## About

715

Publications

102,916

Reads

**How we measure 'reads'**

A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more

64,504

Citations

## Publications

Publications (715)

We use hyperentanglement to experimentally realize deterministic entanglement swapping based on quantum elegant joint measurements. These are joint projections of two qubits onto highly symmetric, isoentangled bases. We report measurement fidelities no smaller than 97.4%. We showcase the applications of these measurements by using the entanglement...

Discussions on indeterminism in physics focus on the possibility of an open future, i.e. the possibility of having potential alternative future events, the realisation of one of which is not fully determined by the present state of affairs. Yet, can indeterminism affect also the past, making it open as well? We show that by upholding principles of...

We use hyper-entanglement to experimentally realize deterministic entanglement swapping based on quantum Elegant Joint Measurements. These are joint projections of two qubits onto highly symmetric, iso-entangled, bases. We report measurement fidelities no smaller than $97.4\%$. We showcase the applications of these measurements by using the entangl...

The study of nonlocality in scenarios that depart from the bipartite Einstein-Podolsky-Rosen setup is allowing to uncover many fundamental features of quantum mechanics. Recently, an approach to building network-local models based on machine learning lead to the conjecture that the family of quantum triangle distributions of [DOI:10.1103/PhysRevLet...

It has recently been discovered that the nonlocality of an entangled qubit pair can be recycled for several Bell experiments. Here, we go beyond standard Bell scenarios and investigate the recycling of nonlocal resources in a quantum network. We realise a photonic quantum 3-branch star network in which three sources of entangled pairs independently...

Quantum theory is commonly formulated in complex Hilbert spaces. However, the question of whether complex numbers need to be given a fundamental role in the theory has been debated since its pioneering days. Recently it has been shown that tests in the spirit of a Bell inequality can reveal quantum predictions in entanglement swapping scenarios tha...

Networks have advanced the study of nonlocality beyond Bell’s theorem. Here, we introduce the concept of full network nonlocality, which describes correlations that necessitate all links in a network to distribute nonlocal resources. Showcasing that this notion is stronger than standard network nonlocality, we prove that the most well-known network...

Discussions on indeterminism in physics focus on the possibility of an open future, i.e. the possibility of having potential alternative future events, the realisation of one of which is not fully determined by the present state of affairs. Yet, can indeterminism affect also the past, making it open as well? We show that by upholding principles of...

Although complex numbers are essential in mathematics, they are not needed to describe physical experiments, as those are expressed in terms of probabilities, hence real numbers. Physics, however, aims to explain, rather than describe, experiments through theories. Although most theories of physics are based on real numbers, quantum theory was the...

Quantum theory is commonly formulated in complex Hilbert spaces. However, the question of whether complex numbers need to be given a fundamental role in the theory has been debated since its pioneering days. Recently it has been shown that tests in the spirit of a Bell inequality can reveal quantum predictions in entanglement swapping scenarios tha...

Nonlocal boxes are conceptual tools that capture the essence of the phenomenon of quantum nonlocality, central to modern quantum theory and quantum technologies. We introduce network nonlocal boxes tailored for quantum networks under the natural assumption that these networks connect independent sources and do not allow signaling. Hence, these boxe...

Increasingly sophisticated quantum computers motivate the exploration of their abilities in certifying genuine quantum phenomena. Here, we demonstrate the power of state-of-the-art IBM quantum computers in correlation experiments inspired by quantum networks. Our experiments feature up to 12 qubits and require the implementation of paradigmatic Bel...

Network Bell experiments give rise to a form of quantum nonlocality that conceptually goes beyond Bell’s theorem. We investigate here the simplest network, known as the bilocality scenario. We depart from the typical use of the Bell state measurement in the network central node and instead introduce a family of symmetric isoentangled measurement ba...

Networks have advanced the study of nonlocality beyond Bell's theorem. Here, we introduce the concept of full network nonlocality, which describes correlations that necessitate all links in a network to distribute nonlocal resources. Showcasing that this notion is stronger than standard network nonlocality, we prove that the most well-known network...

Nonlocal boxes are conceptual tools that capture the essence of the phenomenon of quantum non-locality, central to modern quantum theory and quantum technologies. We introduce network nonlocal boxes tailored for quantum networks under the natural assumption that these networks connect independent sources and do not allow signaling. Hence, these box...

Complex numbers, i.e., numbers with a real and an imaginary part, are essential for mathematical analysis, while their role in other subjects, such as electromagnetism or special relativity, is far less fundamental. Quantum physics is the only physical theory where these numbers seem to play an indispensible role, as the theory is explicitly formul...

A long-standing tradition, largely present in both the physical and the philosophical literature, regards the advent of (special) relativity –with its block-universe picture– as the failure of any indeterministic program in physics. On the contrary, in this paper, we note that upholding reasonable principles of finiteness of information hints at a...

Characterizing quantum nonlocality in networks is a challenging, but important problem. Using quantum sources one can achieve distributions which are unattainable classically. A key point in investigations is to decide whether an observed probability distribution can be reproduced using only classical resources. This causal inference task is challe...

Symmetric informationally complete measurements (SICs) are elegant, celebrated, and broadly useful discrete structures in Hilbert space. We introduce a more sophisticated discrete structure compounded by several SICs. A SIC compound is defined to be a collection of d3 vectors in d-dimensional Hilbert space that can be partitioned in two different w...

Increasingly sophisticated quantum computers motivate the exploration of their abilities in certifying genuine quantum phenomena. Here, we demonstrate the power of state-of-the-art IBM quantum computers in correlation experiments inspired by quantum networks. Our experiments feature up to 12 qubits and require the implementation of paradigmatic Bel...

Quantum communication leads to strong correlations, that can outperform classical ones. Complementary to previous works in this area, we investigate correlations in prepare-and-measure scenarios assuming a bound on the information content of the quantum communication, rather than on its Hilbert-space dimension. Specifically, we explore the extent o...

Steering is usually described as a quantum phenomenon. In this article, we show that steering is not restricted to quantum theory, it is also present in more general, no-signalling theories. We present two main results: first, we show that quantum steering involves a collection of different aspects, which need to be separated when considering steer...

The Platonic solids is the name traditionally given to the five regular convex polyhedra, namely the tetrahedron, the octahedron, the cube, the icosahedron and the dodecahedron. Perhaps strongly boosted by the towering historical influence of their namesake, these beautiful solids have, in well over two millennia, transcended traditional boundaries...

Symmetric informationally complete measurements (SICs) are elegant, celebrated and broadly useful discrete structures in Hilbert space. We introduce a more sophisticated discrete structure compounded by several SICs. A SIC-compound is defined to be a collection of $d^3$ vectors in $d$-dimensional Hilbert space that can be partitioned in two differe...

Network Bell experiments give rise to a form of quantum nonlocality that conceptually goes beyond Bell's theorem. We investigate here the simplest network, known as the bilocality scenario. We depart from the typical use of the Bell State Measurement in the network central node and instead introduce a family of symmetric iso-entangled measurement b...

Quantum memories with long storage times are key elements in long-distance quantum networks. The atomic frequency comb (AFC) memory in particular has shown great promise to fulfill this role, having demonstrated multimode capacity and spin–photon quantum correlations. However, the memory storage times have so-far been limited to about 1 ms, realize...

The possibility of Bell inequality violations in quantum theory had a profound impact on our understanding of the correlations that can be shared by distant parties. Generalizing the concept of Bell nonlocality to networks leads to novel forms of correlations, the characterization of which is, however, challenging. Here, we investigate constraints...

Some properties of physical systems can be characterized from their correlations. In that framework, subsystems are viewed as abstract devices that receive measurement settings as inputs and produce measurement outcomes as outputs. The labeling convention used to describe these inputs and outputs does not affect the physics; and relabelings are eas...

The Platonic solids is the name traditionally given to the five regular convex polyhedra, namely the tetradron, the octahedron, the cube, the icosahedron and the dodecahedron. Perhaps strongly boosted by the towering historical influence of their namesake, these beautiful solids have, in well over two millenia, transcended traditional boundaries an...

Quantum memories with long storage times are key elements in long-distance quantum networks. The atomic frequency comb (AFC) memory in particular has shown great promise to fulfill this role, having demonstrated multimode capacity and spin-photon quantum correlations. However, the memory storage times have so-far been limited to about one milliseco...

Quantum memories with long storage times are key elements in long-distance quantum networks. The atomic frequency comb (AFC) memory in particular has shown great promise to fulfill this role, having demonstrated multimode capacity and spin-photon quantum correlations. However, the memory storage times have so-far been limited to about one milliseco...

Quantum networks allow in principle for completely novel forms of quantum correlations. In particular, quantum nonlocality can be demonstrated here without the need of having various input settings, but only by considering the joint statistics of fixed local measurement outputs. However, previous examples of this intriguing phenomenon all appear to...

Quantum communication leads to strong correlations, that can outperform classical ones. Complementary to previous works in this area, we investigate correlations in prepare-and-measure scenarios assuming a bound on the information content of the quantum communication, rather than on its Hilbert-space dimension. Specifically, we explore the extent o...

A quantum network consists of independent sources distributing entangled states to distant nodes which can then perform entangled measurements, thus establishing correlations across the entire network. But how strong can these correlations be? Here we address this question, by deriving bounds on possible quantum correlations in a given network. The...

Characterizing quantum nonlocality in networks is a challenging problem. A key point is to devise methods for deciding whether an observed probability distribution achievable via quantum resources could also be reproduced using classical resources. The task is challenging even for simple networks, both analytically and using standard numerical tech...

Generalising the concept of Bell nonlocality to networks leads to novel forms of correlations, the characterization of which is however challenging. Here we investigate constraints on correlations in networks under the two natural assumptions of no-signaling and independence of the sources. We consider the ``triangle network'', and derive strong co...

Quantum networks allow in principle for completely novel forms of quantum correlations. In particular, quantum nonlocality can be demonstrated here without the need of having various input settings, but only by considering the joint statistics of fixed local measurement outputs. However, previous examples of this intriguing phenomenon all appear to...

We report a detailed study of the noise properties of a visible-to-telecom photon frequency converter based on difference frequency generation (DFG). The device converts 580 nm photons to 1541 nm using a strong pump laser at 930 nm, in a periodically poled lithium niobate ridge waveguide. The converter reaches a maximum device efficiency of 46 % (i...

The quantum Fisher information (QFI) of certain multipartite entangled quantum states is larger than what is reachable by separable states, providing a metrological advantage. Are these nonclassical correlations strong enough to potentially violate a Bell inequality? Here, we present evidence from two examples. First, we discuss a Bell inequality d...

Twenty-five years after the invention of quantum teleportation, the concept of entanglement gained enormous popularity. This is especially nice to those who remember that entanglement was not even taught at universities until the 1990s. Today, entanglement is often presented as a resource, the resource of quantum information science and technology....

A sequential steering scenario is investigated, where multiple Bobs aim at demonstrating steering using successively the same half of an entangled quantum state. With isotropic entangled states of local dimension d, the number of Bobs that can steer Alice is found to be NBob∼d/logd, thus leading to an arbitrary large number of successive instances...

We study Bell scenarios with binary outcomes supplemented by one bit of classical communication. We developed a method to find facet inequalities for such scenarios even when direct facet enumeration is not possible, or at least difficult. Using this method, we partially solved the scenario where Alice and Bob choose between three inputs, finding a...

We report a detailed study of the noise properties of a visible-to-telecom photon frequency converter based on difference frequency generation (DFG). The device converts 580 nm photons to 1541 nm using a strong pump laser at 930 nm, in a periodically poled lithium niobate ridge waveguide. The converter reaches a maximum device efficiency of 46 % (i...

A quantum network consists of independent sources distributing entangled states to distant nodes which can then perform entangled measurements, thus establishing correlations across the entire network. But how strong can these correlations be? Here we address this question, by deriving bounds on possible quantum correlations in a given network. The...

The semi-device-independent framework allows one to draw conclusions about properties of an unknown quantum system under weak assumptions. Here we present a semi-device-independent scheme for the characterization of multipartite entanglement based around a game played by several isolated parties whose devices are uncharacterized beyond an assumptio...

Rare-earth ion doped crystals are promising systems for quantum communication and quantum information processing. In particular, paramagnetic rare-earth centres can be utilized to realize quantum coherent interfaces simultaneously for optical and microwave photons. In this article, we study hyperfine and magnetic properties of a Y2SiO5 crystal dope...

A sequential steering scenario is investigated, where multiple Bobs aim at demonstrating steering using successively the same half of an entangled quantum state. With isotropic entangled states of local dimension $d$, the number of Bobs that can steer Alice is found to be $N_\mathrm{Bob}\sim d/\log{d}$, thus leading to an arbitrary large number of...

The quantum Fisher information (QFI) of certain multipartite entangled quantum states is larger than what is reachable by separable states, providing a metrological advantage. Are these nonclassical correlations strong enough to potentially violate a Bell inequality? Here, we present evidence from two examples. First, we discuss a Bell inequality d...

The quantum Fisher information (QFI) of certain multipartite entangled quantum states is larger than what is reachable by separable states, providing a metrological advantage. Are these nonclas-sical correlations strong enough to potentially violate a Bell inequality? Here, we present evidence from two examples. First, we discuss a Bell inequality...

Solid-state electronic spins are extensively studied in quantum information science, both for quantum computation, sensing and communication. Electronic spins are highly interesting due to their large magnetic moments, which offer fast operations for computing and communication, and high sensitivity for sensing. However, the large moment also impli...

The semi-device-independent framework allows one to draw conclusions about properties of an unknown quantum system under weak assumptions. Here we present a semi-device-independent scheme for the characterisation of multipartite entanglement based around a game played by several isolated parties whose devices are uncharacterised beyond an assumptio...

We characterize the Europium (Eu3+) hyperfine interaction of the excited state (5D0) and determine its effective spin Hamiltonian parameters for the Zeeman and quadrupole tensors. An optical free induction decay method is used to measure all hyperfine splittings under weak external magnetic field (up to 10 mT) for various field orientations. On the...

Quantum non-locality has been an extremely fruitful subject of research, leading the scientific revolution towards quantum information science, in particular, to device-independent quantum information processing. We argue that the time is ripe to work on another basic problem in the foundations of quantum physics, the quantum measurement problem, w...

Do experiments based on superconducting loops segmented with Josephson junctions (e.g., flux qubits) show macroscopic quantum behavior in the sense of Schr\"odinger's cat example? Various arguments based on microscopic and phenomenological models were recently adduced in this debate. We approach this problem by adapting --to flux qubits-- the frame...

Quantum measurements have intrinsic properties which seems incompatible with our everyday-life macroscopic measurements. Macroscopic Quantum Measurement (MQM) is a concept that aims at bridging the gap between well understood microscopic quantum measurements and macroscopic classical measurements. In this paper, we focus on the task of the polariza...

Using weak quantum measurements one can determine the direction in which a large ensemble of spins, as in a classical magnet, points. Assume Alice and Bob share a large ensemble of N pairs of spin-\(\frac{1}{2}\). If Alice measures all her spins, all along the same direction, she prepares at a distance an ensemble of spins for Bob which, because of...

We characterize the Europium (Eu$^{3+}$) hyperfine interaction of the excited state ($^5$D$_0$) and determine its effective spin Hamiltonian parameters for the Zeeman and quadrupole tensors. An optical free induction decay method is used to measure all hyperfine splittings under weak external magnetic field (up to 10 mT) for various field orientati...

The use of multidimensional entanglement opens new perspectives for quantum information processing. However, an important challenge in practice is to certify and characterize multidimensional entanglement from measurement data that are typically limited. Here, we report the certification and quantification of two-photon multidimensional energy-time...

The use of multidimensional entanglement opens new perspectives for quantum information processing. However, an important challenge in practice is to certify and characterize multidimensional entanglement from measurement data that are typically limited. Here, we report the certification and quantification of two-photon multidimensional energy-time...

We consider a spin chain extending from Alice to Bob with next neighbors interactions, initially in its ground state. Assuming that Bob measures the last spin of the chain, the energy of the spin chain has to increase, at least on average, due to the measurement disturbance. Presumably, the energy is provided by Bob's measurement apparatus. Assumin...

We present an algebraic description of the sets of local correlations in arbitrary networks, when the parties have finite inputs and outputs. We consider networks generalizing the usual Bell scenarios by the presence of multiple uncorrelated sources. We prove a finite upper bound on the cardinality of the value sets of the local hidden variables. C...

Assuming a well-behaving quantum-to-classical transition, measuring large quantum systems should be highly informative with low measurement-induced disturbance, while the coupling between system and measurement apparatus is fairly simple and weak. Here, we show that this is indeed possible within the formalism of quantum mechanics. We discuss an ex...

Large-scale quantum effects have always played an important role in the foundations of quantum theory. With recent experimental progress and the aspiration for quantum enhanced applications, the interest in macroscopic quantum effects has been reinforced. In this review, we critically analyze and discuss measures aiming to quantify various aspects...