
Nicolas Barbier- PhD
- Institute of Research for Development
Nicolas Barbier
- PhD
- Institute of Research for Development
About
159
Publications
83,789
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
6,742
Citations
Introduction
Current institution
Publications
Publications (159)
Trees can differ enormously in their crown architectural traits, such as the scaling relationships between tree height, crown width and stem diameter. Yet despite the importance of crown architecture in shaping the structure and function of terrestrial ecosystems, we lack a complete picture of what drives this incredible diversity in crown shapes....
Accurate assessment of leaf functional traits is crucial for a diverse range of applications from crop phenotyping to parameterizing global climate models. Leaf reflectance spectroscopy offers a promising avenue to advance ecological and agricultural research by complementing traditional, time-consuming gas exchange measurements. However, the devel...
Background
Animals with key ecological roles, such as seed-dispersing fruit bats, rely to varying degrees on habitat structure to indicate the locations of resources and risks.
Methods
To understand how variation in vegetation structure influences fruit bat habitat selection, we related movement steps of hammer-headed bats (Hypsignathus monstrosus...
African tropical forests play a crucial role in global carbon dynamics, biodiversity conservation, and climate regulation, yet monitoring their structure, diversity, carbon stocks and changes remains challenging. Remote sensing techniques, including multi-spectral data, lidar-based canopy height and vertical structure detection, and radar interfero...
Lianas are important components of tropical forest diversity and dynamics, yet little is known about the drivers of their community structure and composition. Combining extensive field and LiDAR data, we investigated the influence of local topography, forest structure, and tree composition on liana community structure, and their floristic and funct...
Forest expansion into savanna is a pervasive phenomenon in West and Central Africa, warranting comparative studies under diverse environmental conditions. We collected vegetation data from the woody and grassy components within 73 plots of 0.16 ha distributed along a successional gradient from humid savanna to forest in Central Africa. We associate...
Three‐dimensional (3D) vegetation structure influences animal movements and, consequently, ecosystem functions. Animals disperse the seeds of 60%–90% of trees in tropical rainforests, which are among the most structurally complex ecosystems on Earth.
Here, we investigated how 3D rainforest structure influences the movements of large, frugivorous bi...
Tropical moist forests are not the homogeneous green carpet often illustrated in maps or considered by global models. They harbour a complex mixture of forest types organized at different spatial scales that can now be more accurately mapped thanks to remote sensing products and artificial intelligence. In this study, we built a large‐scale vegetat...
TROLL 4.0 is an individual-based forest dynamics model that jointly simulates the structure, diversity and functioning of tropical forests, including their water balance, carbon fluxes and leaf phenology, while accounting for intraspecific trait variation for a large number of species. In a companion paper, we describe how the model represents the...
Trees can differ enormously in their crown architectural traits, such as the scaling relationships that link their height and crown size to their stem diameter. Yet despite the importance of crown architecture in shaping the structure and function of woody ecosystems, we lack a complete picture of what drives this incredible diversity in crown shap...
The scaling of organismal metabolic rates with body size is one of the most prominent empirical patterns in biology. For over a century, the nature and causes of metabolic scaling have been the subject of much focus and debate. West, Brown, and Enquist (WBE) proposed a general model for the origin of metabolic scaling from branching vascular networ...
To understand how tropical rainforests will adapt to climate change and the extent to which their diversity imparts resilience, precise, taxonomically informed monitoring of individual trees is required. However, the density, diversity and complexity of tropical rainforests present considerable challenges to remote mapping and traditional field-bas...
Lianas are important components of tropical forest diversity and dynamics, yet little is known about the drivers of their community structure and composition. Combining extensive field and LiDAR data, we investigated the influence of local topography, forest structure and tree composition on liana community structure and composition in a moist fore...
accurate mapping and monitoring of tropical forests aboveground biomass (aGB) is crucial to design effective carbon emission reduction strategies and improving our understanding of Earth's carbon cycle. However, existing large-scale maps of tropical forest aGB generated through combinations of Earth Observation (EO) and forest inventory data show m...
Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we inve...
Widespread forest loss and fragmentation dramatically increases the proportion of forest areas located close to edges. Although detrimental, the precise extent and mechanisms by which edge proximity impacts remnant forests remain to be ascertained.
By combining unmanned aerial vehicle laser scanning (UAV‐LS) with field data from 46 plots distribute...
About a third of New Caledonia is covered with ultramafic soils (UM) which hosts a rich flora (endemism > 85%) threatened by mining activities. This combination makes the ultramafic vegetation a floristic hotspot within a biodiversity hotspot. UM soils are distributed from sea level to 1618 m elevation with about two-thirds forming a large continuo...
Leaf area is a key structural characteristic of forest canopies because of the role of leaves in controlling many biological and physical processes occurring at the biosphere-atmosphere transition. High pulse density Airborne Laser Scanning (ALS) holds promise to provide spatially resolved and accurate estimates of plant area density (PAD) in fores...
Unoccupied aerial vehicle laser scanning (UAV-LS) has been increasingly used for forest structure assessment in recent years due to the potential to directly estimate individual tree attributes and availability of commercial solutions. However, standardised procedures for campaign planning are still largely missing. This study investigated scanner...
Tree height and crown area are important predictors of aboveground biomass but difficult to measure on the ground. Numerous allometric models have been established to predict tree height from diameter (H–D) and crown area from diameter (CA–D). A major challenge is to select the most precise and accurate allometric model among existing ones, dependi...
Calibration and validation of aboveground biomass (AGB) (AGB) products retrieved from satellite-borne sensors require accurate AGB estimates across hectare scales (1 to 100 ha). Recent studies recommend making use of non-destructive terrestrial laser scanning (TLS) based techniques for individual tree AGB estimation that provide unbiased AGB predic...
An automatic method of landform mapping applicable to large continental areas is presented, based on 30-meter SRTM (Shuttle Radar Topography Mission) data and combining texture analysis using Fourier 2D periodograms (FOTO method) with a set of morphometric variables. This integrated strategy was applied to the whole Congo Basin and adjacent regions...
Earth observation satellite imagery is increasingly accessible, and has become a key component for vegetation mapping and monitoring. Sentinel-2 satellites acquire optical images with five days’ revisit frequency, which is an important feature to increase the probability of acquisition with reasonable cloud cover in tropical regions. Regular and re...
Data capturing multiple axes of tree size and shape, such as a tree's stem diameter, height and crown size, underpin a wide range of ecological research—from developing and testing theory on forest structure and dynamics, to estimating forest carbon stocks and their uncertainties, and integrating remote sensing imagery into forest monitoring progra...
Woody encroachment and forest progression are widespread in forest-savanna transitional areas in Central Africa. Quantifying these dynamics and understanding their drivers at relevant spatial scales has long been a challenge. Recent progress in open access imagery sources with improved spatial, spectral and temporal resolution combined with cloud c...
NASAs Global Ecosystem Dynamics Investigation (GEDI) is collecting space-borne full waveform lidar data with a primary science goal of producing accurate estimates of forest aboveground biomass density (AGBD). This paper presents the development of the models used to create GEDIs footprint-level (~25 m) AGBD (GEDI04_A) product, including a descript...
Lianas are abundant and diverse in tropical forests and impact forest dynamics. They occupy part of the canopy, forming a layer of leaves overtopping tree crowns. Yet, their interaction with trees has been mainly studied from the ground. With the emergence of drone-based sensing, very high-resolution data may be obtained on liana distribution above...
is collecting spaceborne full waveform lidar data with a primary science goal of producing accurate estimates of forest aboveground biomass density (AGBD). This paper presents the development of the models used to create GEDI's footprint-level (~25 m) AGBD (GEDI04_A) product, including a description of the datasets used and the procedure for final...
In 2015 and 2016, the AfriSAR campaign was carried out as a collaborative effort among international space and National Park agencies (ESA, NASA, ONERA, DLR, ANPN and AGEOS) in support of the upcoming ESA BIOMASS, NASA-ISRO Synthetic Aperture Radar (NISAR) and NASA Global Ecosystem Dynamics Initiative (GEDI) missions. The NASA contribution to the c...
The inaccessibility of African montane forests has hindered efforts to quantify the carbon stored by these ecosystems. A remarkable survey fills this knowledge gap, and highlights the need to preserve such forests. A tree inventory for some of Africa’s most inaccessible ecosystems. African montane forest with trees on a steep incline and low-lying...
Most remote sensing studies of urban areas focus on a single scale, using supervised methodologies and very few analyses focus on the “neighborhood” scale. The lack of multi-scale analysis, together with the scarcity of training and validation datasets in many countries lead us to propose a single fast unsupervised method for the characterization o...
Africa is forecasted to experience large and rapid climate change1 and population growth2 during the twenty-first century, which threatens the world’s second largest rainforest. Protecting and sustainably managing these African forests requires an increased understanding of their compositional heterogeneity, the environmental drivers of forest comp...
Background and aims
Terrestrial LiDAR scanning (TLS) data are of great interest in forest ecology and management because they provide detailed 3D information on tree structure. Automated pipelines are increasingly used to process TLS data and extract various tree- and plot-level metrics. With these developments comes the risk of unknown reliability...
Abstract Forest biomass estimation at large scale is challenging and generally entails large uncertainty in tropical regions. With their wall‐to‐wall coverage ability, passive remote sensing signals are frequently used to extrapolate field estimates of forest aboveground biomass (AGB). However, studies often use limited reference data and/or flawed...
the full text can be found at: https://lpvs.gsfc.nasa.gov/PDF/CEOS_WGCV_LPV_Biomass_Protocol_2021_V1.0.pdf
Aim
Tree crowns determine light interception, carbon and water exchange. Thus, understanding the factors causing tree crown allometry to vary at the tree and stand level matters greatly for the development of future vegetation modelling and for the calibration of remote sensing products. Nevertheless, we know little about large‐scale variation and...
Aim: Tree crowns determine light interception, carbon and water exchange. Thus, understanding the factors causing tree crown allometry to vary at the tree and stand level matters greatly for the development of future vegetation modelling and for the calibration of remote sensing products. Nevertheless, we know little about large‐scale variation and...
To fulfil their growth and reproductive functions, trees develop a three‐dimensional structure that is subject to both internal and external constraints. This is reflected by the unique architecture of each individual at a given time. Addressing the crown dimensions and topological structure of large tropical trees is challenging considering their...
Mapping aboveground forest biomass is central for assessing the global carbon balance. However, current large-scale maps show strong disparities, despite good validation statistics of their underlying models. Here, we attribute this contradiction to a flaw in the validation methods, which ignore spatial autocorrelation (SAC) in data, leading to ove...
Forest biomass is key in Earth carbon cycle and climate system, and thus under intense scrutiny in the context of international climate change mitigation initiatives (e.g. REDD+). In tropical forests, the spatial distribution of aboveground biomass (AGB) remains, however, highly uncertain. There is increasing recognition that progress is strongly l...
Aim
Examining tree species‐environment association can offer insight into the drivers of vegetation patterns and key information of practical relevance to forest management. Here, we aim to quantify the contribution of climate and soil gradients to variation in Central African tree species composition (abundance and occurrence).
Location
Tropical...
Precise accounting of carbon stocks and fluxes in tropical vegetation using remote sensing approaches remains a challenging exercise, as both signal saturation and ground sampling limitations contribute to inaccurate extrapolations. Airborne LiDAR Scanning (ALS) data can be used as an intermediate level to radically increase sampling and enhance mo...
Understanding the dynamics of dominant tree species in tropical forests is important both for biodiversity and carbon-related issues. We focus on the Congo Basin (East of Kisangani) to investigate the respective roles of topographic/soil gradients and endogenous dynamics in shaping local variations in dominance. We used a dataset of 30 1-ha plots,...
Wood density (WD) relates to important tree functions such as stem mechanics and resistance against pathogens. This functional trait can exhibit high intraindividual variability both radially and vertically. With the rise of LiDAR-based methodologies allowing nondestructive tree volume estimations, failing to account for WD variations related to tr...
Mapping tree species diversity is increasingly important in the face of environmental change and biodiversity conservation. We explore a potential way of mapping this diversity by relating forest structure to tree species diversity in Gabon. First, we test the relation between canopy height, as a proxy for niche volume, and tree species diversity....
Direct and semidirect estimations of leaf area (LA) and leaf area index (LAI) are scarce in dense tropical forests despite their importance in calibrating remote-sensing products, forest dynamics and biogeochemical models. We destructively sampled 61 trees belonging to 13 most abundant species in a semideciduous forest in southeastern Cameroon. For...
Several upcoming satellite missions have core science requirements to produce data for accurate forest aboveground biomass mapping. Largely because of these mission datasets, the number of available biomass products is expected to greatly increase over the coming decade. Despite the recognized importance of biomass mapping for a wide range of scien...
Forest biomass monitoring is at the core of the research agenda due to the critical importance of forest dynamics in the carbon cycle. However, forest biomass is never directly measured; thus, upscaling it from trees to stand or larger scales (e.g., countries, regions) relies on a series of statistical models that may propagate large errors. Here,...
The estimation and monitoring of the huge amount of carbon contained in tropical forests, and specifically in the above-ground biomass (AGB) of trees, is needed for the successful implementation of climate change mitigation strategies. Its accuracy depends on the availability of reliable allometric equations to convert forest inventory data into AG...
Aim Large tropical trees form the interface between ground and airborne observations, offering a unique opportunity to capture forest properties remotely and to investigate their variations on broad scales. However, despite rapid development of metrics to characterize the forest canopy from remotely sensed data, a gap remains between aerial and fie...
Aim: Large tropical trees form the interface between ground and airborne observations, offering a unique opportunity to capture forest properties remotely and to investigate their variations on broad scales. However, despite rapid development of metrics to characterize the forest canopy from remotely sensed data, a gap remains between aerial and fi...
With the improvement of remote sensing techniques for forest inventory application such as terrestrial LiDAR, tree volume can now be measured directly, without resorting to allometric equations. However, wood specific gravity (WSG) remains a crucial factor for converting these precise volume measurements into unbiased biomass estimates. In addition...
Tropical forests are a key component of the global carbon cycle. Yet, there are still high uncertainties in forest carbon stock and flux estimates, notably because of their spatial and temporal variability across the tropics. Several upcoming spaceborne missions have been designed to address this gap. High-quality ground data are essential for accu...
Aim: Large tropical trees form the interface between ground and airborne observations, offering a unique opportunity to capture forest properties remotely and to investigate their variations on broad scales. However, despite rapid development of metrics to characterize the forest canopy from remotely sensed data, a gap remains between aerial and fi...
Aim: Large tropical trees form the interface between ground and airborne observations, offering a unique opportunity to capture forest properties remotely and to investigate their variations on broad scales. However, despite rapid development of metrics to characterize the forest canopy from remotely sensed data, a gap remains between aerial and fi...
Availability of digital elevation models (DEM) of increased spatial resolution has triggered interest in texture-based methods for automated geomorphometry. This prospect is all the more appealing concerning tropical countries for which mapping of geomorphic entities has remained limited despite its relevance for natural resource assessment and lan...
Calibration of local, regional or global allometric equations to estimate biomass at the tree level constitutes a significant burden on projects aiming at reducing Carbon emissions from forest degradation and deforestation. The objective of this contribution is to assess the precision and accuracy of Terrestrial Laser Scanning ( TLS ) for estimatin...
Estimating AGB and calibrating allometric models for large tropical trees using TLS data
Very high spatial resolution (VHSR) optical satellite imagery has shown good potential to provide non-saturating proxies of tropical forest aboveground biomass (AGB) from the analysis of canopy texture, for instance through the Fourier Transform Textural Ordination method. Empirical case studies however showed that the relationship between Fourier...
Despite advances in Earth observation and modeling, estimating tropical biomass remains a challenge. Recent work suggests that integrating satellite measurements of canopy height within ecosystem models is a promising approach to infer biomass. We tested the feasibility of this approach to retrieve aboveground biomass (AGB) at three tropical forest...
Large scale assessment of aboveground biomass (AGB) in tropical forests is often limited by the saturation of remote sensing signals at high AGB values. Fourier Transform Textural Ordination (FOTO) performs well in quantifying canopy texture from very high-resolution (VHR) imagery, from which stand structure parameters can be retrieved with no satu...
Key message
Across five biogeographic areas, DBH-CA allometry was characterized by inter-site homogeneity and intra-site heterogeneity, whereas the reverse was observed for DBH-H allometry.
Abstract
Tree crowns play a central role in stand dynamics. Remotely sensed canopy images have been shown to allow inferring stand structure and biomass which s...
Remote sensing is revolutionizing the way we study forests, and recent technological advances mean we are now able - for the first time - to identify and measure the crown dimensions of individual trees from airborne imagery. Yet to make full use of these data for quantifying forest carbon stocks and dynamics, a new generation of allometric tools w...
Background. Analyzing floristic composition is important to understand species diversity and its response to varying environmental factors. As such, the focus of previous papers has been on selected species or local scales. We assessed the explanatory power of environmental factors on species distribution in the central African rainforest. We aimed...
Recent studies have questioned the applicability of satellite-derived vegetation indices (VIs) for evaluating phenological variation in tropical forests, due to potential artifacts caused by the bidirectional reflectance distribution function (BRDF). For nadir-normalized data, BRDF will be driven principally by intraannual variation in solar elevat...
French Guiana’s tropical evergreen forests constitute a significant portion of France’s overall forest cover. Nevertheless, in various global vegetation mapping initiatives – including the European Space Agency’s GlobCover project – French Guiana’s forests have been depicted as an extensive “green carpet.” Those global efforts have not differentiat...
LiDAR data has been successfully used to estimate forest parameters such as canopy heights and biomass. Major limitation of LiDAR systems (airborne and spaceborne) arises from their limited spatial coverage. In this study, we present a technique for canopy height mapping using airborne and spaceborne LiDAR data (from the Geoscience Laser Altimeter...
Accurately monitoring tropical forest carbon
stocks is a challenge that remains outstanding. Allometric
models that consider tree diameter, height and wood density
as predictors are currently used in most tropical forest carbon
studies. In particular, a pantropical biomass model has
been widely used for approximately a decade, and its most
recent v...
African forests are predicted to experience profound climatic changes in the next decades. In order to ensure that human societies can adapted to these changes, it is needed to have a better understanding of the forest
functioning. A forest type’s location map is a fundamental stage. This map was processed from 14 years remotely sensed MODIS time...
De l’arbre au satellite: comment cartographier la diversité des forêts tropicales d’Afrique Centrale ?
Accurately monitoring tropical forest carbon stocks is an outstanding challenge. Allometric models that consider tree diameter, height and wood density as predictors are currently used in most tropical forest carbon studies. In particular, a pantropical biomass model has been widely used for approximately a decade, and its most recent version will...
Remote sensing is a useful tool set for monitoring changes in forest ecosystems, particularly remote and otherwise inaccessible tracts of tropical forest. To revisit findings of earlier satellite-based studies of phenological variation in Amazonian forests, the current study focused on the variation of vegetation indices (Vis) of French Guiana. Spe...
While French Guiana forms a part of the biologically diverse Guiana Shield ecoregion, information on the distribution of forest types within the territory is limited, despite a number of global-scale remote sensing studies conducted over the past 2 decades. Those studies essentially depict French Guiana's mass of forests as one large " green carpet...
Large tropical trees and a few dominant species were recently identified as the main structuring elements of tropical forests. However, such result did not translate yet into quantitative approaches which are essential to understand, predict and monitor forest functions and composition over large, often poorly accessible territories. Here we show t...
Despite having access to over 40 years of remotely sensed satellite data, from multiple sources (e.g. Landsat, SPOT), and multiple types of sensors (e.g. optical, radar, thermal), tropical forests are still poorly understood in terms of their composition and functioning. This is particularly true for French Guiana, the sparsely populated and highly...
S pace observation is acknowledged as quintessential for providing reliable baseline assessment and monitoring strategies for vegetation at multiple scales over extensive territories with a low population and limited accessibility. Optical satellite imagery represents the major source of data and covers an ample continuum of image resolution and sw...
LiDAR remote sensing has been shown to be a good technique for the estimation of forest parameters such as canopy heights and aboveground biomass. Whilst airborne LiDAR data are in general very dense but only available over small areas due to the cost of their acquisition, spaceborne LiDAR data acquired from the Geoscience Laser Altimeter System (G...