a result of the high degree of 

overlap of functional prey groups across size classes. For δ15N and accepting the small sample 

size, the initial increase in TPSIA was fairly rapid in contrast to TPSCA. Midsize range sharks, 

however, had variable δ15N values. Because δ15N values of muscle tissue represent long term 

integrated dietary signatures (MacNeil et al., 2005), this could correspond to variable feeding 

strategies, whereby some sharks selectively feed on marine mammals, whereas other individu-

als roam between shelf and oceanic waters. Variation in habitat therefore drives differences in 

foraging behavior. This is supported by variable residency rates for individual White Sharks at 

seal colonies (Bonfi l et al., 2005). Alternatively, the observed variation in δ15N values could be 

an indication of individual foraging success. Certain White Sharks may be more skilled and 

able to feed on seals, whereas other less successful individuals incorporate other prey within 

their diet to meet energetic requirements. Intrapopulation variation in foraging success is well 

documented across a broad range of species. We cannot rule out, however, that elevated δ15N 

signatures or the observed δ15N variation of the midsize sharks may be a result of a cessation of 

feeding. It is well documented that the tissues of animals that cease feeding for extended peri-

ods of time increase in 15N (Hobson et al., 1993). Previously, Carey et al. (1982) estimated that 

a White Shark could survive for 1.5 months on 30 kg of whale blubber. When considering the 

documented transoceanic migration speed of a White Shark (Bonfi l et al., 2005), it is also pos-

sible that feeding is limited during these long-distance movements. Consequently, the observed 

δ15N variation may be a result of interval based feeding patterns or sharks that have returned 

from a migration and/or are in poor condition.

Habitat partitioning between small and large animals may also contribute to the observed size-

based shifts in diet and associated trophic position. Weng et al. (2007b) reported that small White 

Sharks off the coast of California occupied coastal nursery regions that were partially separated 

from the habitat occupied by larger individuals and were not characterized by large seal popula-

tions. Based on catches of small individuals (Bass et al., 1975; Cliff et al., 1989) and a scavenging 

event (Dicken, 2008), the suggested nursery region for White Sharks off southern Africa is in east-

ern cape waters. Larger White Sharks are known to transit through this area (Bonfi l et al., 2005) 

but are more commonly sighted in the vicinity of highly productive seal colonies in the western 

cape (Martin et al., 2005). Size-based habitat partitioning and associated diet separation is widely 

reported in sharks (Simpfendorfer et al., 2005). Furthermore, the eastern cape and KwaZulu-Natal 

provide highly productive nursery habitat for numerous carcharhinid species, including the dusky 

shark (Hussey et al., 2009). This may explain the high incidence of elasmobranch prey, particularly 

the dusky shark, in the diet of White Sharks. The δ13C data, however, are contradictory to this pro-

posed size-based habitat model because the two smallest animals had the most depleted δ13C values, 

indicative of offshore foraging (Schell et al., 1998). The smallest sharks, however, were estimated to 

be only a few months old, and their isotope values were most probably confounded by the maternal 

signature (Olin et al., 2011). 

White sharks >4 m PCL are not commonly reported from the coastal waters of the cape region 

or from captures in beach protection nets in KZN (Cliff et al., 1989, 1996). In the eastern Pacifi c 

Ocean, large White Sharks are known to be seasonal residents during the elephant seal (Mirounga 
angustirostris) pupping season (Weng et al., 2007b; Jorgenson et al., 2010) but then move offshore 

(Weng et al., 2007b; Domeier and Nasby-Lucas, 2008; Chapter 11, this volume), with large females 

remaining resident in offshore waters for extended periods of time (Jorgenson et al., 2010; Chapter 

11, this volume). The largest animal included in this diet analysis was 373 cm PCL, and therefore 

we have limited data to comment on the prey of large mature White Sharks. The data for the largest 

size class would suggest that whale and seal are primary dietary components, but stomach content 

data may be inaccurate if these sharks inhabit offshore waters for extended periods of time, because 

oceanic prey may be digested and therefore not detected when the animal returns inshore. The fact 
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that the δ13C value of the largest shark and the smallest shark were depleted relative to all the mid-

size sharks may indicate that large animals in South African waters, including pregnant females, 

are foraging in offshore waters and remain offshore. Malcolm et al. (2001) found that White Sharks 

>5 m TL contained only teleosts and elasmobranchs, and Smale and Cliff (Chapter 4, this volume), 

using cephalopod beaks from this stomach content data, suggested that oceanic cephapods may 

be an important diet component of the largest White Sharks. Considering the abundance of large 

cephalopods in oceanic waters and their importance in the diet of carnivorous whales (Fiscus et al., 

1989), cephalopods in conjunction with pelagic teleosts may be an underestimated component in the 

diet of large White Sharks. 

In conclusion, the White Shark off Southern Africa is an opportunist, generalist predator that 

shows size-based preference for marine-mammal prey, similar to observations on the diet and feed-

ing behavior of this species in other geographic localities. Both stomach content and stable isotope 

data (δ15N), however, showed that White Sharks >200 cm PCL may not all feed exclusively on 

marine mammals, indicating (1) individual specialization within a generalist population and (2) 

interindividual foraging success.

Further work, including coupling genetic and stable isotope analyses, is required to examine 

these points. The White Shark is an apex predator that exerts infl uence across multiple compo-

nents of marine ecosystems. Considering the inability of such large predatory sharks to sustain 

exploitation even at moderate levels (Garcia et al., 2008), understanding and documenting the diet 

and trophic ecology of this species is a requirement for ecosystem- and fi sheries-management and 

conservation initiatives. 
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