Nicole Jeffery

Nicole Jeffery
Los Alamos National Laboratory | LANL · Computer, Computational, and Statistical Sciences Division

About

36
Publications
4,305
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
908
Citations
Citations since 2017
22 Research Items
730 Citations
2017201820192020202120222023050100150
2017201820192020202120222023050100150
2017201820192020202120222023050100150
2017201820192020202120222023050100150

Publications

Publications (36)
Article
Full-text available
This work documents version two of the Department of Energy's Energy Exascale Earth System Model (E3SM). E3SMv2 is a significant evolution from its predecessor E3SMv1, resulting in a model that is nearly twice as fast and with a simulated climate that is improved in many metrics. We describe the physical climate model in its lower horizontal resolu...
Article
Full-text available
The Arctic coastal margin receives a disproportionately large fraction of the global river discharge. The bio-geochemistry of the river water as it empties into the marine environment reflects inputs and processes that occur as the water travels from its headwaters. Climate-induced changes to Arctic vegetation and permafrost melt may impact river c...
Article
Full-text available
We present MPAS-Seaice, a sea-ice model which uses the Model for Prediction Across Scales (MPAS) framework and spherical centroidal Voronoi tessellation (SCVT) unstructured meshes. As well as SCVT meshes, MPAS-Seaice can run on the traditional quadrilateral grids used by sea-ice models such as CICE. The MPAS-Seaice velocity solver uses the elastic–...
Preprint
Full-text available
We present MPAS-Seaice, a sea-ice model which uses the Model for Prediction Across Scales (MPAS) framework and Spherical Centroidal Voronoi Tessellation (SCVT) unstructured meshes. As well as SCVT meshes, MPAS-Seaice can run on the traditional quadrilateral grids used by sea-ice models such as CICE. The MPAS-Seaice velocity solver uses the Elastic-...
Article
Full-text available
Rivers of the Arctic will become ever more important for the global climate, since they carry a majority of continental dissolved organic carbon flux into the rapidly changing polar ocean. Aqueous organics comprise a wide array of functional groups, several of which are likely to impact coastal and open water biophysical properties. Light attenuati...
Article
Full-text available
Recent observations suggest that substantial phytoplankton blooms occur under sea ice on Arctic continental shelves during June and July. This is opposed to the traditional view that no significant biomass is produced in sea‐ice covered waters. However, no observational estimates are available on the Arctic‐wide primary production beneath sea ice....
Article
Full-text available
Abstract This paper documents the biogeochemistry configuration of the Energy Exascale Earth System Model (E3SM), E3SMv1.1‐BGC. The model simulates historical carbon cycle dynamics, including carbon losses predicted in response to land use and land cover change, and the responses of the carbon cycle to changes in climate. In addition, we introduce...
Article
Full-text available
We use a modern Earth system model to approximate the relative importance of ice versus temperature on Arctic marine ecosystem dynamics. We show that while the model adequately simulates ice volume, water temperature, air‐sea CO2 flux, and annual primary production in the Arctic, itunderestimates upper water column nitrate across the region. This n...
Article
Full-text available
We present the analysis of global sympagic primary production (PP) from 300 years of pre-industrial and historical simulations of the E3SMv1.1-BGC model. The model includes a novel, eight-element sea ice biogeochemical component, MPAS-Seaice zbgc, which is resolved in three spatial dimensions and uses a vertical transport scheme based on internal b...
Poster
Full-text available
In high-latitude environments such as the Arctic Ocean, phytoplankton growth is strongly constrained by light availability. Because light penetration into the upper ocean is attenuated by snow and ice cover, it was generally believed until recently that phytoplankton growth was limited to areas of open water, with negligible growth under the ice. H...
Article
Full-text available
Abstract We document the configuration, tuning, and evaluation of a modified version of the Community Earth System Model version 1 (Hurrell et al., 2013, https://doi.org/10.1175/BAMS-D-12), introduced here as E3SMv0‐HiLAT, intended for study of high‐latitude processes. E3SMv0‐HiLAT incorporates changes to the atmospheric model affecting aerosol tra...
Article
Full-text available
Abstract This work documents the first version of the U.S. Department of Energy (DOE) new Energy Exascale Earth System Model (E3SMv1). We focus on the standard resolution of the fully coupled physical model designed to address DOE mission‐relevant water cycle questions. Its components include atmosphere and land (110‐km grid spacing), ocean and sea...
Article
Full-text available
We apply principles of Gibbs phase plane chemistry across the entire ocean-atmosphere interface to investigate aerosol generation and geophysical transfer issues. Marine surface tension differences comprise a tangential pressure field controlling trace gas fluxes, primary organic inputs, and sea spray salt injections, in addition to heat and moment...
Article
Full-text available
The current coarse-resolution global Community Earth System Model (CESM) can reproduce major and large-scale patterns but is still missing some key biogeochemical features in the Arctic Ocean, e.g. low surface nutrients in the Canada Basin. We incorporated the CESM Version 1 ocean biogeochemical code into the Regional Arctic System Model (RASM) and...
Preprint
Full-text available
We apply principles of Gibbs phase plane chemistry to and across the entire ocean-atmospheric interface. Surface tension increments support a two dimensional, tangential pressure well known to determine rates of bulk gas, bubble, salt, spray and momentum transfer plus both sensible and latent heat fluxes. Hence it is worth asking whether tension ma...
Article
Full-text available
Large changes in the sea-ice regime of the Arctic Ocean have occurred over the last decades justifying the development of models to forecast sea-ice physics and biogeochemistry. The main goal of this study is to evaluate the performance of the Los Alamos Sea Ice Model (CICE) to simulate physical and biogeochemical properties at time scales of a few...
Preprint
Full-text available
A numerical mechanism connecting ice algal ecodynamics with the buildup of organic macromolecules is tested within modeled pan-Arctic brine channels. The simulations take place offline in a reduced representation of sea ice geochemistry. Physical driver quantities derive from the global sea ice code CICE, including snow cover, thickness and interna...
Article
We implement a variance-based distance metric (Dn) to objectively assess skill of sea ice models when multiple output variables or uncertainties in both model predictions and observations need to be considered. The metric compares observations and model data pairs on common spatial and temporal grids improving upon highly aggregated metrics (e.g. t...
Article
Full-text available
Arctic sea ice extent has declined continuously for the past decade, owing partially to light absorption by black carbon (BC) and other impurities deposited on snow and the underlying pack. We present simulations for the contemporary period showing that the optical depth contributed by Arctic ice algal chlorophyll may be comparable during Boreal Sp...
Article
In this paper the atmospheric response to an open-ocean polynya in the Southern Ocean is studied by analyzing the results from an atmospheric and oceanic synoptic-scale resolving Community Earth System Model (CESM) simulation.While coarser-resolution versions of CESMgenerally do not produce open-ocean polynyas in the SouthernOcean, they do emerge a...
Article
Full-text available
A mechanism connecting ice algal ecodynamics with the buildup of organic macromolecules in brine channels is tested offline in a reduced model of pack geochemistry. Driver physical quantities are extracted from the global sea ice dynamics code CICE, including snow height, column thickness and internal temperature. The variables are averaged at the...
Article
Changes in the high latitude climate system have the potential to affect global climate through feedbacks with the atmosphere and connections with mid latitudes. Sea ice and climate models used to understand these changes have uncertainties that need to be characterized and quantified. We present a quantitative way to assess uncertainty in complex...
Article
A new halodynamic scheme is coupled with the Los Alamos sea ice model to simulate western Weddell Sea ice during the winter-spring transition. One-dimensional temperature and salinity profiles are consistent with the warming and melt stages exhibited in first-year ice cores from the 2004 Ice Station POLarstern (ISPOL) expedition. Results are highly...
Article
Full-text available
The new Community Climate System Model, version 4 (CCSM4), provides a powerful tool to understand and predict the earth's climate system. Several aspects of the Southern Ocean in the CCSM4 are explored, including the surface climatology and interannual variability, simulation of key climate water masses (Antarctic Bottom Water, Subantarctic Mode Wa...
Article
Full-text available
A dynamic model is constructed for interactive silicon, nitrogen, sulfur processing in and below Arctic sea ice, by ecosystems residing in the lower few centimeters of the distributed pack. A biogeochemically active bottom layer supporting sources/sinks for the pennate diatoms is appended to thickness categories of a global sea ice code. Nutrients...
Article
Full-text available
An ice ecosystem model was coupled to a global dynamic sea ice model to assess large-scale variability of primary production and ice algal biomass within arctic sea ice. The component models are the Physical Ecosystem Model (PhEcoM) ice ecosystem model and the Los Alamos Sea Ice Model (CICE). Simulated annual arctic sea ice primary production was 1...
Article
A model for the vertical transport of passive tracers in sea ice is presented. Two Reynolds flux closure approximations are proposed for the tracer velocity dispersion term in the new ice tracer model (IceT). The schemes, ``enhanced molecular diffusion'' (EMD) and ``mixing length diffusion'' (MLD), are suggested parameterizations of gravity drainag...
Article
An ice ecosystem model was coupled to a global dynamic sea ice model to assess large-scale variability of primary production and ice algal biomass within arctic sea ice. The component models are the ice ecosystem model developed at the International Arctic Research Center and the Los Alamos National Laboratory sea ice model, CICE. Simulated annual...
Article
Full-text available
A linear stability analysis of the inviscid stratified Boussinesq equations is presented given a steady zonal flow with constant vertical shear in a tilted f plane. Full nonhydrostatic terms are included: 1) acceleration of vertical velocity and 2) Coriolis force terms arising from the meridional component of earth's rotation vector. Calculations o...
Article
This is a study in progress on developing sea ice and ocean ecosystem models coupled with physical models POP-CICE (Parallel Ocean Program- Los Alamos Sea Ice Model). Both the standalone CICE-ecosystem model and fully coupled POP-CICE-ecosystem model results are examined against observations, with a focus on the arctic regions. The simulated primar...
Article
Polar primary production unfolds in a dynamic sea ice environment, and the interactions of sea ice with ocean support and mediate this production. In spring, for example, fresh melt water contributes to the shoaling of the mixed layer enhancing ice edge blooms. In contrast, sea ice formation in the fall reduces light penetration to the upper ocean...

Network

Cited By