Nicolas Delpierre

Nicolas Delpierre
  • PhD in tree ecophysiology
  • Professor at University of Paris-Saclay

About

137
Publications
69,603
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
8,721
Citations
Introduction
Current institution
University of Paris-Saclay
Current position
  • Professor
Additional affiliations
October 2020 - present
Institut Universitaire de France
Position
  • delegated professor

Publications

Publications (137)
Preprint
Late spring frosts (LSF) pose ecological and economic risks, yet their changing frequency and extent under climate warming remain unclear. Using 1220 observations from 304 French oak populations (1997–2021), we developed and validated a model to simulate LSF damage. Our results reveal a long-term decline in LSF frequency (-0.22% yr⁻¹) and extent (-...
Preprint
Full-text available
Global warming increases ecosystem respiration (ER), creating a positive carbon-climate feedback. Thermal acclimation, the direct responses of biological communities to reduce the effects of temperature changes on respiration rates, is a critical mechanism that compensates for warming-induced ER increases and dampens this positive feedback. However...
Article
Full-text available
Pollen limitation has a considerable influence on forest masting, the highly variable and synchronised seed production, on which forest regeneration and ecosystem dynamics largely rely. Depending on the various mechanisms possibly involved in pollen limitation, the consequences of climate change on masting could be very different. These mechanisms...
Article
In France, the potential of pubescent oak production up to 2100 is assessed using two mechanistic models: CASTANEA and ForCEEPS. The projections all show its decline within the warmer margins of its range and its potential continued presence in the northern half of France and in mountainous areas. The volumes of wood harvested using the most dynami...
Article
Full-text available
Purpose of Review To synthesize new information regarding the environmental sensitivity and impact of climate change on leaf-, wood-, phloem- and root phenology of deciduous forests of the temperate (and boreal) zone, comprising overstory and understory, and both woody and herbaceous species. Recent Findings The environmental sensitivity and impac...
Article
Full-text available
The fundamental trade‐off between current and future reproduction has long been considered to result in a tendency for species that can grow large to begin reproduction at a larger size. Due to the prolonged time required to reach maturity, estimates of tree maturation size remain very rare and we lack a global view on the generality and the shape...
Article
Full-text available
Aim: To quantify the intra-community variability of leaf-out (ICVLo) among dominant trees in temperate deciduous forests, assess its links with specific and phylogenetic diversity, identify its environmental drivers and deduce its ecological consequences with regard to radiation received and exposure to late frost. Location: Eastern North America...
Article
Full-text available
Vegetation phenology plays a key role in controlling the seasonality of ecosystem processes that modulate carbon, water and energy fluxes between the biosphere and atmosphere. Accurate modelling of vegetation phenology in the interplay of Earth's surface and the atmosphere is thus crucial to understand how the coupled system will respond to and sha...
Article
The onset of autumnal leaf senescence (TLSO) plays a crucial role in understanding and modeling how plants prepare for winter dormancy, but it has remained under-explored. Previous research, based on limited in situ observations, have proposed that the year-to-year invariant photoperiod is the primary trigger of TLSO, indicating potential insensiti...
Chapter
Full-text available
Forest Canopy structure plays a key role in tree growth and water and carbon functioning. In this study, three Mediterranean forest ecosystems of Quercus suber, vertically stratified are stud-ied in order to determine the contribution of each strata in the whole-ecosystem LAI and to assess their role in the ecosystem water balance. The impact of th...
Preprint
Full-text available
Vegetation phenology plays a key role in controlling the seasonality of ecosystem processes that modulate carbon, water and energy fluxes between biosphere and atmosphere. Accurate modelling of vegetation phenology in the interplay of Earth’s surface and the atmosphere is thus crucial to understand how the coupled system will respond to and shape c...
Article
Une forêt échange de l’eau avec son environnement. Elle reçoit un apport d’eau liquide sous forme de précipitations et d’éventuelles remontées de nappes souterraines. Elle émet de la vapeur d’eau dans l’atmosphère par évaporation, et peut éventuellement perdre de l’eau par ruissellement (sur sols en pente) ou drainage profond. On appelle « bilan hy...
Article
Full-text available
Spring phenology is a key indicator of temperate and boreal ecosystems' response to climate change. To date, most phenological studies have analyzed the mean date of budburst in tree populations while overlooking the large variability of budburst among individual trees. The consequences of neglecting the within-population variability (WPV) of budbu...
Preprint
Full-text available
Aim. To quantify the intra-community variability of leaf-out (ICVLo) among dominant trees in temperate deciduous forests, assess its links with specific and phylogenetic diversity, identify its environmental drivers, and deduce its ecological consequences with regard to radiation received and exposure to late frost. Location. Eastern North Americ...
Article
Research on autumn phenology is very important for understanding and simulating the future growth of temperate deciduous forests. This is especially needed at the southern edge of the temperate zone, where climate change impacts are particularly intense. We studied foliar senescence timing for mature stands of Fagus sylvatica L., Populus tremula L....
Article
Full-text available
Potassium (K) availability constrains forest productivity. Brazilian eucalypt plantations are a good example of the K limitation of wood production. Here, we built upon a previously described model (CASTANEA-MAESPA-K) and used it to understand whether the simulated decline in C source under K deficiency was sufficient to explain the K limitation of...
Article
Full-text available
The extent of the potassium (K) limitation of forest productivity is probably more widespread than previously thought, and K limitation could influence the response of forests to future global changes. To understand the effects of K limitation on forest primary production, we have developed the first ecophysiological model simulating the K cycle an...
Article
Full-text available
Studying the forest subsurface is a challenge because of its heterogeneous nature and difficult access. Traditional approaches used by ecologists to characterize the subsurface have a low spatial representativity. This review article illustrates how geophysical techniques can and have been used to get new insights into forest ecology. Near-surface...
Preprint
Full-text available
Spring phenology is a key indicator of temperate and boreal ecosystems’ response to climate change. To date, most phenological studies have analyzed the mean date of budburst in tree populations while overlooking the large variability of budburst among individual trees. The consequences of neglecting the within-population variability (WPV) of budbu...
Article
Full-text available
Global warming has generally advanced the spring phenology of extratropical trees. In several cases, however, the advancing has levelled off, indicating a declining temperature sensitivity of phenological timing. The potential reasons for the decline have been actively debated, but no direct experimental evidence has been produced to support any of...
Article
Full-text available
The benefits of masting (volatile, quasi-synchronous seed production at lagged intervals) include satiation of seed predators, but these benefits come with a cost to mutualist pollen and seed dispersers. If the evolution of masting represents a balance between these benefits and costs, we expect mast avoidance in species that are heavily reliant on...
Article
Full-text available
Aim Our understanding of the mechanisms that maintain forest diversity under changing climate can benefit from knowledge about traits that are closely linked to fitness. We tested whether the link between traits and seed number and seed size is consistent with two hypotheses, termed the leaf economics spectrum and the plant size syndrome, or whethe...
Preprint
Full-text available
The extent of the potassium (K) limitation of forest productivity is probably more widespread than previously thought, and K-limitation could influence the response of forests to future global changes. To understand the effects of K-limitation on forest primary production, we have developed the first ecophysiological model simulating the K cycle an...
Preprint
Full-text available
Potassium availability constrains forest productivity. Brazilian eucalypt plantations are a good example of the K-limitation of wood production. Here, we built upon a previously described model (CASTANEA-MAESPA-K) and used it to understand whether the simulated decline in C-source under K deficiency was sufficient to explain the K-limitation of woo...
Article
Full-text available
Aim Initiation of autumnal leaf senescence is crucial for plant overwintering and ecosystem dynamics. Previous studies have focused on the advanced stages of autumnal leaf senescence and reported that climatic warming delayed senescence, despite the fundamental differences among the stages of senescence. However, the timing of onset of leaf colorat...
Article
Full-text available
We quantified the distribution of nitrogen (N), dry-matter (biomass) and of soil-applied 15 N in tree and soil compartments in five naturally-growing 20-year-old oak trees. After applying 15 N solution to soil at the base of the trees in spring, all the trees were felled in the fall, their root system excavated, biomass, nitrogen and 15 N content m...
Article
The ability of forests to withstand, and recover from, acute drought stress is a critical uncertainty regarding the impacts of climate change on the terrestrial carbon (C) cycle, but it is unclear how drought responses scale from individual trees to whole forests. Here, we assembled a dataset of tree-ring chronologies co-located within the footprin...
Article
Uncertainties surrounding tree carbon allocation to growth are a major limitation to projections of forest carbon sequestration and response to climate change. The prevalence and extent to which carbon assimilation (source) or cambial activity (sink) mediate wood production are fundamentally important and remain elusive. We quantified source-sink r...
Article
Full-text available
The relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundat...
Article
Climate change is imposing drier atmospheric and edaphic conditions on temperate forests. Here, we investigated how deep soil (down to 300 cm) water extraction contributed to the provision of water in the Fontainebleau-Barbeau temperate oak forest over two years, including the 2018 record drought. Deep water provision was key to sustain canopy tran...
Article
Full-text available
Lack of tree fecundity data across climatic gradients precludes the analysis of how seed supply contributes to global variation in forest regeneration and biotic interactions responsible for biodiversity. A global synthesis of raw seedproduction data shows a 250‐fold increase in seed abundance from cold‐dry to warm‐wet climates, driven primarily by...
Article
Process-based phenological models are currently used for assessing the effects of climatic warming on the timing of spring phenological events, such as leafout and flowering, in trees. However, the biological realism of the models may be undermined by the practices of often formulating the models solely on the basis of observational records of the...
Preprint
Full-text available
Climate change is imposing drier atmospheric and edaphic conditions on temperate forests. Here, we investigated how deep soil (down to 300 cm) water extraction contributed to the provision of water in the Fontainebleau-Barbeau temperate oak forest over two years, including the 2018 record drought. Deep water provision was key to sustain canopy tran...
Preprint
Full-text available
Aim: Initiation of autumnal leaf senescence is critical for plant overwintering and ecosystem dynamics. Previous studies focused solely on the advanced stages of autumnal leaf senescence and claimed that climatic warming delays senescence, despite the fundamental differences among the stages of senescence. However, the timing of onset of leaf color...
Article
Full-text available
Heatwaves exert disproportionately strong and sometimes irreversible impacts on forest ecosystems. These impacts remain poorly understood at the tree and species level and across large spatial scales. Here, we investigate the effects of the record-breaking 2018 European heatwave on tree growth and tree water status using a collection of high-tempor...
Article
Full-text available
Annual time-series of the two satellites C-band SAR (Synthetic Aperture Radar) Sentinel-1A and 1B data over five years were used to characterize the phenological cycle of a temperate deciduous forest. Six phenological metrics of the start (SOS), middle (MOS) and end (EOS) of budburst and leaf expansion stage in spring, and the start (SOF), middle (...
Article
Climate change affects various aspects of ecosystem functioning, especially photosynthesis, respiration and carbon storage. We need accurate modelling approaches (impact models) to simulate forest functioning and vitality in a warmer world so that forest models can estimate multiple changes in ecosystem service provisions (e.g., productivity and ca...
Book
Cet ouvrage, aux nombreuses illustrations, donne une vision transversale des changements environnementaux d'échelle mondiale que connaît notre planète aux limites finies. Son objectif est, en particulier, de faire comprendre les mécanismes et conséquences du réchauffement climatique et de l'érosion de la biodiversité ainsi que leurs relations avec...
Article
Potassium (K) is essential for a wide range of physiological functions in plants, and a limiting element for wood productivity in numerous forest ecosystems. However, the contribution of each of the K-sensitive physiological processes to the limitation of wood productivity is poorly known. In trees, K deficiency acts both on the source and the sink...
Article
Full-text available
Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological, energy, and carbon budgets at the land–atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observatio...
Article
Full-text available
Tree phenology is a major driver of forest–atmosphere mass and energy exchanges. Yet, tree phenology has rarely been monitored in a consistent way throughout the life of a flux-tower site. Here, we used seasonal time series of ground-based NDVI (Normalized Difference Vegetation Index), RGB camera GCC (greenness chromatic coordinate), broadband NDVI...
Article
Full-text available
• Key message The increase in climate variability is likely to generate an increased occurrence of both frost-induced and drought-induced damages on perennial plants. We examined how these stress factors can potentially interact and would subsequently affect the vulnerability to each other. Furthermore, we discussed how this vulnerability could be...
Article
Full-text available
Reliable phenological observations are needed to quantify the impact of climate change on tree phenology. Ground observations remain a prime source of phenological data, but their accuracy and precision have not been systematically quantified. The high subjectivity of ground phenological observations affects their accuracy, and the high within‐popu...
Article
Climate change is impacting temperate tree species phenology, especially the timing of budburst, which is mainly driven by air temperature. However, interactions with biotic or other environmental factors also influence the timing of budburst and are usually overlooked. We studied the influence of forest stand composition on the budburst date of ad...
Preprint
Full-text available
Climate change affects various aspects of the functioning of ecosystem, especially photosynthesis, respiration and carbon storage. We need accurate modelling approaches ( impact models ) to simulate the functioning, vitality and provision of ecosystem services of forests in a warmer world. These impact models require climate data as forcings, which...
Article
Full-text available
p>The following authors were omitted from the original version of this Data Descriptor: Markus Reichstein and Nicolas Vuichard. Both contributed to the code development and N. Vuichard contributed to the processing of the ERA-Interim data downscaling. Furthermore, the contribution of the co-author Frank Tiedemann was re-evaluated relative to the co...
Article
Research on wood phenology has mainly focused on reactivation of the cambium in spring. In this study we investigated if summer drought advances cessation of wood formation and if it has any influence on wood structure in late successional forest trees of the temperate zone. The end of xylogenesis was monitored between August and November in stands...
Article
Full-text available
Research on wood phenology has mainly focused on reactivation of the cambium in spring. In this study we investigated if summer drought advances cessation of wood formation and if it has any influence on wood structure in late successional forest trees of the temperate zone. The end of xylogenesis was monitored between August and November in stands...
Preprint
Full-text available
Annual time-series of the two satellites C-band SAR (Synthetic Aperture Radar) Sentinel-1 A and B data over five years were used to characterize the phenological cycle of a temperate deciduous forest. Six phenological markers of the start, middle and end of budburst and leaf expansion stage in spring and the leaf senescence in autumn were extracted...
Article
Full-text available
Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological,energy and carbon budgets at the land-atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observations...
Article
We apply and compare three widely applicable methods for estimating ecosystem transpiration (T) from eddy covariance (EC) data across 251 FLUXNET sites globally. All three methods are based on the coupled water and carbon relationship, but they differ in assumptions and parameterizations. Intercomparison of the three daily T estimates shows high co...
Article
We apply and compare three widely applicable methods for estimating ecosystem transpiration (T) from eddy covariance (EC) data across 251 FLUXNET sites globally. All three methods are based on the coupled water and carbon relationship, but they differ in assumptions and parameterizations. Intercomparison of the three daily T estimates shows high co...
Preprint
Full-text available
Tree phenology is a major driver of forest-atmosphere mass and energy exchanges. Yet tree phenology has historically not been recorded at flux measurement sites. Here, we used seasonal time-series of ground-based NDVI (Normalized Difference Vegetation Index), RGB camera GCC (Greenness Chromatic Coordinate), broad-band NDVI, LAI (Leaf Area Index), f...
Article
Full-text available
The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their...
Article
Full-text available
The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their...
Article
Full-text available
The impact of atmospheric reactive nitrogen (Nr) deposition on carbon (C) sequestration in soils and biomass of unfertilized, natural, semi-natural and forest ecosystems has been much debated. Many previous results of this dC/dN response were based on changes in carbon stocks from periodical soil and ecosystem inventories, associated with estimates...
Article
Phenological cameras have been used over a decade for identifying plant phenological markers (budburst, leaf senescence) and more generally the greenness dynamics of forest canopies. The analysis is usually carried out over the full camera field of view, with no particular analysis of the variability of phenological markers among trees. Here we sho...
Article
Full-text available
Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research sp...
Article
Full-text available
We assembled homogenized long-term time series, up to 19 years, of measurements of net ecosystem exchange of CO2 (NEE) and its partitioning between gross primary production (GPP) and respiration (Reco) for five different ecosystems representing the main plant functional types (PFTs) in France. Part of these data was analyzed to determine the influe...
Article
Full-text available
Dans cette étude, nous avons analysé les déterminants environnementaux de la variabilité spatiale et temporelle de la fructification des trois espèces feuillues européennes majeures : Quercus robur, Quercus petraea et Fagus sylvatica. Nous avons étudié les relations entre la production de fruits, l’émission de pollen, les ressources carbonées et hy...
Preprint
Full-text available
Phenological cameras have been used over a decade for identifying plant phenological markers (budburst, leaf senescence) and more generally the greenness dynamics of forest canopies. The analysis is usually carried out over the full camera field of view, with no particular analysis of the variability of phenological markers among trees. Here we sho...
Article
Leaf senescence (LS) affects tree fitness, species distribution and ecosystem structure and functioning. The drivers of LS and the processes underlying it have been studied, but the studies have mainly focused on environmental cues and have mainly been based on statistical analyses using in situ data sets. Experimental investigation and field verif...
Article
Leaf phenology is a major driver of ecosystem functioning in temperate forests, and a robust indicator of climate change. Both the inter-annual and inter-population variability of leaf phenology have received much attention in the literature; in contrast, the within-population variability of leaf phenology has been far less studied. Beyond its impa...
Article
Full-text available
Aim The mechanisms of plant trait adaptation and acclimation are still poorly understood and, consequently, lack a consistent representation in terrestrial biosphere models (TBMs). Despite the increasing availability of geo‐referenced trait observations, current databases are still insufficient to cover all vegetation types and environmental condit...
Article
The mechanisms of plant trait adaptation and acclimation are still poorly understood and, consequently, lack a consistent representation in terrestrial biosphere models (TBMs). Despite the increasing availability of geo‐referenced trait observations, current databases are still insufficient to cover all vegetation types and environmental conditions...
Article
Current process-based models of autumn phenophases are generally based on autumn temperature and/or photoperiod cues. The dependence of autumn phenology on environmental conditions occurring throughout the leafy season has been overlooked. In this study, we incorporated the effect of leafy season temperature and precipitation in process-based model...
Article
The phenology of wood formation is a critical process to consider for predicting how trees from the temperate and boreal zones may react to climate change. Compared to leaf phenology, however, the determinism of wood phenology is still poorly known. Here, we compared for the first time three alternative ecophysiological model classes (threshold mod...
Article
Full-text available
There is an urgent need for standardized monitoring of existing soil organic carbon stocks in order to accurately quantify potential negative or positive feedbacks with climate change on carbon fluxes. Given the uncertainty of flux measurements at the ecosystem scale, obtaining precise estimates of changes in soil organic carbon stocks is essential...
Article
Full-text available
Plant transpiration (T), biologically controlled movement of water from soil to atmosphere, currently lacks sufficient estimates in space and time to characterize global ecohydrology. Here we describe the Transpiration Estimation Algorithm (TEA), which uses both the signals of gross primary productivity and evapotranspiration (ET) to estimate tempo...
Article
Full-text available
We aimed at identifying which drivers control the spatio-temporal variability of fruit production in three major European temperate deciduous tree species: Quercus robur, Quercus petraea and Fagus sylvatica. We analysed the relations of fruit production with airborne pollen, carbon and water resources and meteorological data in 48 French forests ov...
Article
Climate warming is substantially shifting the leaf phenological events of plants, and thereby impacting on their individual fitness and also on the structure and functioning of ecosystems. Previous studies have largely focused on the climate impact on spring phenology, and to date the processes underlying leaf senescence and their associated enviro...
Article
Mountain regions are particularly susceptible and influenced by the effects of climate change. In the Alps, temperature increased two times faster than in the Northern Hemisphere during the 20th century. As an immediate response in certain tree species, spring phenological phases, such as budburst and flowering, have tended to occur earlier. Howeve...
Article
Full-text available
Autumn phenology remains a relatively neglected aspect in climate change research, which hinders an accurate assessment of the global carbon cycle and its sensitivity to climate change. Leaf coloration, a key indicator of the growing season end, is thought to be triggered mainly by high or low temperature and drought. However, how the control of le...
Article
The timing of leaf phenophases greatly influences the functioning of trees. Phenological traits are thus considered major components of tree fitness, and are expected to be strongly selected under environmental or biotic pressures. To date, most phenological studies have been conducted at the population scale, with comparatively very few works at t...
Article
We aimed to evaluate the importance of modulations of within-tree carbon (C) allocation by water and low-temperature stress for the prediction of annual forest growth with a pro- cess-based model. A new C allocation scheme was implemented in the CASTANEA model that accounts for lagged and direct environmental controls of C allocation. Different ap...
Article
Although the analysis of flux data has increased our understanding of the interannual variability of carbon inputs into forest ecosystems, we still know little about the determinants of wood growth. Here, we aimed to identify which drivers control the interannual variability of wood growth in a mesic temperate deciduous forest. We analysed a 9-yr...
Article
Full-text available
The extent to which wood growth is limited by carbon (C) supply (i.e. source control) or by cambial activity (i.e. sink control) will strongly determine the responses of trees to global changes. Nevertheless, the physiological processes that are responsible for limiting forest growth are still a matter of debate. The aim of this study was to evalua...
Article
Full-text available
Key message. We demonstrate that, beyond leaf phenology, the phenological cycles of wood and fine roots present clear responses to environmental drivers in temperate and boreal trees. These drivers should be included in terrestrial ecosystem models. Context. In temperate and boreal trees, a dormancy period prevents organ development during adverse...
Article
Full-text available
The extent to which forest growth is limited by carbon (C) supply (source control) or by cambial activity (sink control) will condition the response of trees to global changes. However, the physiological processes responsible for the limitation of forest growth are still under debate. The aim of this study is to evaluate the key drivers of the annu...
Article
Understanding the environmental and biotic drivers of respiration at the ecosystem level is a prerequisite to further improve scenarios of the global carbon cycle. In this study we investigated the relevance of physiological phenology, defined as seasonal changes in plant physiological properties, for explaining the temporal dynamics of ecosystem r...

Questions

Question (1)
Question
My team has been collecting leaf litter annually over the past 10 years for quantification of the leaf primary productivity of our study site. We put aside dried samples of the litter every year, stored them in a cool and dry place (in closed plastic tube), but we are just about to analyze their elemental composition.
I would like to know whether there is a possibility that the elemental content modified over time due to decomposition of the litter. I would say "mostly no" because the biological activity must have been very low in these dry samples, but I cannot find papers documenting this.
Could anyone help on this aspect? Thanks in advance.

Network

Cited By