Nicolas Delpierre

Nicolas Delpierre
Université Paris-Sud 11 | Paris 11 · Laboratoire d'Ecologie, Systématique et Evolution

PhD in tree ecophysiology

About

110
Publications
50,397
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
5,042
Citations
Citations since 2017
63 Research Items
3857 Citations
201720182019202020212022202302004006008001,0001,200
201720182019202020212022202302004006008001,0001,200
201720182019202020212022202302004006008001,0001,200
201720182019202020212022202302004006008001,0001,200
Additional affiliations
October 2020 - present
Institut Universitaire de France
Position
  • delegated professor

Publications

Publications (110)
Preprint
Full-text available
The extent of the potassium (K) limitation of forest productivity is probably more widespread than previously thought, and K-limitation could influence the response of forests to future global changes. To understand the effects of K-limitation on forest primary production, we have developed the first ecophysiological model simulating the K cycle an...
Preprint
Full-text available
Potassium availability constrains forest productivity. Brazilian eucalypt plantations are a good example of the K-limitation of wood production. Here, we built upon a previously described model (CASTANEA-MAESPA-K) and used it to understand whether the simulated decline in C-source under K deficiency was sufficient to explain the K-limitation of woo...
Article
Initiation of autumnal leaf senescence is crucial for plant overwintering and ecosystem dynamics. Previous studies have focused on the advanced stages of autumnal leaf senescence and reported that climatic warming delayed senescence, despite the fundamental differences among the stages of senescence. However, the timing of onset of leaf coloration...
Article
Full-text available
We quantified the distribution of nitrogen (N), dry-matter (biomass) and of soil-applied 15 N in tree and soil compartments in five naturally-growing 20-year-old oak trees. After applying 15 N solution to soil at the base of the trees in spring, all the trees were felled in the fall, their root system excavated, biomass, nitrogen and 15 N content m...
Article
The ability of forests to withstand, and recover from, acute drought stress is a critical uncertainty regarding the impacts of climate change on the terrestrial carbon (C) cycle, but it is unclear how drought responses scale from individual trees to whole forests. Here, we assembled a dataset of tree-ring chronologies co-located within the footprin...
Article
Full-text available
Lack of tree fecundity data across climatic gradients precludes the analysis of how seed supply contributes to global variation in forest regeneration and biotic interactions responsible for biodiversity. A global synthesis of raw seedproduction data shows a 250‐fold increase in seed abundance from cold‐dry to warm‐wet climates, driven primarily by...
Article
Uncertainties surrounding tree carbon allocation to growth are a major limitation to projections of forest carbon sequestration and response to climate change. The prevalence and extent to which carbon assimilation (source) or cambial activity (sink) mediate wood production are fundamentally important and remain elusive. We quantified source-sink r...
Article
Full-text available
The relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundat...
Article
Climate change is imposing drier atmospheric and edaphic conditions on temperate forests. Here, we investigated how deep soil (down to 300 cm) water extraction contributed to the provision of water in the Fontainebleau-Barbeau temperate oak forest over two years, including the 2018 record drought. Deep water provision was key to sustain canopy tran...
Article
Process-based phenological models are currently used for assessing the effects of climatic warming on the timing of spring phenological events, such as leafout and flowering, in trees. However, the biological realism of the models may be undermined by the practices of often formulating the models solely on the basis of observational records of the...
Preprint
Full-text available
Climate change is imposing drier atmospheric and edaphic conditions on temperate forests. Here, we investigated how deep soil (down to 300 cm) water extraction contributed to the provision of water in the Fontainebleau-Barbeau temperate oak forest over two years, including the 2018 record drought. Deep water provision was key to sustain canopy tran...
Preprint
Full-text available
Aim: Initiation of autumnal leaf senescence is critical for plant overwintering and ecosystem dynamics. Previous studies focused solely on the advanced stages of autumnal leaf senescence and claimed that climatic warming delays senescence, despite the fundamental differences among the stages of senescence. However, the timing of onset of leaf color...
Article
Full-text available
Heatwaves exert disproportionately strong and sometimes irreversible impacts on forest ecosystems. These impacts remain poorly understood at the tree and species level and across large spatial scales. Here, we investigate the effects of the record-breaking 2018 European heatwave on tree growth and tree water status using a collection of high-tempor...
Article
Full-text available
Annual time-series of the two satellites C-band SAR (Synthetic Aperture Radar) Sentinel-1A and 1B data over five years were used to characterize the phenological cycle of a temperate deciduous forest. Six phenological metrics of the start (SOS), middle (MOS) and end (EOS) of budburst and leaf expansion stage in spring, and the start (SOF), middle (...
Article
Climate change affects various aspects of ecosystem functioning, especially photosynthesis, respiration and carbon storage. We need accurate modelling approaches (impact models) to simulate forest functioning and vitality in a warmer world so that forest models can estimate multiple changes in ecosystem service provisions (e.g., productivity and ca...
Book
Cet ouvrage, aux nombreuses illustrations, donne une vision transversale des changements environnementaux d'échelle mondiale que connaît notre planète aux limites finies. Son objectif est, en particulier, de faire comprendre les mécanismes et conséquences du réchauffement climatique et de l'érosion de la biodiversité ainsi que leurs relations avec...
Article
Potassium (K) is essential for a wide range of physiological functions in plants, and a limiting element for wood productivity in numerous forest ecosystems. However, the contribution of each of the K-sensitive physiological processes to the limitation of wood productivity is poorly known. In trees, K deficiency acts both on the source and the sink...
Article
Full-text available
Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological, energy, and carbon budgets at the land–atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observatio...
Article
Full-text available
Tree phenology is a major driver of forest–atmosphere mass and energy exchanges. Yet, tree phenology has rarely been monitored in a consistent way throughout the life of a flux-tower site. Here, we used seasonal time series of ground-based NDVI (Normalized Difference Vegetation Index), RGB camera GCC (greenness chromatic coordinate), broadband NDVI...
Article
Full-text available
• Key message The increase in climate variability is likely to generate an increased occurrence of both frost-induced and drought-induced damages on perennial plants. We examined how these stress factors can potentially interact and would subsequently affect the vulnerability to each other. Furthermore, we discussed how this vulnerability could be...
Article
Climate change is impacting temperate tree species phenology, especially the timing of budburst, which is mainly driven by air temperature. However, interactions with biotic or other environmental factors also influence the timing of budburst and are usually overlooked. We studied the influence of forest stand composition on the budburst date of ad...
Article
1. Reliable phenological observations are needed to quantify the impact of climate change on tree phenology. Ground observations remain a prime source of phenological data, but their accuracy and precision have not been systematically quantified. The high subjectivity of ground phenological observations affects their accuracy, and the high within‐p...
Preprint
Full-text available
Climate change affects various aspects of the functioning of ecosystem, especially photosynthesis, respiration and carbon storage. We need accurate modelling approaches ( impact models ) to simulate the functioning, vitality and provision of ecosystem services of forests in a warmer world. These impact models require climate data as forcings, which...
Article
Full-text available
p>The following authors were omitted from the original version of this Data Descriptor: Markus Reichstein and Nicolas Vuichard. Both contributed to the code development and N. Vuichard contributed to the processing of the ERA-Interim data downscaling. Furthermore, the contribution of the co-author Frank Tiedemann was re-evaluated relative to the co...
Article
Research on wood phenology has mainly focused on reactivation of the cambium in spring. In this study we investigated if summer drought advances cessation of wood formation and if it has any influence on wood structure in late successional forest trees of the temperate zone. The end of xylogenesis was monitored between August and November in stands...
Article
Research on wood phenology has mainly focused on reactivation of the cambium in spring. In this study we investigated if summer drought advances cessation of wood formation and if it has any influence on wood structure in late successional forest trees of the temperate zone. The end of xylogenesis was monitored between August and November in stands...
Preprint
Full-text available
Annual time-series of the two satellites C-band SAR (Synthetic Aperture Radar) Sentinel-1 A and B data over five years were used to characterize the phenological cycle of a temperate deciduous forest. Six phenological markers of the start, middle and end of budburst and leaf expansion stage in spring and the leaf senescence in autumn were extracted...
Article
Full-text available
Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological,energy and carbon budgets at the land-atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observations...
Article
We apply and compare three widely applicable methods for estimating ecosystem transpiration (T) from eddy covariance (EC) data across 251 FLUXNET sites globally. All three methods are based on the coupled water and carbon relationship, but they differ in assumptions and parameterizations. Intercomparison of the three daily T estimates shows high co...
Article
We apply and compare three widely applicable methods for estimating ecosystem transpiration (T) from eddy covariance (EC) data across 251 FLUXNET sites globally. All three methods are based on the coupled water and carbon relationship, but they differ in assumptions and parameterizations. Intercomparison of the three daily T estimates shows high co...
Preprint
Full-text available
Tree phenology is a major driver of forest-atmosphere mass and energy exchanges. Yet tree phenology has historically not been recorded at flux measurement sites. Here, we used seasonal time-series of ground-based NDVI (Normalized Difference Vegetation Index), RGB camera GCC (Greenness Chromatic Coordinate), broad-band NDVI, LAI (Leaf Area Index), f...
Article
Full-text available
The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their...
Article
Full-text available
The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their...
Article
Full-text available
The impact of atmospheric reactive nitrogen (Nr) deposition on carbon (C) sequestration in soils and biomass of unfertilized, natural, semi-natural and forest ecosystems has been much debated. Many previous results of this dC∕dN response were based on changes in carbon stocks from periodical soil and ecosystem inventories, associated with estimates...
Article
Phenological cameras have been used over a decade for identifying plant phenological markers (budburst, leaf senescence) and more generally the greenness dynamics of forest canopies. The analysis is usually carried out over the full camera field of view, with no particular analysis of the variability of phenological markers among trees. Here we sho...
Article
Full-text available
Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research sp...
Article
Full-text available
We assembled homogenized long-term time series, up to 19 years, of measurements of net ecosystem exchange of CO2 (NEE) and its partitioning between gross primary production (GPP) and respiration (Reco) for five different ecosystems representing the main plant functional types (PFTs) in France. Part of these data was analyzed to determine the influe...
Article
Full-text available
Dans cette étude, nous avons analysé les déterminants environnementaux de la variabilité spatiale et temporelle de la fructification des trois espèces feuillues européennes majeures : Quercus robur, Quercus petraea et Fagus sylvatica. Nous avons étudié les relations entre la production de fruits, l’émission de pollen, les ressources carbonées et hy...
Preprint
Full-text available
Phenological cameras have been used over a decade for identifying plant phenological markers (budburst, leaf senescence) and more generally the greenness dynamics of forest canopies. The analysis is usually carried out over the full camera field of view, with no particular analysis of the variability of phenological markers among trees. Here we sho...
Article
Leaf senescence (LS) affects tree fitness, species distribution and ecosystem structure and functioning. The drivers of LS and the processes underlying it have been studied, but the studies have mainly focused on environmental cues and have mainly been based on statistical analyses using in situ data sets. Experimental investigation and field verif...
Article
Leaf phenology is a major driver of ecosystem functioning in temperate forests, and a robust indicator of climate change. Both the inter-annual and inter-population variability of leaf phenology have received much attention in the literature; in contrast, the within-population variability of leaf phenology has been far less studied. Beyond its impa...
Article
Full-text available
The mechanisms of plant trait adaptation and acclimation are still poorly understood and, consequently, lack a consistent representation in terrestrial biosphere models (TBMs). Despite the increasing availability of geo‐referenced trait observations, current databases are still insufficient to cover all vegetation types and environmental conditions...
Article
The mechanisms of plant trait adaptation and acclimation are still poorly understood and, consequently, lack a consistent representation in terrestrial biosphere models (TBMs). Despite the increasing availability of geo‐referenced trait observations, current databases are still insufficient to cover all vegetation types and environmental conditions...
Article
Current process-based models of autumn phenophases are generally based on autumn temperature and/or photoperiod cues. The dependence of autumn phenology on environmental conditions occurring throughout the leafy season has been overlooked. In this study, we incorporated the effect of leafy season temperature and precipitation in process-based model...
Article
The phenology of wood formation is a critical process to consider for predicting how trees from the temperate and boreal zones may react to climate change. Compared to leaf phenology, however, the determinism of wood phenology is still poorly known. Here, we compared for the first time three alternative ecophysiological model classes (threshold mod...
Article
Full-text available
There is an urgent need for standardized monitoring of existing soil organic carbon stocks in order to accurately quantify potential negative or positive feedbacks with climate change on carbon fluxes. Given the uncertainty of flux measurements at the ecosystem scale, obtaining precise estimates of changes in soil organic carbon stocks is essential...
Article
Full-text available
Plant transpiration (T), biologically controlled movement of water from soil to atmosphere, currently lacks sufficient estimates in space and time to characterize global ecohydrology. Here we describe the Transpiration Estimation Algorithm (TEA), which uses both the signals of gross primary productivity and evapotranspiration (ET) to estimate tempo...
Article
Full-text available
We aimed at identifying which drivers control the spatio-temporal variability of fruit production in three major European temperate deciduous tree species: Quercus robur, Quercus petraea and Fagus sylvatica. We analysed the relations of fruit production with airborne pollen, carbon and water resources and meteorological data in 48 French forests ov...
Article
Climate warming is substantially shifting the leaf phenological events of plants, and thereby impacting on their individual fitness and also on the structure and functioning of ecosystems. Previous studies have largely focused on the climate impact on spring phenology, and to date the processes underlying leaf senescence and their associated enviro...
Article
Mountain regions are particularly susceptible and influenced by the effects of climate change. In the Alps, temperature increased two times faster than in the Northern Hemisphere during the 20th century. As an immediate response in certain tree species, spring phenological phases, such as budburst and flowering, have tended to occur earlier. Howeve...
Article
Full-text available
Autumn phenology remains a relatively neglected aspect in climate change research, which hinders an accurate assessment of the global carbon cycle and its sensitivity to climate change. Leaf coloration, a key indicator of the growing season end, is thought to be triggered mainly by high or low temperature and drought. However, how the control of le...
Article
The timing of leaf phenophases greatly influences the functioning of trees. Phenological traits are thus considered major components of tree fitness, and are expected to be strongly selected under environmental or biotic pressures. To date, most phenological studies have been conducted at the population scale, with comparatively very few works at t...
Article
We aimed to evaluate the importance of modulations of within-tree carbon (C) allocation by water and low-temperature stress for the prediction of annual forest growth with a pro- cess-based model. A new C allocation scheme was implemented in the CASTANEA model that accounts for lagged and direct environmental controls of C allocation. Different ap...
Article
Although the analysis of flux data has increased our understanding of the interannual variability of carbon inputs into forest ecosystems, we still know little about the determinants of wood growth. Here, we aimed to identify which drivers control the interannual variability of wood growth in a mesic temperate deciduous forest. We analysed a 9-yr...