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Cereulide production has until now been restricted to the species Bacillus cereus. Here we report on two
psychrotolerant Bacillus weihenstephanensis strains, MC67 and MC118, that produce cereulide. The strains are
atypical with regard to pheno- and genotypic characteristics normally used for identification of emetic B. cereus
strains. MC67 and MC118 produced cereulide at temperatures of as low as 8°C.

Bacillus cereus can cause food-related diarrhea through the
production of the nonhemolytic and hemolytic enterotoxin
complexes, Nhe and Hbl, respectively, and emesis through the
production of the toxin cereulide (D-O-Leu-D-Ala-l-O-Val-L-
Val)3 (14). Ehling-Schulz et al. (8) demonstrated that cereulide
formation by B. cereus is restricted to a single evolutionary
lineage of mesophilic strains, and the genetic determinants are
located on a plasmid, pBCE4810 (10). Recently, one emetic
psychrotolerant B. cereus strain has been reported (2). How-
ever, whether this psychrotolerant strain is a Bacillus weihen-
stephanensis strain (24) was not specified (2). The increasing
demand for convenience foods such as cooked, chilled, ready-
to-eat foods raises the question of whether psychrotolerant B.
cereus and B. weihenstephanensis present a health risk in these
food products because of their ability to survive heat treatment
and grow at refrigeration temperatures (7, 30). The objectives
of the current work were to investigate the occurrence of
cereulide producers among 921 environmental isolates of the
B. cereus group, to characterize the cereulide producers with
regard to psychrotolerance, and to compare them to well-
known cereulide producers at the pheno- and genotypic levels.

Screening for cereulide producers. A total of 921 B. cereus
group isolates (Table 1) were screened by a PCR assay for the
emetic character (9), using DNA prepared as described previ-
ously (19). Only two strains, MC67 and MC118, showed the
emetic character. The two strains originated from different soil
samples (within 1 m2) at the same location, a sandy loam on
the island of Møn, Denmark (20).

Identification of emetic Bacillus weihenstephanensis. The
identified emetic strains, MC67 and MC118, both grew at 6°C
and not at 43°C on brain heart infusion (BHI) agar (Oxoid).
PCR analysis (12, 34) revealed that the strains possessed the
16S rRNA gene signature for psychrotolerance and the cold

shock protein gene cspA. Thus, MC67 and MC118 should be
affiliated with B. weihenstephanensis strains (24), and to our
knowledge they are the first strains of this species that have
been shown to be emetic.

Typing and sequencing of emetic Bacillus weihenstephanensis
strains. Ehling-Schulz et al. (8) suggested that random ampli-
fied polymorphic DNA (RAPD) PCR typing may be useful for
rapid identification of potential emetic strains. RAPD_1 PCR
(26) and profile analysis with Bionumerics version 1.01 (Ap-
plied Maths, Kortrijk, Belgium), using the parameters de-
scribed elsewhere (8), showed that MC67 and MC118 were
identical but were different from the mesophilic emetic strains
(Table 2) and from 20 randomly chosen nonemetic B. weihen-
stephanensis strains (results for 10 strains are shown in Fig. 1).
The RAPD_1 profiles were not suitable for rapid identification
of psychrotolerant emetic strains. More RAPD profiles of
emetic B. weihenstephanensis strains from other origins are
required to show whether RAPD typing is a useful screening
tool for identification of potential emetic psychrotolerant
strains. Sequence analysis of multiple genes of mesophilic
emetic B. cereus originating from different countries has shown
high similarity between strains (8). Analysis of PCR-amplified
DNA sequences (8, 29), using Clustal W (31), of the 16S rRNA
gene (1,580 nucleotides [nt]), the 16 to 23S rRNA gene spacer
(791 nt), and the spoIIIAC-spoIIIAB sporulation gene frag-
ments (547 nt) as well as the partial cereulide peptide syn-
thetase gene cesB (1091 nt) showed that MC67 and MC118 are
100% identical. The partial cesB gene was amplified as pro-
posed by Ehling-Schulz et al. (11), with the modifications of
changing the annealing temperatures to 50°C during the first
five cycles and increasing the last 25 cycles to 30 cycles. Puri-
fication of DNA and sequencing were as described previously
(35). The GenBank accession numbers used for comparison
with the 16S rRNA, the 16 to 23S rRNA, and the spoIIIAC-
spoIIIAB gene sequences of MC67/MC118 were Z84575 to -94
and Y18473 (24); AJ577274 to -92, AJ578036, AY920248 to
-50, and AY920252 to 3 (5); AY758318 to -37 and AY758342 to
-49 (8); AY277557 (15); AB021199 (13); AF290547 (32);
AE016877 (21); and AM062685 to -6, AE017225, AE017334, and
AE017355. The sequence analysis using Clustal W (31) showed
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that MC67 and MC118 were more related (but not identical)
to the psychrotolerant B. weihenstephanensis and B. mycoides
strains than to the mesophilic B. cereus group strains (B. thu-
ringiensis, B. anthracis, and B. cereus), including the clonal
group of mesophilic emetic strains (8). The 16S rRNA and 16
to 23S rRNA gene sequences of MC67 and MC118 differed by
1 and 1 to 3 nt from the respective sequences of psychrotoler-
ant B. mycoides (the spoIIIAC-spoIIIAB sequences of B. my-
coides are not available). The 16S rRNA, the 16 to 23S rRNA,
and the spoIIIAC-spoIIIAB gene sequences of MC67/MC118
differed by 1 to 2, 2, and 7 nt from the respective sequences of
B. weihenstephanensis; by 5 to 7, 19 to 23, and 49 to 61 nt from
those of B. cereus (emetic and nonemetic); by 5 to 6, 21, and 59
nt from those of B. thuringiensis; and by 7 to 8, 21, and 59 nt
from those of B. anthracis. Thus, the sequence data suggest
that MC67 and MC118 are closely related to B. weihen-
stephanensis and B. mycoides. However, MC67 and MC118 are
most likely B. weihenstephanensis strains, taking into consider-
ation the colony morphology, the fact that other species of the
B. cereus group such as B. cereus are heterogeneous (8) and
display more or less sequence variability in similar genes be-
tween strains, and the limited number of B. weihenstephanensis
and B. mycoides sequences available in the databases. The cesB
gene, which is a peptide synthetase gene involved in cereulide
production, is highly conserved (single nucleotide difference)
in mesophilic emetic B. cereus strains, indicating a relatively
recent acquisition of the emetic genes (8). Interestingly, the
cesB gene fragment of MC67 and MC118 showed only 92%
identity to the cesB gene from F4810/72 (GenBank accession
number AY691650) (11). The translated CesB amino acid se-
quence was highly conserved at the N-terminal half, while the
C-terminal half was variable (see Table S1 in the supplemental
material). The variation in the cesB gene between the psychro-
tolerant and the mesophilic strains suggest that their separa-
tion is not a recent event. The cesB gene is located on a plasmid
in mesophilic emetic B. cereus (10), and thus transfer of the
emetic plasmid to other bacteria is possible and needs to be
further investigated.

Examination for amylase activity, salicin fermentation, he-
molysis, and enterotoxins. MC67 and MC118 differed from the
mesophilic emetic isolates (Table 3) with regard to some of the
traditional phenotypic characteristics of emetic strains, as an-
alyzed by methods described elsewhere (27). Further, they
differed genotypically by harboring the Hbl enterotoxin com-
plex genes hblA and hblD (8). Our results highlight the pre-

cautions which need to be taken when screening for emetic
isolates based upon phenotypic traits such as starch hydrolysis
and salicin fermentation. Andersson et al. (3) proposed lack of
hemolysis as an indicator for emetic strains, and this is also in
accordance with our results using the proposed method (3).
PCR examination for the enterotoxin genes hblA, hblC, and
hblD was performed as described elsewhere (16). The L2 com-
ponent (HblC) could not be detected using the BCET-RPLA
kit as recommended by the manufacturer (Oxoid), using a
growth temperature of 32°C.

Cereulide production at different temperatures. Production
of cereulide at refrigeration temperatures is critical in relation
to food safety, since cereulide will not be destroyed during
food processing. To evaluate the risk of cereulide production,
MC67, MC118, and the mesophilic strains (Table 2) were
grown aerobically on BHI agar (Oxoid) for 10 days at 8, 12, 15,
and 25°C. Cereulide was extracted from bacterial mass with
96% ethanol and sonication for 30 min. Cell debris was re-
moved at 17,000 � g for 5 min. Liquid chromatography–high-

FIG. 1. RAPD_1 profiles of the emetic B. weihenstephanensis
strains MC67 and MC118 compared to those of emetic B. cereus strains
and nonemetic B. weihenstephanensis strains from a sandy loam on the
island Møn in Denmark. Lanes 1 and 2, emetic B. cereus strains F5881
and NS117, respectively; lanes 3 to 5, nonemetic B. weihenstephanensis
strains MC73, MC59, and MC8, respectively; lanes 6 and 7, emetic B.
weihenstephanensis strains MC67 and MC118, respectively; lanes 8 to
12, nonemetic B. weihenstephanensis strains MC84, MC37, MC10,
MC58, and MC17, respectively.

TABLE 1. B. cereus group isolates used in the emetic screening a

No. of strains Origin Site

390 b Sandy loam on Møn, Denmark Soil
245 Curly kale fields c Soil
196 Curly kale fields Lower leaves
90 Curly kale fields Upper leaves

a The strains were from 18 different Danish localities and were isolated from
lower and upper leaves of curly kale phylloplane (Brascia olearcea acephala) and
from soil of curly kale phylloplane fields.

b Ninety of these strains (including strain MC8, MC10, MC17, MC21, MC26,
MC35, MC37, MC42, MC48, MC51, MC58, MC59, MC70, MC73, MC78, MC80,
MC84, MC87, MC89, and MC90 used for RAPD_1 typing) were identified as B.
weihenstephanensis (20).

c Curly kale fields from 17 localities throughout Denmark.

TABLE 2. Emetic B. cereus reference strains used

Straina Origin Reference

F4810/72 b Emetic food poisoning, United Kingdom 33
NC7401 b Emetic food poisoning, Japan 1
NS117 c Spruce tree, Norway 18
F3080B/84 c Emetic food poisoning, United Kingdom 28
F5881 c Emetic food poisoning, United Kingdom 4
RIVM-BC68 c Feces, The Netherlands 3
B203 c Rice mush, Finland 22

a The strains are listed with original strain identification numbers.
b From the HAMBI Culture Collection, University of Helsinki, Helsinki,

Finland.
c Kindly provided by Maria A. Andersson, Department of Applied Chemistry

and Microbiology, Division of Microbiology, University of Helsinki, Helsinki,
Finland.
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resolution mass spectrometry (LC-HR-MS) for verification
and quantification of cereulide was performed essentially as
described elsewhere (17), using the equipment described pre-
viously (25) (for details, see Appendix). The MS in-source
fragmentation spectrum which was obtained from the ethanol
extracts of MC67 and MC118 could be superimposed on the
spectrum of the emetic reference strain F4810/72. All the ca.
40 major ions originating from cleavage of the peptide and
ester bonds were in the same ratios (results not shown), which
indicates that the compound produced by MC67 and MC118 is
similar to cereulide. The biological activity of cereulide pro-
duced by MC67 and MC118 was confirmed by measurement of
the metabolic activity of Chinese hamster ovary (CHO-K1)
cells upon exposure to heated ethanol extracts (heated for 10
min at 100°C) as described elsewhere (6), using the WST-1 cell
proliferation assay as described by the manufacturer (Roche,
Hvidovre, Denmark). MC67 and MC118 were the only emetic
strains that were able to grow and produce cereulide at 8°C
(Table 4). Compared to the mesophilic strains, MC67 and
MC118 produced large amounts of cereulide at 25°C, which
indicates no coherence between temperature growth profile
and cereulide production (Table 4). Cereulide was not pro-
duced at critical concentrations for food poisoning (23) at
temperatures of 8 to 15°C. However, unknown factors, such as

temperature abuse, the food matrix, and interactions with
other bacteria, which were not tested in this work might pro-
voke cereulide production. Therefore, the risk of food poison-
ing from psychrotolerant emetic strains in refrigerated foods
needs to be further investigated.

Nucleotide sequence accession numbers. The identical se-
quences of MC67 and MC118 were deposited in GenBank
under accession numbers DQ345789, DQ345790, DQ345791,
and DQ345792 for spoIIIAC-spoIIIAB, cesB, the 16S rRNA
gene, and the 16 to 23S rRNA gene, respectively.

APPENDIX

LC-HR-MS was performed using an Agilent Zorbax SB-CN
column (150 by 2 mm [inner diameter] by 5 �m) and the
equipment described previously (25). A linear water-CH3CN
gradient system (H2O buffered with 10 mM HCOONH4 and 20
mM HCOOH and CH3CN buffered with 20 mM HCOOH) at
a flow rate of 0.3 ml/min was used, starting at 50% CH3CN,
increasing to 100% for 12 min, and staying at 100% for 3 min
before reverting to the starting conditions. Samples were ana-
lyzed in electrospray ionization positive mode at a resolution
of �7,000 (half peak height) (25) and with data being centroid
spectra from m/z 200 to 1,500. Three scan functions (1 s each)
were used: (i) with a potential difference between the skim-
mers of 50 to 60 V (no fragmentation), (ii) with a difference of
100 to 125 V (high fragmentation), and (iii) the spray from the
lock spray probe (second electrospray ionization spray) for
on-line mass correction. The responses of valinomycin and
cereulide in LC-HR-MS have been shown to be very similar
(17). Valinomycin was used as an internal standard at 0.82
�g/ml. Cereulide and valinomycin were detected from the first
scan function of their reconstructed ion chromatograms
(�m/z 0.05) of the ammoniated adducts (M � NH4)� at m/z
1,170.7125 and 1,128.6655, respectively. The detection limit
(on column, first scan function) for valinomycin was ca. 80 pg/2
�l at a signal-to-noise ration of 10. The identity of cereulide in
the samples was confirmed from the second scan function
which gave significant in-source fragmentation (�40 ions) to
validate the primary structure of the depsipeptide.

This work has been financially supported by the Danish Bacon and
Meat Council, Copenhagen, Denmark.

The collaboration with the Danish Meat Research Institute, Rosk-
ilde, Denmark, is highly appreciated.

TABLE 3. Characteristics of the emetic B. weihenstephanensis strains MC67 and MC118 compared
to those of emetic B. cereus reference strains

Strain(s)

Reactiona

Phenotypic tests Hbl complex

Salicin
fermentation

Starch
hydrolysis Hemolysis BCET-RPLAb L2

component hblA hblC hblD

MC67 � � � � � � (�)c

MC118 � � � � � � (�)c

F4810/72, NC7401, NS117, F3080B/84,
F5881, B203, RIVM-BC68

� � �/(�) ND � � �

a �, positive reaction; (�), weak positive reaction; �, negative reaction; ND, not determined.
b BCET-RPLA, Bacillus cereus enterotoxin-reversed passive latex agglutination assay.
c Results were variable.

TABLE 4. Cereulide production by B. weihenstephanensis MC67
and MC118 compared to that of reference strains of

emetic B. cereus a

Strain
Cereulide production (�g/g biomass [wet wt]) at:

8°C 12°C 15°C 25°C

MC67 0.1 0.3 2.1 530
MC118 0.1 0.1 1.4 606
F4810/72 NGb 1.2 0.4 95d

NC7401 NG 1.0 0.3 117
NS117 NG 0.3 0.2 353
F3080B/84 NG NG 0.4c 94e

F5881 NG 1.7 0.8 211
RIVM-BC68 NG 0.2 0.1 24
B203 NG 1.7 1.1 62

a Strains were grown on BHI agar and incubated aerobically for 10 days at four
different temperatures, and cereulide production was determined by LC-HR-MS.

b NG, no growth.
c Standard deviation, 0.1 �g/g.
d Standard deviation, 18 �g/g.
e Standard deviation, 76 �g/g.
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