Nicolas Montagné

Nicolas Montagné
Institute of Ecology and Environmental Sciences IEES-Paris | iEES · Sensory Ecology

PhD

About

61
Publications
25,279
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,520
Citations
Additional affiliations
January 2014 - present
Sorbonne Université
Position
  • Professor (Assistant)
September 2008 - December 2013
Sorbonne Université
Position
  • Professor (Assistant)
Education
September 2005 - August 2008
Sorbonne Université
Field of study
  • Life diversity
September 2004 - August 2005
Sorbonne Université
Field of study
  • Integrative Biology and Physiology

Publications

Publications (61)
Article
Full-text available
Insects detect their hosts or mates primarily through olfaction, and olfactory receptors (ORs) are at the core of odorant detection. Each species has evolved a unique repertoire of ORs whose functional properties are expected to meet its ecological needs, though little is known about the molecular basis of olfaction outside Diptera. Here we report...
Article
Full-text available
Sex pheromone receptors (PRs) are key players in chemical communication between mating partners in insects. In the highly diversified insect order Lepidoptera, male PRs tuned to female-emitted type I pheromones (which make up the vast majority of pheromones identified) form a dedicated subfamily of odorant receptors (ORs). Here, using a combination...
Article
Palm trees are of immense economic, sociocultural, touristic, and patrimonial significance all over the world, and date palm-related knowledge, traditions, and practices are now included in UNESCO' 's list of the Intangible Cultural Heritage of Humanity. Of all the pests that infest these trees, the red palm weevil (RPW), Rhynchophorus ferrugineus...
Article
Full-text available
Insects astoundingly dominate Earth’s land ecosystems and have a huge impact on human life. Almost every aspect of their life relies upon their highly efficient and adaptable chemosensory system. In the air, most chemical signals that are detected at long range are hydrophobic molecules, which insects detect using proteins encoded by multigenic fam...
Article
Full-text available
Pheromone communication is an essential component of reproductive isolation in animals. As such, evolution of pheromone signaling can be linked to speciation. For example, the evolution of sex pheromones is thought to have played a major role in the diversification of moths. In the crop pests Spodoptera littoralis and S. litura, the major component...
Article
Full-text available
The primary actors in the detection of olfactory information in insects are odorant receptors (ORs), transmembrane proteins expressed at the dendrites of olfactory sensory neurons (OSNs). In order to decode the insect olfactome, many studies focus on the deorphanization of ORs (i.e., identification of their ligand), using various approaches involvi...
Article
In moths, pheromone receptors (PRs) are crucial for intraspecific sexual communication between males and females. Moth PRs are considered as an ideal model for studying the evolution of insect PRs, and a large number of PRs have been identified and functionally characterized in different moth species. Moth PRs were initially thought to fall into a...
Preprint
Full-text available
The reverse chemical ecology approach facilitates sustainable plant protection by identifying odorant receptors (ORs) tuned to odorants, especially the volatile molecules emitted from host plants that insects use for detection. A few studies have explored such an approach to develop sustainable pest management programs, especially in host-specializ...
Article
Full-text available
The ithomiine butterflies (Nymphalidae: Danainae) represent the largest known radiation of Müllerian mimetic butterflies. They dominate by number the mimetic butterfly communities, which include species such as the iconic neotropical Heliconius genus. Recent studies on the ecology and genetics of speciation in Ithomiini have suggested that sexual p...
Article
Full-text available
In moths, mate finding relies on female-emitted sex pheromones that the males have to decipher within a complex environmental odorant background. Previous studies have shown that interactions of both sex pheromones and plant volatiles can occur in the peripheral olfactory system, and that some plant volatiles can activate the pheromone-specific det...
Article
Full-text available
Unraveling the origin of molecular pathways underlying the evolution of adaptive traits is essential for understanding how new lineages emerge, including the relative contribution of conserved ancestral traits and newly evolved derived traits. Here, we investigated the evolutionary divergence of sex pheromone communication from moths (mostly noctur...
Article
Full-text available
The bitter taste, triggered via gustatory receptors, serves as an important natural defense against the ingestion of poisonous foods in animals, and the increased host breadth is usually linked to an increase in the number of gustatory receptor genes. This has been especially observed in polyphagous insect species, such as noctuid species from the...
Article
Full-text available
Sex pheromone receptors are crucial in insects for mate finding and contribute to species premating isolation. Many pheromone receptors have been functionally characterized, especially in moths, but loss of function studies are rare. Notably, the potential role of pheromone receptors in the development of the macroglomeruli in the antennal lobe (th...
Chapter
Semiochemicals play a major role in insect ecology, as evidenced by the broad distribution of chemosensory structures on the insect body. Substantial progress has been made in the field of insect olfaction and taste in recent years. Soluble carrier proteins, receptors, neurons and circuits have been described in considerable detail, and the mechani...
Chapter
Many insect behaviours – from finding a mate to choosing a site to lay eggs and avoiding toxic food or predators – primarily rely on the detection of chemical cues and signals, also called semiochemicals. Over the last 50 years, researchers have gained extensive knowledge on the exact nature of these semiochemicals as well as on their effect on ins...
Article
Full-text available
Background The rice weevil Sitophilus oryzae is one of the most important agricultural pests, causing extensive damage to cereal in fields and to stored grains. S. oryzae has an intracellular symbiotic relationship (endosymbiosis) with the Gram-negative bacterium Sodalis pierantonius and is a valuable model to decipher host-symbiont molecular inter...
Article
Full-text available
The concept of reverse chemical ecology (exploitation of molecular knowledge for chemical ecology) has recently emerged in conservation biology and human health. Here, we extend this concept to crop protection. Targeting odorant receptors from a crop pest insect, the noctuid moth Spodoptera littoralis , we demonstrate that reverse chemical ecology...
Article
Full-text available
Ecological speciation entails divergent selection on specific traits, and ultimately on the developmental pathways responsible for these traits. Selection can act on gene sequences, but also on regulatory regions responsible for gene expression. Mimetic butterflies are a relevant system for speciation studies because wing color pattern (WCP) often...
Article
Full-text available
Illumina-based transcriptome sequencing of chemosensory organs has become a standard in deciphering the molecular bases of chemical senses in insects, especially in non-model species. A plethora of antennal transcriptomes is now available in the literature, describing large sets of chemosensory receptors and binding proteins in a diversity of speci...
Article
Full-text available
Starvation increases olfactory sensitivity in a manner that enhances the search for food in animals, including insects. However, the molecular mechanisms via which starvation modulates olfactory receptor neuron function are poorly understood. In this study, we sequenced and compared the whole transcriptomes of the main olfactory organs (antennae an...
Article
Full-text available
For decades, the American palm weevil (APW), Rhynchophorus palmarum, has been a threat to coconut and oil palm production in the Americas. It has recently spread towards North America, endangering ornamental palms, and the expanding date palm production. Its behavior presents several parallelisms with a closely related species, R. ferrugineus, the...
Article
Full-text available
In predatory ladybirds (Coleoptera: Coccinellidae), antennae are important for chemosensory reception used during food and mate location, and for finding a suitable oviposition habitat. Based on NextSeq 550 Illumina sequencing, we assembled the antennal transcriptome of mated Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) males and females...
Article
Full-text available
Endogenous viruses form an important proportion of eukaryote genomes and a source of novel functions. How large DNA viruses integrated into a genome evolve when they confer a benefit to their host, however, remains unknown. Bracoviruses are essential for the parasitism success of parasitoid wasps, into whose genomes they integrated~103 million year...
Chapter
Enormous progresses in our understanding of the primary processes of insect odorant detection have been made thanks to pioneer studies conducted on Lepidoptera and their remarkable sex pheromone communication system. Pheromones are detected by specialized odorant receptors, the pheromone receptors. At the time of the first edition of this book in 2...
Article
Full-text available
Background: Although native to North America, the invasion of the aphid-like grape phylloxera Daktulosphaira vitifoliae across the globe altered the course of grape cultivation. For the past 150 years, viticulture relied on grafting-resistant North American Vitis species as rootstocks, thereby limiting genetic stocks tolerant to other stressors suc...
Article
Full-text available
Background: Parasitoid wasps have fascinating life cycles and play an important role in trophic networks, yet little is known about their genome content and function. Parasitoids that infect aphids are an important group with the potential for biological control. Their success depends on adapting to develop inside aphids and overcoming both host a...
Article
Full-text available
The tremendous diversity of Hymenoptera is commonly attributed to the evolution of parasitoidism in the last common ancestor of parasitoid sawflies (Orussidae) and wasp-waisted Hymenoptera (Apocrita). However, Apocrita and Orussidae differ dramatically in their species richness, indicating that the diversification of Apocrita was promoted by additi...
Article
The Antarctic krill, Euphausia superba, is a Southern Ocean endemic species of proven ecological importance to the region. In the context of predicted global warming, it is particularly important to understand how classic biomarkers of heat stress function in this species. In this respect, Hsp70s are acknowledged as good candidates. However, previo...
Article
Full-text available
Odorant receptors expressed at the peripheral olfactory organs are key proteins for animal volatile sensing. Although they determine the odor space of a given species, their functional characterization is a long process and remains limited. To date, machine learning virtual screening has been used to predict new ligands for such receptors in both m...
Article
Full-text available
Alvinocaridid shrimps are emblematic representatives of the deep hydrothermal vent fauna at the Mid-Atlantic Ridge. They are adapted to a mostly aphotic habitat with extreme physicochemical conditions in the vicinity of the hydrothermal fluid emissions. Here, we investigated the brain architecture of the vent shrimp Rimicaris exoculata to understan...
Article
Full-text available
Phytophagous insects use volatile organic compounds (VOC) emitted by plants to orient towards their hosts. In lepidopteran pests, crop damages are caused by larval stages-the caterpillars-that feed extensively on leaves or other plant tissues. However, larval host plant choice has been poorly studied, and it is generally admitted that caterpillars...
Article
Full-text available
Sex pheromone communication in Lepidoptera has long been a valuable model system for studying fundamental aspects of olfaction and its study has led to the establishment of environmental-friendly pest control strategies. The cabbage moth, Mamestra brassicae (Linnaeus) (Lepidoptera: Noctuidae), is a major pest of Cruciferous vegetables in Europe and...
Article
Full-text available
The tobacco cutworm, Spodoptera litura, is among the most widespread and destructive agricultural pests, feeding on over 100 crops throughout tropical and subtropical Asia. By genome sequencing, physical mapping and transcriptome analysis, we found that the gene families encoding receptors for bitter or toxic substances and detoxification enzymes,...
Article
Full-text available
Odorant degrading enzymes (ODEs) are thought to be responsible, at least in part, for olfactory signal termination in the chemosensory system by rapid degradation of odorants in the vicinity of the receptors. A carboxylesterase, specifically expressed in Drosophila antennae, called “juvenile hormone esterase duplication (JHEdup)” has been previousl...
Article
Full-text available
Emergence of polyphagous herbivorous insects entails significant adaptation to recognize, detoxify and digest a variety of host-plants. Despite of its biological and practical importance - since insects eat 20% of crops - no exhaustive analysis of gene repertoires required for adaptations in generalist insect herbivores has previously been performe...
Article
Full-text available
Background Helicoverpa armigera and Helicoverpa zea are major caterpillar pests of Old and New World agriculture, respectively. Both, particularly H. armigera, are extremely polyphagous, and H. armigera has developed resistance to many insecticides. Here we use comparative genomics, transcriptomics and resequencing to elucidate the genetic basis fo...
Article
Full-text available
The detection of chemical signals is involved in a variety of crustacean behaviors, such as social interactions, search and evaluation of food and navigation in the environment. At hydrothermal vents, endemic shrimp may use the chemical signature of vent fluids to locate active edifices, however little is known on their sensory perception in these...
Article
Full-text available
Most lepidopteran species are herbivores, and interaction with host plants affects their gene expression and behavior as well as their genome evolution. Gustatory receptors (Grs) are expected to mediate host plant selection, feeding, oviposition and courtship behavior. However, due to their high diversity, sequence divergence and extremely low leve...
Article
Full-text available
Olfaction plays a dominant role in the mate-finding and host selection behaviours of the codling moth (Cydia pomonella), an important pest of apple, pear and walnut orchards worldwide. Antennal transcriptome analysis revealed a number of abundantly expressed genes related to the moth olfactory system, including those encoding the olfactory receptor...
Article
Full-text available
Transient receptor potential (TRP) channels are an ancient family of cation channels, working as metabotropic triggers, which respond to physical and chemical environmental cues. Perception of chemical signals mediate reproductive behaviors and is therefore an important target for sustainable management tactics against the codling moth Cydia pomone...
Article
Full-text available
Odorant receptors (ORs) interface animals with airborne chemical signals. They are under strong selection pressure and are therefore highly divergent in different taxa. Yet, some OR orthologs are highly conserved. These ORs may be tuned to odorants of broad importance, across species boundaries. Two widely distributed lepidopteran herbivores, codli...
Article
Full-text available
In moths, mate finding strongly rely on the detection of sex pheromones by pheromone receptors (PRs). Any modification in the functional properties of these receptors can have a drastic impact on reproduction. In the course of characterizing candidate PRs in the noctuid moth Spodoptera littoralis, we expressed them in Drosophila olfactory sensory n...
Chapter
Olfactory receptors (ORs) are the key elements of the molecular machinery responsible for the detection of odors in insects. Since their initial discovery in Drosophila melanogaster at the beginning of the twenty-first century, insect ORs have been the focus of intense research, both for fundamental knowledge of sensory systems and for their potent...
Chapter
Full-text available
The sense of olfaction stimulates many vital behaviors in insects. At the molecular level, the interactions between an insect and its olfactory environment are mediated by two families of chemosensory receptors, the olfactory receptors and the ionotropic receptors. In this chapter, we review the current knowledge on olfactory receptors within the L...
Article
Full-text available
Plant volatiles mediate host discrimination and host finding in phytophagous insects. Understanding how insects recognize these signals is a current challenge in chemical ecology research. Pear ester, ethyl (E,Z)-2,4-decadienoate, is a powerful, bisexual attractant of codling moth Cydia pomonella (Lepidoptera, Tortricidae) and strongly synergizes t...
Article
Full-text available
The stemborer Sesamia nonagrioides is an important pest of maize in the Mediterranean Basin. Like other moths, this noctuid uses its chemosensory system to efficiently interact with its environment. However, very little is known on the molecular mechanisms that underlie chemosensation in this species. Here, we used next-generation sequencing (454 a...
Article
Full-text available
To better understand the olfactory mechanisms in a lepidopteran pest model species, the cotton leafworm Spodoptera littoralis, we have recently established a partial transcriptome from adult antennae. Here, we completed this transcriptome using next generation sequencing technologies, namely 454 and Illumina, on both adult antennae and larval tissu...
Article
Full-text available
The response of insect olfactory receptor neurons (ORNs) involves an increase in intracellular Ca(2+) concentration, as in vertebrate ORNs. In order to decipher the Ca(2+) clearance mechanisms in insect ORNs, we have investigated the presence of a plasma membrane Ca(2+) ATPase (PMCA) in the peripheral olfactory system of the moth Spodoptera littora...
Article
Full-text available
Chemical senses are crucial for all organisms to detect various environmental information. Different protein families, expressed in chemosensory organs, are involved in the detection of this information, such as odorant-binding proteins, olfactory and gustatory receptors, and ionotropic receptors. We recently reported an Expressed Sequence Tag (EST...
Article
Full-text available
Moth sex pheromone communication is recognised as a long-standing model for insect olfaction studies, and a widespread knowledge has been accumulated on this subject thanks to numerous chemical, electrophysiological and behavioural studies. A key step has been the identification of candidate sex pheromone receptors, opening new routes to understand...
Article
Full-text available
Mast syndrome is a complicated form of human hereditary spastic paraplegias, caused by a mutation in the gene acid cluster protein 33, which encodes a protein designated as "maspardin." Maspardin presents similarity to the α/β-hydrolase superfamily, but might lack enzymatic activity and rather be involved in protein-protein interactions. Associatio...
Article
Full-text available
The codling moth, Cydia pomonella, is an important fruit pest worldwide. As nocturnal animals, adults depend to a large extent on olfactory cues for detection of food and mates, and, for females, oviposition sites. In insects, odor detection is mediated by odorant receptors (ORs) and ionotropic receptors (IRs), which ensure the specificity of the o...
Article
Full-text available
Nocturnal insects such as moths are ideal models to study the molecular bases of olfaction that they use, among examples, for the detection of mating partners and host plants. Knowing how an odour generates a neuronal signal in insect antennae is crucial for understanding the physiological bases of olfaction, and also could lead to the identificati...
Article
Full-text available
Crustacean Hyperglycemic Hormone (CHH) family peptides are neurohormones known to regulate several important functions in decapod crustaceans such as ionic and energetic metabolism, molting and reproduction. The structural conservation of these peptides, together with the variety of functions they display, led us to investigate their evolutionary h...
Article
Recent studies have suggested that pheromone-degrading enzymes belonging to the carboxylesterase family could play a role in the dynamics of the olfactory response to acetate sex pheromones in insects. Bioinformatic analyses of a male antennal expressed sequence tag library allowed the identification of 19 putative esterase genes expressed in the a...
Article
Olfaction is primarily mediated by the large family of olfactory receptors. Although all insect olfactory receptors share the same structure with seven transmembrane domains, they present poor sequence homologies within and between species. As the only exception, Drosophila melanogaster OR83b and its orthologues define a receptor subtype singularly...
Article
The neuropeptides of the crustacean hyperglycaemic hormone (CHH) family are encoded by a multigene family and are involved in a wide spectrum of essential functions. In order to characterize CHH family peptides in one of the last groups of decapods not yet investigated, CHH was studied in two anomurans: the hermit crab Pagurus bernhardus and the sq...

Network