Phonological encoding in speech production

Niels O. Schiller
Department of Cognitive Neuroscience, Maastricht University, The Netherlands
Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
Leiden Institute for Brain and Cognition (LIBC), The Netherlands

Abstract

Language production comprises conceptual, grammatical, and word form encoding as well as articulation. This paper focuses on word form or phonological encoding. Phonological encoding in speech production can be subdivided into a number of sub-processes such as segmental, metrical, and syllabic encoding. Each of these processes is briefly described and illustrated with examples from my own research. Special attention is paid to time course issues introducing behavioural and electrophysiological research methods such as LRPs and ERPs. It is concluded that phonological encoding is an incremental planning process taking into account segmental, metrical, and syllabic encoding.

Models of spoken language production

Models of speech production (e.g., Caramazza, 1997; Dell, 1986, 1988; Fromkin, 1971; Garrett, 1975; Levelt, 1989; Levelt, Roelofs, and Meyer, 1999) assume that the generation of a spoken utterance involves several processes, such as conceptual preparation, lexical access, word form encoding, and articulation. Word form encoding or phonological encoding can be further divided into a number of processes (see Figure 1). Levelt et al. (1999) presented one of the most fine-grained models of phonological encoding to date (see also Dell, 1986, 1988). According to this model, phonological encoding can start after the word form (e.g., table /tEIlb/ /l/) of a lexical item has been accessed in the mental lexicon. First, the phonological encoding system must retrieve the corresponding segments and the metrical frame of a word form. According to Levelt et al. (1999), segmental and metrical retrieval are assumed to run in parallel. During segmental retrieval the ordered set of segments (phonemes) of a word form are retrieved (e.g., /t/, /EIlb/, /l/), while during metrical retrieval the metrical frame of a word is retrieved, which consists at least of the number of syllables and the location of the lexical stress (e.g., for Table – capital letters mark stressed syllables – this would be a frame consisting of two syllables the first of which is stressed).
Figure 1. A model of phonological encoding in speech production (slightly adapted from Levelt and Wheeldon, 1994).

Then, during segment-to-frame association previously retrieved segments are combined with their metrical frame. The retrieved ordering of segments prevents them from being scrambled (/t/₁, /Ε/₂, /b/₃, /↔/₄, /l/₅). They are inserted incrementally into slots made available by the metrical frame to build a so-called phonological word. This incremental syllabification process respects universal and language-specific syllabification rules, e.g. *TA.ble* (dots mark syllable boundaries). A phonological word is not necessarily identical to the syntactic word because some syntactic words such as pronouns or prepositions, which cannot bear stress themselves, cliticize onto
other words forming one phonological word together, e.g. *gave + *it /gEI.vIt/.
Roelofs (1997) provided a computational model of this theory including a
suspense/resume mechanism making initiation of encoding in the absence of
complete information possible. For instance, segment-to-frame association
can start before all segments have been selected, then be suspended until the
remaining segments become available, and then the process can be resumed.
Evidence for the incremental ordering during segmental encoding comes
from a number of studies using different experimental paradigms (e.g.,
Meyer, 1990, 1991; Van Turennout, Hagoort, & Brown, 1997; Wheeldon &
Leveld & Morgan, 2002). Segment-to-frame association is
the process that lends the necessary flexibility to the system depending on
the speech context (Leveld et al., 1999). After the segments have been associ-
ated with the metrical frame, the resulting phonological syllables may be
used to activate the corresponding phonetic syllables in a mental syllabary
(Cholin, Leveld, & Schiller, 2006; Cholin, Schiller, & Leveld, 2004; Leveld &
Wheeldon, 1994; Schiller, Meyer, Baayen, & Leveld, 1996; Schiller, Meyer,
& Leveld, 1997). Once the syllabic gestural scores are made available, they
can be translated into neuro-motor programs, which are used to control the
movements of the articulators, and then be executed resulting in overt speech
(Goldstein & Fowler, 2003; Guenther, 2003).

Segmental encoding

Word forms activate their segments and the rank order in which these seg-
ments have to be inserted into a phonological frame with slots for each seg-
ment (slot-filler-theory; Shattuck-Hufnagel, 1979 for an overview). Evidence
for this hypothesis comes, for instance, from speech errors such as “*queer
old dean*” instead of “*dear old queen*”, a spoonerism. These errors show that
word forms are not retrieved as a whole, but rather they are computed seg-
ment by segment. Retrieving all segments separately and putting them to-
gether into word frames afterwards may seem more complicated than re-
trieving word forms as a whole. However, this mechanism has an important
function when it comes to the production of more than one word. Usually,
we do not speak in single, isolated words, but produce more than one word
in a row. Let us take the above example *gave it /gEI.vIt/.* Whereas *gave* is a
monosyllabic CVC word, the phrase *gave it* consists of a CV and a CVC
syllable. That is, the syllable boundaries straddle word or lexical boundaries.
In other words, the syllabification process does not respect lexical bounda-
ries because the linguistic domain of syllabification is not the lexical word,
but the phonological word (Booij, 1995). Depending on the phonological
context in the phonological word, the syllabification of words may also
change. Therefore, it does not make a lot of sense to store syllable bounda-
ries with the word forms in the mental lexicon since syllable boundaries may
change during the speech production process as a function of the phonological context (Levelt & Schiller, 1998). Syllable boundaries will be generated on-line during the construction of phonological words to yield maximally pronounceable syllables. This architecture lends maximal flexibility to the speech production system in different phonological contexts.

Time course of segmental processing

One important question in word form encoding is the time course of the processes involved. For instance, are the segments of a word encoded one after the other or are they encoded in parallel? It was argued above on the basis of empirical evidence (e.g., sound errors) as well as on theoretical grounds that word forms are planned in terms of abstract units called segments or phonemes. Behavioural evidence for these claims has been provided in priming studies by Meyer (1990, 1991) and in self-monitoring studies by Wheeldon and Levelt (1995), Wheeldon and Morgan (2002), and Schiller (2005). For a summary of these studies see Schiller (2006).

However, there are also electrophysiological studies investigating the time course of segmental encoding. Van Turennout et al. (1997), for instance, investigated the time course of segmental encoding using lateralized readiness potentials (LRPs). The LRP is a derivative of the electroencephalogram (EEG) which can be measured by using scalp electrodes. Participants in Van Turennout et al.’s experiment named pictures on a computer screen, one at a time. Whenever a visual cue was presented, participants were requested to carry out a dual task (retrieve certain properties about the to-be-named word) and afterwards name the picture. For instance, participants were asked to make a decision about the animateness of the target concept and about the identity of the initial and final segment of the word. Interestingly, the onset of the nogo-LRP started to develop about 80 ms earlier when the segment was at the onset of words than when it was at the offset of words. This has been interpreted as reflecting the time course of the availability of phonological segments during phonological encoding in speech production planning.

The targets in the Van Turennout et al. (1997) study were 1.5 syllables long on average. Dividing 80 ms by 1.5 corresponds well to the 55 ms difference reported by Wheeldon and Levelt (1995) for the monitoring of syllable onset vs. offset phonemes. One may assume that phonological encoding of a whole syllable takes approximately 50 to 60 ms.

Metrical encoding

The above-mentioned studies investigating the time course of segmental encoding all have in common that they assume the measured effects to take
place at the level of the phonological word. This holds both for the priming studies by Meyer (1990, 1991) and for the monitoring studies by Wheeldon and Levelt (1995) as well as Van Turenout et al. (1997). However, it is unclear how the metrical stress of words is retrieved and encoded. Roelofs and Meyer (1998) found evidence that metrical stress of words is retrieved from the lexicon when it is in non-default position. However, Schiller, Fikkert, and Levelt (2004) could not find any evidence for stress priming in a series of picture-word interference experiments. Schiller et al. (2004) suggested that lexical stress may be computed according to language-specific linguistic rules (see also Fikkert, Levelt, & Schiller, 2005). Furthermore, lexical stress may be encoded incrementally – just like segments – or it may become available in parallel.

Time course of metrical processing

To investigate the time course of metrical processing, Schiller and colleagues employed a tacit naming task and asked participants to decide whether the bisyllabic name of a visually presented picture had initial or final stress. Their hypothesis was that if metrical encoding is a parallel process, then there should not be any differences between the decision latencies for initial and final stress. If, however, metrical encoding is also a rightward incremental process – just like segmental encoding –, then decisions to picture names with initial stress should be faster than decision latencies to picture names with final stress. The latter turned out to be the case (Schiller, Jansma, Peters, & Levelt, 2006). However, Dutch – like other Germanic languages – has a strong preference for initial stress. More than 90% of the words occurring in Dutch have stress on the first syllable. Therefore, this effect might have been due to a default strategy. However, when pictures with trisyllabic names were tested, participants were still faster to decide that a picture name had penultimate stress (e.g., asPERge 'asparagus') than that it had ultimate stress (e.g., artiSJOK 'artichoke'). This result suggests that metrical encoding proceeds from the beginning to the end of words, just like segmental encoding.

Recently, Schiller (in press) extended this research into the area of electrophysiology. Event-related brain potentials have the advantage of being able to determine processes more precisely in time, whereas behavioural studies such as reaction time studies can only measure the end of processes. In his study, Schiller (in press) used N200 effects to measure the availability of lexical stress in the time course of speech planning. He replicated the behavioural effect demonstrated by Schiller et al. (2006) and showed that the N200 peak latencies were significantly earlier when stress was on the first as compared to the second syllable. Furthermore, the N200 effects occurred in a
time window (400-500 ms) previously identified by Indefrey and Levelt (2004) for phonological encoding.

Syllabic encoding

We have already mentioned above that syllables are presumably created on the fly during speech production. There is quite some linguistic and psycholinguistic evidence (see Cholin et al., 2004 for a recent review and some new data) for the existence of syllables. However, in Levelt’s model syllables form the link between the phonological planning process and the articulatory-motor execution of speech in a so-called *mental syllabary* (Levelt, 1989; Levelt et al., 1999). Such a mental syllabary is part of long-term memory comprising a store of syllable-sized motor programs. Ferrand and colleagues (1996, 1997) reported on-line data confirming the hypothesis about a mental syllabary, but Schiller (1998, 2000; see also Schiller, Costa, & Colomé, 2002 and Schiller & Costa, in press) disconfirmed this finding. Rather the results of these latter studies support the idea that syllables are not retrieved, but created on-line during phonological encoding.

The existence of the mental syllabary hinges on the existence of syllable frequency effects. Levelt and Wheeldon (1994) were the first to report effects of syllable frequency effects. However, segment frequency was not controlled well enough and therefore these results are not conclusive. Recently, Cholin et al. (2006) were able to demonstrate syllable frequency effects in very controlled set of materials. Following Schiller (1997), they used quadruples of CVC syllables controlling the segments in onset and offset position (e.g., HF kem – LF kes and HF wes – LF wem; HF = high frequency, LF = low frequency). In two experiments, Cholin et al. (2006) showed that HF syllables were named significantly faster than LF syllables. So far, this study includes the best controlled materials demonstrating a syllable frequency effect and hence evidence in favour of a mental syllabary, which may be accessed during phonological encoding.

References

Caramazza, A. 1997. How many levels of processing are there in lexical access?
Cognitive Neuropsychology 14, 177-208.
Psychological Review 93, 283-321.

