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Abstract—Managing and orchestrating Radio Access Networks
(RAN) are error-prone tasks due to the high number of parame-
ters and the complex interaction among all the network compo-
nents. This paper proposes the AGIR system (AGility in Intent-
based management of service-level agreement Refinements) for
Open Radio Access Networks (Open RAN). AGIR implements
intention-based network management, allowing operators to
specify Service-Level Agreements (SLAs) for the RAN to fulfill.
The system translates imprecise intentions into configurable
network instructions, enhancing flexibility, scalability, and re-
ducing human errors. The proposal enhances productivity, lowers
operating costs, improves user experience, and optimizes network
performance through real-time data analysis and automation.
AGIR addresses the need for open and comprehensive interfaces
in RANs, enabling cooperation among components from different
suppliers. Our results reveal that the proposed system reaches
more than 80% precision in detecting conflicting intentions when
deploying a deep neural network based on Long Short-Term
Memory with 256 neurons.

Index Terms—Mobile Networks, Cellular Communications,
Next-Generation Networks, 6G

I. INTRODUCTION

Current Radio Access Networks (RANs) deployments rely
on closed hardware and software solutions, making network
operators and service providers dependent on proprietary so-
lutions [1]. Aiming at improving flexibility, increasing in-
teroperability, and adding new functionalities to the RAN,
the telecommunications industry created an initiative called
Open RAN [2]. The goal is to modify the network architec-
ture to enable operators to deploy multi-vendor solutions for
RANs using non-proprietary components. It is possible due to
hardware and software disaggregation, open and interoperable
interfaces, and virtualization [3]. In addition to increasing
the autonomy of operators to create solutions that do not
rely on a single vendor, Open RAN also focuses on adding
intelligence and enabling RAN programmability. Defining a
new architecture based on open standards is fundamental to
achieving the Open RAN goals. To this end, the O-RAN
Alliance was created in a standardization effort. The O-RAN
Alliance is an international consortium comprising over 30 op-
erators and over 200 telecommunications vendors. The O-RAN
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Alliance specifications provide detailed schemes for building
RAN solutions that meet the Open RAN requirements, making
network orchestration and management more efficient. This
scenario favors the creation of more reliable, secure, and
high-performing networks capable of operating autonomously,
governed by verifiable closed control loops [4].

RAN orchestration relies on implementing complex poli-
cies, typically described as high-level goals or business inten-
tions in current mobile communication networks. The high-
level goals are represented by Key Performance Indicators
(KPIs), which allow managers to track the progress of oper-
ations while abstracting the specifics of network management
and operation. Operators then perform the complex and error-
prone task of decomposing each high-level goal into low-
level actions to be deployed on relevant physical or virtual
devices [5]. Intentions express the operator’s expectations
regarding network and service management. An intention
consists of a set of operational Service Level Objectives
(SLO) the network should achieve and results that the network
should deliver, defined declaratively without specifying how to
achieve or implement them [6]. The objectives and expected
behavior of the network can be defined by one or multiple
intentions [7]. In this context, current-technology RAN chal-
lenges the operators to orchestrate and translate high-level
business goals into low-level network policies and actions.

Open RAN leverages intent-based management to automate
network configuration and monitoring. Intent-based manage-
ment involves declaring high-level intentions that define the
network behavior according to the operators’ specifications.
These specifications are provided through goals or KPIs with-
out the need for the network to be explicitly programmed
to achieve the service level objectives. By applying intent-
based management to the RAN, the network configuration
can be transformed from fine-tuning technical parameters to
high-level definitions, allowing service providers to specify the
connectivity services based on business intentions. Although
intentions can be expressed through declarative models, this
approach requires high precision in expressing policies, as it
can lead to ambiguities. Network administrators are essential
in eliminating ambiguity in policy expression when using
declarative models [8]. Using natural language to express



intentions facilitates goal description for non-technical indi-
viduals or those unfamiliar with technical jargon in a specific
domain. However, natural language is also prone to ambiguity,
which makes it challenging for the system to capture the
operator’s intention unambiguously and accurately. Despite
this, ambiguity can be reduced when using natural language,
as it allows adding context and details to the intention de-
scription [8]. However, for this description to be used as input
in intent-based management systems, it must be processed to
extract facts and indicators. After this procedure, the necessary
actions to achieve management objectives are inferred [9].

Natural Language Processing (NLP), or computation lin-
guistics, can extract facts and indicators. NLP is a research
field involving computational models and processes for solving
practical problems related to understanding and manipulat-
ing human languages [10]. Expressing intentions directly in
natural language allows for the abstraction of management
interfaces across different devices. Thus, it becomes possible
to reduce the likelihood of human-prone errors when manually
translating policies into equipment configuration commands.
However, intent-based management systems do not guarantee
the network’s sustainability, as they may not encompass all
possible situations that may arise.

We propose the AGility in Intent-based management for
service level Refinement (AGIR) system, which implements
intent-based network management capable of detecting con-
flicts between intentions and policies, mitigating them, and
providing the agreed service level for the RAN. The AGIR
system refines the network policy according to the intentions
extracted from the Service Level Agreements (SLAs). The
system receives intentions and network monitoring data and
sends configuration and optimization instructions to the net-
work entities. The system design follows a modular archi-
tecture, consisting of four modules to execute the process:
Intelligent Application (iApp), Translator, Conflict Resolver,
and Network Agent.

In this paper, we focus on the Conflict Resolver module.
We deploy and evaluate a recurrent deep-learning model for
Natural Language Processing. Our results reveal that intention
declarations show recurrent disassortative patterns, and some
network entities are likelier to be the subject of an intention
than others. These results evidence that conflict identification
should consider the recurrent behavior of the intention decla-
rations. Thus, the proposed conflict identification mechanism
achieved a precision higher than 80% when deploying a Long
Short-Term Memory (LSTM) neural network.

The remainder of this paper is organized as follows. Sec-
tion II discusses the related work. Section III presents an
overview of the O-RAN Architecture and intent-based man-
agement. Section IV presents the architecture proposed for
the AGIR system, detailing the Conflict Resolver module.
In Section V, we discuss the results. Finally, Section VI
concludes this paper and presents future work.

II. RELATED WORK

Deploying network policies challenges operators because
it requires translating high-level policy goals into low-level
tasks into network-specific-device configuration syntax. Intent-
Based Networking (IBN) aims to address this issue by al-
lowing operators to specify high-level policies without the
burden of dealing with network configuration or programming
interfaces [11]. Expressing intentions in natural language
offers several benefits, which include avoiding learning new
programming languages and reducing human-prone errors in
policy translation. However, the flexibility also introduces
challenges in generating unambiguous and accurate config-
urations that precisely capture the operator’s intent. Despite
the potential of IBN for fast, automated, and reliable policy
deployment, the current limitations regarding the direct use of
natural language policy documentation in intent-based man-
agement systems impose limitations on the current technology.
In turn, previous work surveys the usage of Large Language
Models (LLM) to enhance the network management [12],
[13]; introduces a multi-agent generative artificial intelligence
network that exploits the collective intelligence to generate an
LLM [14]; and also focuses on providing a chatbot capable of
translating natural language intentions into an abstract artificial
language that unequivocally describes the intention [5].

In the context of IBN, Clemm et al. define that a service
model describes instances of services offered to customers and
relies on lower-level models (device and network models),
which facilitates the service mapping onto the underlying
network or information technology infrastructure [11]. While
system orchestration is necessary to instantiate a service
model, the logic for managing and mapping it is not embedded.
On the other hand, a policy comprises rules that express
simple control loops and can be directly implemented by
devices without requiring intervention from external systems.
These policies dictate the actions to be taken under specific
events or conditions but do not explicitly specify the desired
outcome. In contrast, an intent operates at a broader scope,
encompassing the network and service level, to define high-
level operational goals and outcomes without providing an
exhaustive enumeration of specific events or actions. The
intent system can autonomously derive the algorithms or rules
necessary to achieve the intended outcomes. In an autonomic
networking context, the network is ideally responsible for
rendering the intent, disseminating it, and coordinating actions
between nodes without relying on external systems.

Jacobs et al. propose LUMI, a language model designed
explicitly for university campus networks, offering operators
the capability to communicate their intentions to the network
using natural language. LUMI’s key functionality involves
translating natural language expressions into a precise net-
work configuration abstraction layer, enabling the seamless
implementation of the operator’s intention within the network
infrastructure. LUMI deploys a chatbot and relies on Named
Entity Recognition (NER) algorithms to accurately extract and
label entities from the operator’s input in natural language.



Moreover, LUMI also introduces the Network Intent Lan-
guage (Nile), an intermediary abstraction layer, acting as an
intermediary syntax between natural language expressions and
the corresponding network configuration instructions. LUMI
leverages the word2vec algorithm for word embedding and
employs the Bi-LSTM (Bidirectional Long Short-Term Mem-
ory) model to enhance contextual understanding, evaluating
phrases in both left-to-right and right-to-left directions. The
authors evaluate LUMI performance by assessing its infor-
mation extraction accuracy and learning capabilities through
operator feedback and measuring compilation and deployment
times across various campus network topologies. The proposal
evaluation deploys diverse datasets comprising synthesized in-
tentions and real-world intention data derived from 50 distinct
campus networks in the United States of America.

Mattos, Duarte, and Pujolle propose the Reverse Update
mechanism, which introduces a practical approach for updat-
ing rules in software-defined networks [15]. The mechanism
involves tagging policy versions in the network and updating
forwarding rules in reverse along the established flow during
ongoing policy updates. The authors emphasize the signifi-
cance of identifying conflicts between policies, which can be
either partial or total, based on the policy application domain.
Accurate identification of conflicts, especially partial conflicts,
is crucial as they may result in contradictory forwarding rules
in the network, demanding the rejection of one of the policies.

Unlike previous work, the proposed AGIR system utilizes
conflict identification to assess whether proposed intentions
can be accepted or must be rejected due to conflicts with
already implemented policies in the network. A critical factor
in the AGIR system is the conflict identification process that
must correctly identify the domain affected by an intention
proposal. In this paper, we characterize the natural language
intentions and propose a deep learning model that precisely
identifies conflicts among intention proposals.

III. O-RAN ARCHITECTURE AND INTENT-BASED
MANAGEMENT

The O-RAN architecture specified by the O-RAN Alliance
is shown in Figure 1. The specification follows the disaggre-
gation of gNodeB’s three functional units proposed by 3GPP
and introduces the O-RAN Central Unit (O-CU), O-RAN
Distributed Unit (O-DU), and O-RAN Radio Unit (O-RU). The
O-RU is a logical node hosting the lower physical layer (Low-
PHY) functions and radio frequency signal processing. The
O-DU is a logical node hosting higher physical layer (High-
PHY) functions, Medium Access Control (MAC), and Radio
Link Control (RLC) sublayers. The O-CU is responsible for
mobility control, RAN sharing, session management, and user
data transfer [16].

The O-RAN architecture introduces the concept of RAN
Intelligent Controllers (RICs), comprising the Non-Real-
Time RIC (Non-RT RIC) and Near-Real-Time RIC (Near-
RT RIC) [17]. These controllers offer a centralized view
of the network, assess performance metrics, and apply ma-
chine learning algorithms for automated optimization tasks,

such as network slicing, load balancing, and handovers. The
Near-RT RIC, located at the network edge, operates closed-
loop controls with periodicity between 10 milliseconds and
1 second. The Non-RT RIC complements the Near-RT RIC
for intelligent and optimized RAN operation on a timescale
greater than 1 second. The O-RAN architecture does not
define the real-time control, i.e., for a periodicity smaller than
10 milliseconds. The Near-RT RIC comprises applications
called xApps, and the necessary services for their execution.
The xApp is a microservice that manages radio resources
through standardized interfaces and service models. The Non-
RT RIC supports third-party applications, called rApps, which
provide value-added services, facilitating RAN optimization
and operation [16], [17].

The O-Cloud is the RAN cloud infrastructure, consisting of
infrastructure components that execute the necessary function-
alities, such as O-CU Virtual Network Functions (VNFs) and
the Non-RT RIC rApps [16]. To add flexibility, the O-RAN
architecture specifies open interfaces, such as A1, E2, Open
Fronthaul, O1, and O2, and also uses 3GPP interfaces, such as
E1, F1, X2, Xn, NG, and Uu. Each interface interconnects spe-
cific components. The O1 interface serves for communication
between the Service Management and Orchestration (SMO)
framework and other components of the O-RAN architecture.
For example, SMO uses the O1 interface to communicate with
the Near-RT RIC. The communication between SMO and O-
Cloud is performed via the O2 interface, enabling support for
functionalities running in the cloud. The Non-RT RIC uses
the A1 interface to send information to the Near-RT RIC,
such as data about use cases and information enrichment.
The E2 interface enables communication between the Near-
RT RIC and managed elements, such as O-CU, O-DU, and O-
eNB. The O-eNB is an Open-RAN-enabled eNodeB to provide
LTE service. The Open Fronthaul interface allows interaction
between O-RU and O-DU. Some components inherited from
previous RAN generations use the same interfaces used in
the architectures of those generations. An example is the
E1 interface, which connects the O-CU’s control and user
planes. The F1 interface connects O-CU and O-DU elements
for exchanging information about radio resource sharing and
other network status. The X2 and Xn interfaces aid the
interoperability between nodes of different generations, and
the NG interface connects 5G nodes to the core network
when the network operates in standalone mode, i.e., pure
5G [16]. The Uu interface allows interaction between the User
Equipment (UE) and the O-RU or O-eNB.

Besides the facilitated interaction among components, RAN
orchestration is still a complex task that relies on policies
derived from high-level business goals or intentions. Such
policies often describe the operator’s expectations regarding
network and service management and the KPIs, enabling man-
agers to monitor operations without dealing with the intricacies
of network management. To succeed in the orchestration,
the operator needs to break down each policy into low-level
actions to be deployed on relevant physical or virtual de-
vices [18]. It is a complex and error-prone task in mobile com-
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Fig. 1. The Open RAN architecture as specified by the O-RAN Alliance. The O-RAN Alliance standardized the open interfaces to allow communication
between the O-RAN components. The 3GPP interfaces are used for communication between components inherited from other RAN generations.

munication networks, making RAN orchestration challenging
for operators. The Open RAN relies on intent-based manage-
ment to facilitate orchestration. Intent-based management in-
volves high-level policies defining network behavior according
to operator specifications, expressed through business goals or
KPIs, without requiring explicit programming to achieve the
service-level objectives. However, network policies are usually
written in plain language. Therefore, intelligent processing is
needed to extract facts and indicators to infer the necessary
actions for management objectives to use them as input for
intention-based management systems. In this scenario, NLP is
paramount, as it involves computational models and processes
for understanding and manipulating natural languages [19].
Regardless of its manifestation in text or speech, natural
language refers to daily human communication. This definition
excludes programming languages and mathematical notations,
considered artificial languages. Expressing intentions directly
in natural language helps abstract management interfaces
across different equipment, but natural languages constantly
evolve, hardening to establish explicit rules for computers [10].
Moreover, expressing intentions directly in natural language
may introduce ambiguity, increasing the challenge for systems
to capture operators’ intentions unambiguously and accurately.
Intention-based management systems may not guarantee net-
work sustainability since they may only account for some
possible scenarios. Knowledge management systems have
been proposed as a countermeasure to facilitate decision-
making processes [20]. Thus, a step toward a knowledge
management system is to deploy a technique that identifies
the affected domain by an intention proposal and compares
the domain among all accepted intentions to warn whether an

intention proposal results in a conflict with already established
intentions.

IV. AGIR PROPOSED ARCHITECTURE

The AGIR system implements intent-based network man-
agement for the Open RAN, considering the architecture
specified by the O-RAN Alliance. The system follows a
modular architecture, as shown in Figure 2, and is based
on NLP to extract information from intentions. The iApp
module serves as the entry point for the intentions expressed
by the operator. It envisions a simple graphical interface for
the application users to interact with and input their intentions.
In addition to being the users’ point of contact, the iApp
is also responsible for forwarding the received intentions to
the Translator module, receiving network monitoring data,
constantly validating if the created policies are suitable to
achieve the goals established in the intentions, and indicating
to the Translator module the need for adaptation in the mapped
policies.

The Translator module transforms the intention expressed
in natural language into configuration statements. The mod-
ule implements NLP algorithms to translate the intention,
converting it into a policy to be implemented through a
Software-Defined Networking (SDN) controller [21]. Intention
translation is based on the lexical and morphological analysis
of textual entities. It allows for identifying keywords that com-
pose the intention, which can then be used to generate a rule
model that can be transformed into a policy. The intention’s
keywords are compared with a pre-existing knowledge base
in the network to classify them according to the labels of key
elements in the model. The model is an expression of the
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intention presented in an object-action-result format. The idea
is to formulate strategies, which are the actions for the current
network resources, which are the objects of the model, to
achieve the intention’s goal, which is the result. By converting
the keywords into structured statements, the SDN controller’s
translation into policies to be executed becomes easier.

Internally, translating intentions can follow a sequence of
text-cleaning and shaping techniques. Among these techniques
are (i) tokenization, (ii) removal of punctuation, special char-
acters, and stopwords, (iii) spelling correction, (iv) recognition
of specific named entities, and (v) stemming or lemmatization.
Guided by the mentioned order, the text that makes up each
intention is first subjected to tokenization, a discretization
procedure. Using the space character as a delimiter criterion,
for example, tokenization transforms each contiguous sentence
of an intention into a list of tokens, allowing for individual
manipulation. Each token is seen as an instance of a character
sequence. Next, orthographic features such as punctuation and
special characters are removed from each token. Since they do
not contribute to the semantic understanding of the intention,
stopwords, such as conjunctions, articles, and pronouns, are
also removed from the text. To deal with possible typo-
graphical errors, spelling correction is advisable, a procedure
performed by comparing each token with its closest counter-
part in a customized dictionary. Named Entity Recognition
(NER) aims to identify names of software, hardware, or
any proper names related to the intention. Finally, adopting
lemmatization or stemming is common to reduce unnecessary
processing caused by potential redundancies between words,
either through inflections or derivations. In lemmatization, the
goal is to eliminate possible variants or plurals of the same
word, reducing them to the same lemmas, known as dictionary
forms. In contrast, this reduction is done in stemming by
transforming each word into its root. However, lemmatization
or stemming are optional steps in intention processing due to
intention declarations being a closed domain of knowledge and
agnostic to variations of a word root.

Expanding textual processing to other linguistic stages,
some NLP techniques can perform morphosyntax analysis in
different degrees of complexity. At a fundamental tier, POS
(part-of-speech) tagging is characterized as a morphological
analysis technique that returns only the lowest layer of the
parse tree, i.e., the grammatical tagging. Thus, each word in

a sentence is assigned metadata, identifying its grammatical
classification and conjugational attributes [10]. Adopting the
techniques mentioned above enables them to convert an inten-
tion described in natural language, which may be imprecise
and ambiguous, into an interpretable action by the network.

The Network Agent module communicates the policies
obtained from the translated intentions to the SDN controller.
The ONOS controller is considered for network control, com-
municating to the Network Agent through the northbound
interface. P4 switches are not explicit components of the
AGIR system but are used to provide information to the
proposed system. These switches are responsible for In-band
Network Telemetry (INT), providing network information to
the controller and a P4 telemetry server (INT P4 Server). This
server sends measurement reports to the iApp, allowing for
continuous network performance monitoring. The optimization
of network performance will be carried out using machine
learning mechanisms such as Deep Reinforcement Learning
(DRL) or Fuzzy Reinforcement Learning (FRL) [22]. It en-
ables the validation of whether the goals of the intention are
being achieved and the adaptation of policies if necessary. It
is worth noting that the proposed system is related to the Non-
RT RIC, meaning that the control loop governing the process
lasts longer than 1 second.

The Conflict Resolver module is responsible for detect-
ing and mitigating conflicts and is the focus of this paper.
The operator’s intentions can conflict, creating contradictions
when the specified goals require modifications to the same
parameter but in different quantities [7]. The existence of
these conflicts makes intent-based RAN management hard.
The conflict resolution in the AGIR system is based on the
methodology of reverse updates, a policy update scheme for
SDN that ensures consistency in policy commitments. Reverse
update relies on updating the flow processing and forwarding
rules in the reverse direction of the already installed flow
path, ensuring that a flow always reaches the most up-to-
date network configuration [15]. It is important to highlight
that the step before the conflict resolution is identifying the
conflict. The AGIR system utilizes conflict identification to
assess whether proposed intentions can be accepted or must
be rejected due to conflicts with already implemented policies
in the network. A critical factor in the AGIR system’s con-
flict identification process is correctly identifying the domain
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Fig. 3. Results of applying three centrality metrics on the word graph generated from the preprocessed network intentions. Among the different groups of
grammatical classes, adverbs demonstrate a more central behavior regardless of the evaluated metric.

affected by the intention proposal. In essence, this module
approaches the conflict identification task as a classification
problem based on deep learning algorithms. Thus, we model
a neural network architecture comprising Embedding, LSTM
(Long Short-Term Memory), and Dense layers using the
Keras1 library. The embedding layer performs a mapping of
tokenized sentences to dense, fixed-size arrays using a pre-
trained Word2Vec model. This word embedding technique
effectively captures the semantic meaning and relationships
between the meaningful word representations injected into
the next LSTM layer. The second layer comprises an LSTM
model, an algorithm capable of learning long-range dependen-
cies and sequential patterns in data. This ability to maintain
and update cell states ensures that LSTM retains relevant
information over different intervals, making it especially suited
for text-related tasks. Composed of only one neuron, the Dense
layer adopts a Sigmoid activation function. The choice is
justified because the Sigmoid function is especially suitable for
problems involving binary classification, making it possible to
map the output to probabilities between 0 and 1. The model
is also trained using the Adam optimizer over the binary
cross-entropy loss function. In practice, the neural network
model aims to analyze and classify the existence of semantic
conflicts between sentences, making it a valuable tool for
automating the process based on intentions written in a high-
level language.

V. RESULTS AND DISCUSSION

We evaluate the proposed conflict-identification mechanism
of the Conflict Resolver module. The evaluation was con-
ducted by adopting one of the datasets synthetically built by
Jacobs et al. [5]. Such a dataset comprises 10k pairs of network
intentions duly balanced and labeled between conflicting or
not labels. Each intent, written in natural language, contains
the actions and parameters instructed by the network operator,
covering tasks such as router configuration, traffic monitoring,
fault diagnosis, and performance optimization. The algorithms
and techniques described in this paper are developed in Python
using a personal computer equipped with an Intel Core i7
4770 processor, with 8 GB of RAM and 1 TB of storage. It

1https://keras.io/.

is noteworthy that the presented results are mean values with
a confidence interval of 95%.
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Fig. 4. Results reveal a recurrent disassortative pattern (Ac < 0) across
all grammatical classes, indicating central words mostly link to low-degree
words.

The proposal implements a comprehensive text preprocess-
ing pipeline containing different functions from the NLTK2

library. The objective is to reduce the plurality of words,
ensuring that only the essential and most informative words
are ingested in subsequent steps. Headed by tokenization,
preprocessing starts by converting the contiguous sentences
into lists of tokens and removing punctuation and special
characters. However, the existence of IP addresses and mea-
surement units imposes the need to detect and preserve such
specific structures since they are parameters commonly passed
in intentions. This need is addressed by integrating regular
expression functions. Once such structures are identified, POS
Tagging and stopword filtering can be applied. This order
of implementation seeks to mitigate potential labeling errors
that occur when parsing extremely truncated sentences, i.e.,
without connectives, articles, or pronouns.

In practice, the evaluation process focuses on two main
approaches, one from a graph perspective and the other from
an algorithmic perspective. The first approach envisages the
structuring of an undirected weighted graph G = (V, E),

2https://www.nltk.org/.
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Fig. 5. The second evaluation approach involves the performance comparison of different neural network models during semantic conflict detection between
network intentions. Results are presented through information retrieval metrics across different hidden layer neuron configurations.

based on preprocessed intentions and converted into vectors
of meaningful tokens. In this graph, each node represents a
distinct token, and the edge between a pair of nodes contains
a weight proportional to the frequency of co-occurrence of
the respective tokens in the corpus of intentions. Analyzing
the graph generated through centrality or structural metrics, it
is possible to reveal several imperceptible characteristics in the
textual format. Although all centrality metrics aim to quantify
the importance of each node in a graph, each metric associates
importance with a given feature. The analyzed classic central-
ity metrics are degree, closeness, and betweenness. Degree
centrality calculates the importance of each node considering
its degree, that is, the number of edges connected to each node.
The degree centrality of a node υi is represented by

Cdeg(υi) = deg(υi). (1)

Similarly, closeness centrality relates to how quickly a
node reaches all other nodes in the network. The calculation
of closeness centrality (CC(υi)) of each node υi takes into
account the shortest paths between υi and all other nodes in
the network. Mathematically, the closeness is given by

CC(υi) =
|V| − 1∑

j ̸=i δ
∗(υi, υj)

, (2)

where |V| is the total number of nodes and δ∗(υi, υj) is the
shortest distance, in number of hops, between the pair of nodes
υi and υj . Naturally, the lack of a connection between υi and
υj implies a distance δ∗(υi, υj) = ∞. In contrast, betweenness
centrality reflects the total fraction of shortest paths that passes
through a node, using it as a bridge. Formally, the betweenness
centrality (CB) of a node υi is defined as

CB(υi) =
∑

υs ̸=υt ̸=υi∈V

σst(υi)

σst
, (3)

where σst(υi) represents the number of shortest paths from
node υs to node υt that pass through node υi and σst is the
total shortest paths from node υs to node υt. Thus, the ratio
represents the proportion of shortest paths between υs and υt
that passes through υi. In an intent graph, the betweenness
centrality exposes insights into critical words or terms that
lead to intentions containing unusual parameters or actions.

Additionally, we evaluate the behavior of the graph from the
perspective of assortativity (Ac), a structural metric defined
between [−1.1]. This metric expresses the tendency of nodes
to connect to other nodes with similar values of a given
characteristic. For example, when considering the degree as
a characteristic to be evaluated, positive assortativity values
indicate a correlation between nodes of similar degrees. In
contrast, negative values indicate relationships between nodes
of different degrees. Values close to zero translate the complete
connection between all nodes in a graph. Extreme positive or
negative cases show that the graph exhibits mixing patterns
between perfect orders or unordered patterns, respectively.

Figures 3(a), 3(b), and 3(c) show the degree, closeness,
and betweenness centrality metrics. Figures show boxplots for
each group of grammatical class words present in the graph
of intentions. Regardless of the type of centrality, the words
or terms classified as numerals have low centrality values.
This phenomenon happens because numerical values used in
the intentions are particular and precise since they typically
comprise parameters such as IP addresses and bandwidth
values. The fact places numerical-value nodes at the graph
edge, making them less central. As seen in Figure 4, a
recurrent disassortative pattern (Ac < 0) is observed in all
groups of grammatical classes (POS tags), showing that most
of the nodes from central words come from words with lower
degrees. Another interesting finding is that several nodes are
classified as nouns, demonstrating similarity to a complete
mesh, that is, connected to all the graph nodes. This fact
is corroborated by Figure 3(a), as nouns have higher degree
centrality values (Cdeg ≈ 0).

The second evaluation approach explores the algorithmic
perspective, comparing the performance of different neural
network models and parameters. The evaluation considers
two deep learning algorithms, Long Short-Term Memory
(LSTM) and Gated Recurrent Unit (GRU). Both algorithms
were trained using 80% of the intentions dataset and then
tested with the rest of the samples to detect semantic conflict
between pairs of intentions. Figures 5(a), 5(b), and 5(c)
depict the values of the information retrieval metrics, i.e.,
accuracy, precision, recall, and f1-score, when classifying pairs
of intentions. The figures show neural network configurations
with 64, 128, and 256 neurons in the hidden layer. The analysis



of the results for each algorithm in each scenario points out a
consensus that the results of the hierarchical grouping were
the best. Especially in tests adopting 64 neurons, a supe-
rior performance of the LSTM model is observed compared
to the GRU model in all evaluated metrics. Although this
performance gap decreases in tests adopting 128 neurons, it
returns considerably in the test with the maximum number
of neurons, i.e., 256. However, it is worth noting that the
LSTM algorithm consistently provides high-precision models
for detecting conflicts among intentions, over 80% precision,
regardless of neuron quantity in the hidden layer.

VI. CONCLUSION

This paper introduces the AGility in Intent-based manage-
ment for service level Refinement (AGIR) system, designed
to address the complexities of Open Radio Access Net-
works (Open RAN). AGIR presents a cutting-edge approach
to intention-based network management, empowering opera-
tors to define and enforce precise Service-Level Agreements
(SLAs) within the RAN environment. The system acts as a
bridge between intentions and actions, seamlessly translating
high-level operator intentions from the SLAs into actionable
network instructions. This transformative capability enhances
the network’s flexibility and scalability and reduces poten-
tial human-prone errors. Comprising four integral modules,
Intelligent Application (iApp), Translator, Conflict Resolver,
and Network Agent, the AGIR system operates cohesively
to execute its core process. The evaluation process focused
mainly on the Translator and Conflict Resolver modules in
a dual approach. By building a graph structure based on
analyzed intentions, the first approach compares the centrality
and assortativity metrics of each group of parts-of-speech tags.
The second approach compared the performance of two deep
neural network models, LSTM and GRU, submitted to classify
intentions as conflicting. Therefore, the superiority of the
LSTM model was verified in all scenarios and tested metrics.
LSTM models reached more than 80% precision in classifying
conflicting intentions. In future work, we intend to test other
neural network models and improve the recognition of named
entities related to the scope of networks based on training with
corpora of realistic and more populated intentions.
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