Nicolas Renier

Nicolas Renier
L'Institut du Cerveau et de la Moelle Épinière · Lab of Structural Plasticity

PhD

About

37
Publications
17,848
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,647
Citations
Additional affiliations
January 2012 - present
The Rockefeller University
Position
  • Molecular cues controlling the development of commissural neurons
August 2006 - December 2011
Institut de la Vision
Position
  • Genetic dissection of the role of cerebral commissures
February 2005 - July 2005
University of Rochester
Position
  • NHE1 Partners during cardiac post-ischemic reperfusion events
Education
September 2007 - September 2011
Sorbonne Université
Field of study
  • Neurosciences
September 2003 - August 2007

Publications

Publications (37)
Article
Understanding how neural information is processed in physiological and pathological states would benefit from precise detection, localization, and quantification of the activity of all neurons across the entire brain, which has not, to date, been achieved in the mammalian brain. We introduce a pipeline for high-speed acquisition of brain activity a...
Article
The visualization of molecularly labeled structures within large intact tissues in three dimensions is an area of intense focus. We describe a simple, rapid, and inexpensive method, iDISCO, that permits whole-mount immunolabeling with volume imaging of large cleared samples ranging from perinatal mouse embryos to adult organs, such as brains or kid...
Article
Full-text available
Netrins are secreted proteins that regulate axon guidance and neuronal migration. Deleted in colorectal cancer (DCC) is a well-established netrin-1 receptor mediating attractive responses. We provide evidence that its close relative neogenin is also a functional netrin-1 receptor that acts with DCC to mediate guidance in vivo. We determined the str...
Article
Full-text available
In mammals, tactile information is mapped topographically onto the contralateral side of the brain in the primary somatosensory cortex (S1). In this study, we describe Robo3 mouse mutants in which a sizeable fraction of the trigemino-thalamic inputs project ipsilaterally rather than contralaterally. The resulting mixture of crossed and uncrossed se...
Article
Gut bacteria influence brain functions and metabolism. We investigated whether this influence can be mediated by direct sensing of bacterial cell wall components by brain neurons. In mice, we found that bacterial peptidoglycan plays a major role in mediating gut-brain communication via the Nod2 receptor. Peptidoglycan-derived muropeptides reach the...
Article
Full-text available
Optimizing reproductive fitness in mammalians requires behavioral adaptations during pregnancy. Maternal preparatory nesting is an essential behavior for the survival of the upcoming litter. Brain-wide immediate early gene mapping in mice evoked by nesting sequences revealed that phases of nest construction strongly activate peptidergic neurons of...
Article
Full-text available
Tissue clearing increases the transparency of late developmental stages and enables deep imaging in fixed organisms. Successful implementation of these methodologies requires a good grasp of sample processing, imaging and the possibilities offered by image analysis. In this Primer, we highlight how tissue clearing can revolutionize the histological...
Article
Pleasant odorants are represented in the posterior olfactory bulb (pOB) in mice. How does this hedonic information generate odor-motivated behaviors? Using optogenetics, we report here that stimulating the representation of pleasant odorants in a sensory structure, the pOB, can be rewarding, self-motivating, and is accompanied by ventral tegmental...
Article
Full-text available
Although COVID-19 is considered to be primarily a respiratory disease, SARS-CoV-2 affects multiple organ systems including the central nervous system (CNS). Yet, there is no consensus on the consequences of CNS infections. Here, we used three independent approaches to probe the capacity of SARS-CoV-2 to infect the brain. First, using human brain or...
Preprint
Full-text available
We developed an automatic morphometric reconstruction pipeline, Pop-Rec, and used it to study the morphologies of cortical cholinergic VIP/ChAT interneurons (VChIs). Cholinergic networks control high cognitive functions, but their local modulation and stress-driven plasticity patterns remained elusive. Reconstructing thousands of local VChIs regist...
Article
Full-text available
The cerebral vasculature is a dense network of arteries, capillaries, and veins. Quantifying variations of the vascular organization across individuals, brain regions, or disease models is challenging. We used immunolabeling and tissue clearing to image the vascular network of adult mouse brains and developed a pipeline to segment terabyte-sized mu...
Article
Full-text available
Light-sheet microscopy is an ideal technique for imaging large cleared samples; however, the community is still lacking instruments capable of producing volumetric images of centimeter-sized cleared samples with near-isotropic resolution within minutes. Here, we introduce the mesoscale selective plane-illumination microscopy initiative, an open-har...
Article
Full-text available
Cranial lymphatic vessels (LVs) are involved in the transport of fluids, macromolecules and central nervous system (CNS) immune responses. Little information about spinal LVs is available, because these delicate structures are embedded within vertebral tissues and difficult to visualize using traditional histology. Here we show an extended vertebra...
Article
Homeostatic control of core body temperature is essential for survival. Temperature is sensed by specific neurons, in turn eliciting both behavioral (i.e., locomotion) and physiologic (i.e., thermogenesis, vasodilatation) responses. Here, we report that a population of GABAergic (Vgat-expressing) neurons in the dorsolateral portion of the dorsal ra...
Article
Full-text available
Multiple areas within the reticular activating system (RAS) can hasten awakening from sleep or light planes of anesthesia. However, stimulation in individual sites has shown limited recovery from deep global suppression of brain activity, such as coma. Here we identify a subset of RAS neurons within the anterior portion of nucleus gigantocellularis...
Article
Full-text available
The left hemisphere's dominance in processing social communication has been known for over a century, but the mechanisms underlying this lateralized cortical function are poorly understood. Here, we compare the structure, function, and development of each auditory cortex (ACx) in the mouse to look for specializations that may underlie lateralizatio...
Preprint
Full-text available
Over the course of the past decade, tissue clearing methods have reached a high level of sophistication with a wide variety of approaches now available. To image large cleared samples, light-sheet microscopes have proven to be ideal due to their excellent optical sectioning capability in transparent tissue. Such instruments have recently seen exten...
Article
An important model for axon pathfinding is provided by guidance of embryonic commissural axons from dorsal spinal cord to ventral midline floor plate (FP). FP cells produce a chemoattractive activity, comprised largely of netrin1 (FP-netrin1) and Sonic hedgehog (Shh), that can attract the axons at a distance in vitro. netrin1 is also produced by ve...
Preprint
Full-text available
Cranial lymphatic vessels (LVs) are involved in transport of fluids, macromolecules and CNS immune responses. Little information about spinal LVs is available, because these delicate structures are embedded within vertebral tissues and difficult to visualize using traditional histology. Here we reveal an extended vertebral column LV network using t...
Article
Hunger, driven by negative energy balance, elicits the search for and consumption of food. While this response is in part mediated by neurons in the hypothalamus, the role of specific cell types in other brain regions is less well defined. Here, we show that neurons in the dorsal raphe nucleus, expressing vesicular transporters for GABA or glutamat...
Article
Full-text available
Considerable progress has been made in converting human pluripotent stem cells (hPSCs) into functional neurons. However, the protracted timing of human neuron specification and functional maturation remains a key challenge that hampers the routine application of hPSC-derived lineages in disease modeling and regenerative medicine. Using a combinator...
Article
Full-text available
The molecular trigger of CNS myelination is unknown. By targeting Pten in cerebellar granule cells and activating the AKT1-mTOR pathway, we increased the caliber of normally unmyelinated axons and the expression of numerous genes encoding regulatory proteins. This led to the expansion of genetically wild-type oligodendrocyte progenitor cells, oligo...
Article
Full-text available
Amyloidosis is a major problem in over one hundred diseases, including Alzheimer’s disease (AD). Using the iDISCO visualization method involving targeted molecular labeling, tissue clearing, and light-sheet microscopy, we studied plaque formation in the intact AD mouse brain at up to 27 months of age. We visualized amyloid plaques in 3D together wi...
Article
Axonal death disrupts functional connectivity of neural circuits and is a critical feature of many neurodegenerative disorders. Pathological axon degeneration often occurs independently of known programmed death pathways, but the underlying molecular mechanisms remain largely unknown. Using traumatic injury as a model, we systematically investigate...
Article
Axon degeneration is widespread both in neurodegenerative disease and in normal neural development, but the molecular pathways regulating these degenerative processes and the extent to which they are distinct or overlapping remain incompletely understood. We report that calpastatin, an inhibitor of calcium-activated proteases of the calpain family,...
Article
During the formation of neuronal circuits, axon pathfinding decisions specify the location of synapses on the correct brain side and in correct target areas. We investigated a possible link between axon midline crossing and the subsequent development of output synapses formed by these axons. Conditional knockout of Robo3 in the auditory system forc...
Article
Full-text available
The cerebellum fine-tunes motor activity via its Purkinje cell output. Purkinje cells produce two different types of spikes, complex spikes and simple spikes, which often show reciprocal activity: a periodical increase in complex spikes is associated with a decrease in simple spikes, and vice versa. This reciprocal firing is thought to be essential...
Article
Full-text available
Breathing is a bilaterally synchronous behavior that relies on a respiratory rhythm generator located in the brainstem. An essential component of this generator is the preBötzinger complex (preBötC), which paces inspirations. Little is known about the developmental origin of the interneuronal populations forming the preBötC oscillator network. We f...
Article
Full-text available
In Bilateria, many axons cross the midline of the central nervous system, forming well-defined commissures. Whereas in mammals the functions of commissures in the forebrain and in the visual system are well established, functions at other axial levels are less clearly understood. Here, we have dissected the function of several hindbrain commissures...

Network

Cited By

Projects

Projects (2)