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SimBac: simulation of whole bacterial genomes with 1 

homologous recombination2 

 3 

ABSTRACT 4 

 5 

Bacteria can exchange genetic material, or acquire genes found in the 6 

environment. This process, generally known as bacterial recombination, can 7 

have a strong impact on the evolution and phenotype of bacteria, for example 8 

causing the spread of antibiotic resistance across clades and species, but can 9 

also disrupt phylogenetic and transmission inferences. With the increasing 10 

affordability of whole genome sequencing, the need has emerged for an 11 

efficient simulator of bacterial evolution to test and compare methods for 12 

phylogenetic and population genetic inference, and for simulation-based 13 

estimation. We present SimBac, a whole-genome bacterial evolution simulator 14 

that is roughly two orders of magnitude faster than previous software and 15 

includes a more general model of bacterial evolution, allowing both within- 16 

and between-species homologous recombination. Since methods modeling 17 

bacterial recombination generally focus on only one of these two modes of 18 

recombination, the possibility to simulate both allows for a general and fair 19 

benchmarking. SimBac is available from http://github.com/tbrown91/SimBac 20 

and is distributed as open source under the terms of the GNU General Public 21 

License. 22 

 23 

 24 

DATA SUMMARY 25 

 26 

SimBac, the software we developed to simulate genome-wide bacterial 27 

evolution, is distributed as open source under the terms of the GNU General 28 

Public License, and is available from GitHub (url - 29 

http://github.com/tbrown91/SimBac ). A manual and examples of usage of 30 

SimBac are provided in the Supplementary Material. 31 
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 32 

We confirm all supporting data, code and protocols have been provided within the article or 33 

through supplementary data files.  34 

 35 

 36 

IMPACT STATEMENT 37 

 38 

Sequencing technologies are revolutionizing microbiology, allowing 39 

researchers to investigate with great detail the genetic information in bacteria. 40 

This increasingly overwhelming amount of information requires adequate, 41 

efficient computer methods to be processed in reasonable time. One of the 42 

most important tasks performed by computer methods is simulating data, as 43 

this provides a mean for testing hypotheses and checking the performance of 44 

other methods in extracting valuable information from data. Previous software 45 

specifically developed for simulating bacterial evolution is limited in 46 

applicability, having being conceived for limited data and biological 47 

phenomena. 48 

We present SimBac, a new simulator of bacterial evolution that can generate 49 

data for thousands of bacterial genomes about 100 times faster than previous 50 

methods. SimBac also includes a very general model of bacterial evolution that 51 

accounts for the fact that bacteria can exchange genetic material with each 52 

other, not only within the same population, but also across species boundaries.  53 

Thanks to these advancements in SimBac it will be possible to efficiently test 54 

hypotheses and estimate parameters comparing real and simulated bacterial 55 

data, to test the accuracy of bacterial genomic methods, and to fairly compare 56 

methods that make different assumptions regarding bacterial evolution.  57 

 58 

 59 

INTRODUCTION 60 

 61 

Whole-genome bacterial sequencing is rapidly gaining in popularity and 62 

replacing multilocus sequence typing (MLST) thanks to its fast and cost-63 

effective provision of higher resolution genetic information (Wilson, 2012, 64 

Didelot et al., 2012). Computational algorithms that use genomic data to infer 65 
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epidemiological, phylogeographic, phylodynamic, and evolutive patterns are 66 

generally hampered by recombination (e.g. Schierup & Hein, 2000, Posada & 67 

Crandal, 2002, Hedge & Wilson, 2014), and recent years have seen a surge of 68 

methods that measure, identify, and account for bacterial homologous 69 

recombination (e.g. Didelot & Falush, 2007, Marttinen et al., 2008, Marttinen 70 

et al., 2012, Croucher et al., 2014, Didelot et al., 2010, Didelot & Wilson, 2015). 71 

Assessing and comparing the performance of different methods is complicated 72 

by the use of different models of recombination, in particular within-species 73 

recombination leading to phylogenetically discordant sites (e.g. Didelot et al., 74 

2010), or between-species recombination leading to accumulation of 75 

substitutions on specific branches and genomic intervals (e.g. Didelot & Falush, 76 

2007). Simulators of bacterial evolution are routinely used for parameter 77 

inference and hypothesis testing (Fearnhead et al., 2005, Fraser et al., 2005) 78 

and for method testing and comparison (Falush et al., 2006, Didelot & Falush, 79 

2007, Turner et al., 2007, Buckee et al., 2008, Wilson et al., 2009, Hedge & 80 

Wilson, 2014), but simulation software and models used are generally targeted 81 

to the specific model of evolution implemented in the methods considered. 82 

One of the reasons for this is the lack of general and efficient simulators of 83 

bacterial evolution. 84 

 85 

Coalescent simulators of eukaryotic evolution usually focus on cross over 86 

recombination (see e.g. Arenas & Posada, 2007, 2009, 2014), while bacterial 87 

recombination is generally modeled as gene conversion, meaning that in a 88 

recombination event only a small fragment of DNA is imported from a donor, 89 

whereas most of the genetic material is inherited from the recipient. Many fast 90 

and approximate simulation methods (e.g. Marjoram & Wall, 2006, Excoffier & 91 

Foll, 2011) cannot be applied to bacterial recombination because the 92 

approximations used do not generate the expected long genomic distance 93 

correlations in bacterial local trees. Other similar approximate methods are 94 

only adequate for low bacterial recombination rates (e.g. Chen et al., 2009, 95 

Wang et al., 2014). Many forward in time simulation methods (e.g. Chadeau-96 

Hyam et al., 2008, Dalquen et al., 2012) or discrete generation coalescent 97 

methods (Excoffier et al., 2000, Laval & Excoffier, 2004) can allow gene 98 

conversion, but are generally too slow for simulating whole-genome evolution 99 

of large samples or populations. 100 
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An exact and fast method to simulate gene conversion is the coalescent model 101 

of Wiuf & Hein (2000) included in ms (Hudson, 2002) and its extensions 102 

(Mailund et al., 2005, Hellenthal & Stephens, 2007, Ramos-Onsins & Mitchell-103 

Olds 2007). Recently, this model has been implemented in simulation software 104 

specific for bacterial evolution, SimMLST (Didelot et al., 2009). 105 

SimMLST is optimized for MLST data which requires to simulate several short 106 

distant loci, and, similarly to ms, only simulates within-species bacterial 107 

recombination. For these reasons, these methods are not generally suited for 108 

large genome-wide bacterial simulation studies or for testing different models 109 

and assumptions of recombination. 110 

 111 

Here we present SimBac, a new method for simulating bacterial evolution. 112 

SimBac implements an efficient coalescent-based algorithm for simulating 113 

genome-wide bacterial evolution, and includes a new and more general model 114 

of bacterial recombination that extends the classical within-species 115 

recombination (Didelot et al., 2009) by allowing the user to specify any degree 116 

of recombination between species. 117 

    118 

 119 

THEORY AND IMPLEMENTATION 120 

 121 

We simulate evolution backward in time under the standard coalescent model 122 

with gene conversion, and generate an ancestral recombination graph (ARG, 123 

see Wiuf & Hein, 2000). Within-species recombination events are modelled as 124 

a copy-pasting of a small fragment of DNA from the donor lineage sequence 125 

into the recipient. 126 

 127 

The computational efficiency of SimBac derives from algorithmic 128 

improvements over previous software. First, instead of rejection sampling of 129 

recombination events as in Didelot et al., 2009, we developed an analytical 130 

solution that only samples recombination events effectively altering ancestral 131 

material of lineages (details of the methods are given in the Supplementary 132 

Material). Second, we represent ancestral material with a more efficient data 133 

structure. These new features allow about 100-fold faster simulation of 134 
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bacterial genome-wide evolution compared to SimMLST (see Fig. 1). Also, our 135 

method generally outperforms ms (Hudson, 2002) when many recombination 136 

(or equivalently gene conversion) events are expected. 137 

 138 

Our software also provides the possibility to simulate a circular or linear 139 

genome, and entire or fragmented bacterial genome, and offers a 140 

recombination model that allows a mixture of between- and within-species 141 

recombination. Within-species recombination is modelled as the coalescent 142 

with gene conversion (Wiuf & Hein, 2000, Didelot et al., 2009) with fragments 143 

lengths distributed geometrically with mean δ, and with all sites having the 144 

same per-site recombination initiation rate R (scaled by the effective 145 

population size). As the coalescent process is simulated backward in time, any 146 

extant lineage can be the recipient of a recombining interval from a donor 147 

lineage, which is then added to the other extant lineages. In such a case, the 148 

recombining interval becomes part of the genome of the new donor lineage 149 

(see Fig. 2(b)). Every site of the genome of every extant lineage becomes the 150 

start of a recombining interval at the same rate R. 151 

 152 

Between-species recombination is modelled as a separate process backward in 153 

time with a specific scaled per-site recombination initiation rate 𝑅𝑒 and a 154 

specific distribution of imported fragments lengths (geometric with mean 𝛿𝑒). 155 

When a between-species recombination event occurs at a recipient lineage 156 

and interval, the donor lineage is not tracked back in time as for within-species 157 

recombination, but instead substitutions are introduced into the recombining 158 

interval, similar to the model in ClonalFrame (Didelot & Falush, 2007). 159 

Therefore, we do not simulate species evolution as in Arenas & Posada (2014), 160 

but rather assume that each recombining segment is donated by a different 161 

lineage within a given divergence range. 162 

However, differently from ClonalFrame, the donor sequence is obtained 163 

adding a random amount of divergence (uniformly sampled within the interval 164 

[𝐷1, 𝐷2], specified by the user) into the corresponding homologous sequence 165 

from the root of the ARG. This model accounts for the excess of substitutions 166 

caused by between-species recombination as in ClonalFrame, but at the same 167 

time also generates the homoplasies that are expected if the recipient lineage 168 

does not lead to the root of the local tree. More details on the methods of 169 
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simulation and a summary of the algorithm are provided in the Supplementary 170 

Material. 171 

 172 

To showcase the possible applications of our software, we extend the 173 

investigation of phylogenetic inference accuracy by Hedge & Wilson (2014). 174 

The authors investigated the effect of low bacterial recombination rates (up to 175 

a scaled per-site  rate of R=0.01) on the inference of clonal frame. Using 176 

SimBac, we are able to simulate higher recombination rates (up to R=0.1) in 177 

reasonable time, and we show that for highly recombining bacteria, and in 178 

particular for older phylogenetic branches, the probability of reconstructing 179 

the phylogenetic topology is reduced further to around 91% (Fig. 3). 180 

 181 

 182 

CONCLUSION 183 

 184 

Simulation of genome evolution is important as it allows inference of 185 

parameters from data and testing of evolutionary hypothesis, and because it is 186 

routinely used to benchmark and compare different microbial genomic analysis 187 

methods. We present SimBac, a new method for simulating genome-wide 188 

bacterial evolution implemented and distributed as open source software 189 

(http://github.com/tbrown91/SimBac). Our model of bacterial recombination 190 

is more general than those used by most methods in the field, in that it can 191 

describe any mixture of within-species and between-species recombination, 192 

and as such, it can fit the assumptions of most methods, or it can provide a 193 

more realistic background for comparing methods with different hypothesis. 194 

Also, our efficient implementation achieves an approximately 100-fold increase 195 

in computational efficiency over previous similar effort, allowing inference and 196 

benchmarking over considerably larger datasets. For example, a thousand 197 

1Mbp genomes with R=0.01 can be generated in about 6 minutes. SimBac can 198 

generate a wide range of possible outputs: sequence alignments, ARGs 199 

graphics (see Fig. 2), clonal frames, local genealogies, and lists of 200 

recombination events. Although only a JC substitution model (Jukes & Cantor 201 

1969) is presently included in SimBac, in practice this is not a restriction 202 

because the local genealogies can be used to generate alignments under a vast 203 

choice of nucleotide and codon substitution models using for example SeqGen 204 

http://github.com/tbrown91/SimBac
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(Rambaut & Grassly 1997) or INDELible (Fletcher & Yang, 2009) (see Arenas, 205 

2013). 206 

 207 

Although SimBac generalizes the applicability of SimMLST, it currently lacks the 208 

wide set of options of some simulators of evolution, in particular of forward 209 

simulators that allow very general demographic, speciation, selection, 210 

migration, and rate variation patterns (e.g. Chadeau-Hyam et al., 2008, 211 

Dalquen et al., 2012). In fact, many of these features present considerable 212 

methodological hurdles in being incorporated in computationally efficient 213 

coalescent simulators. 214 

Yet, future extensions of our method could consist of the inclusion of 215 

distributive conjugal transfer (Gray et al., 2013), of non-homogenous genomic 216 

rates of recombination (see e.g. Everitt et al., 2013, Arenas & Posada, 2014), or 217 

of demographic events and population structure (Arenas & Posada, 2007, 218 

Arenas & Posada, 2014). 219 

 220 

 221 
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FIGURES AND TABLES 347 

 348 

Figure 1 349 

Comparison of run-time of SimMLST, ms and SimBac. Only gene conversion (no cross-over) is 350 

simulated in ms, to model bacterial evolution. (a) Average time to simulate the ARG for a fixed 351 

recombination rate R=0.01 and genome length from 100bp to 1Mbp. (b) Average time to simulate 352 

the ARG for a fixed genome length of 1Mbp and recombination rate increasing from R=0 to R=0.05. 353 

100 Simulations were performed for each dot, except for SimMLST at R=0.02 and R=0.05, and ms at 354 

R=0.02, where 10 simulations were performed due to the elevated computational demand. ms was 355 

not run at R=0.05 because a single run required >4 days. Error bars show ±1 standard deviation. 356 

 357 

 358 

Figure 2 359 

Examples of Ancestral Recombination Graphs (ARGs) generated and plotted by SimBac. Branches 360 

represent ARG lineages, and time is considered from to go backward from the bottom to the top of 361 

the tree. Branch merges (from bottom to top) represent coalescent events, while branch splits 362 

represent recombination events. (a) Example ARG with the clonal frame lineages marked in black, 363 

the non-clonal lineages in grey, and a recombination event involving an external species marked in 364 

red. (b) Same ARG as before, but with ancestral material of each lineage represented as a rectangle 365 

in the corresponding node. Each colored vertical bar inside each rectangle represent a genomic 366 

segment. Genomic segments that are present in the ancestral material are colored in grey, those 367 

absent are in white, and those imported from an external species are in red. 368 

 369 

Figure 3 370 

Accuracy of clonal frame estimation from recombining bacterial genomes. 371 

The X axis shows the recombination rate R under which simulations are performed. 372 

The Y axis shows the accuracy of inference, as the proportion of branches correctly estimated using 373 

the Robinson-Foulds metric (Robinson & Foulds, 1981). Ten independent replicates are used for 374 

R=0.1 and a hundred in all other cases. Genomes are 1Mbp long and the scaled mutation rate is 375 

fixed at 0.01. (a) Accuracy of three phylogenetic methods: Neighbour Joining (NJ), Unweighted Pair 376 

Group Method with Arithmetic Mean (UPGMA) and Maximum Likelihood (ML). Error bars represent 377 

±1 standard deviations. (b) Clonal frame branches were separated into three age categories:  young, 378 

middle-aged, and old (respectively with a distance between the branch mid-point and the root of 379 

more than 2.09, between 1.32 and 2.09, and less than 1.32 Ne generations). The ML accuracy for 380 

each age category is plotted separately in different colors. 381 

 382 

 383 

                                                                                                                     384 
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User Manual

SimBac jointly simulates bacterial genomes with the clonal genealogy under a coalescent model with recombination.

Such simulations can be used to test phylogenetic analysis of real data sets.

Running from the command line

SimBac can be run from the command line using a combination of the following options. Passing no arguments to

SimBac will display the possible arguments.

-N NUM Sets the number of isolates (default is 100)

-T NUM Sets the value of θ, the site-specific mutation rate, between 0 and 1 (default is 0.01)

-m NUM Sets the lower bound of site-mutation (divergence) in a region of external recombination, between 0 and 1

(default is 0)

-M NUM Sets the upper bound of site-mutation (divergence) in a region of external recombination, between 0 and 1

(default is 0)

-R NUM Sets the per-site rate of internal (within species) recombination, Ri, (default is 0.01)

-r NUM Sets the per-site rate of external (between species) recombination, Re, (default is 0)

-D NUM Sets the average length of an internal recombinant interval, δi (default is 500)

-e NUM Sets the average length of an external recombinant interval, δe (default is 500)

-B NUM,. . .,NUM Sets the number and lengths of fragments of genetic material (default is 10000)

-G NUM,. . .,NUM Sets the size of gaps between each fragment, must be the same number of gaps as there are numbers

of genetic fragments (default is 0,. . .,0)

-s NUM Use given seed to initiate random number generation

-o FILE Name of file to write generated sequences (FASTA format)

-c FILE Name of file to write clonal genealogy (Newick format)

-l FILE Name of file to write local trees (Newick format)

-b FILE Name of file to write log of internal recombination breaks

-f FILE Name of file to write log of external recombination breaks

-d FILE Name of file to export ancestral recombination graph (DOT file)

-a Include ancestral material in the DOT graph
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Output format

SimBac produces the following output files:

• FASTA file of simulated sequences. If more than one fragment of genetic information is specified, the output is in

the eXtended Multi-Fasta Alignment (XMFA) format. In this situation the simulated gene fragments are separated

with an ‘=’ sign.

• The clonal genealogy in Newick format

• The local trees contained in the simulated data. This file is a list of Newick trees each of which is preceded by the

number of sites that share the current local tree.

• A full description of the graph representing the ancestry of the sample in the DOT language (Fig. 2 in the Main

Text). This can be used in conjunction with the graphviz and the DOT program to produce figures illustrating

the ancestry. The examples show the ancestry with and without the ancestral material included at each node. The

clonal genealogy is shown in bold and external recombination events are shown in red. In the graph showing the

ancestral material, the ancestral material remaining at each node is shown in grey and any external genetic material

is shown in red.

Examples

To simulate 100 genomes each 1Mbp long with an internal recombination rate Ri = 0.01 and mutation rate θ = 0.01

run:

./SimBac -N 100 -B 1000000 -R 0.01 -T 0.01 -o sequences.fasta -c clonal.nwk -l local.nwk

This produces the simulated sequences and the clonal genealogy in the files ‘sequences.fasta’ and ‘clonal.nwk’. The local

trees are written to ’local.nwk’

To simulate 100 genomes with internal and external recombination rate Re = 0.01 and average break length of 500bp

run:

./SimBac -N 100 -B 1000000 -R 0.01 -D 500 -r 0.01 -e 500 -b internal.log -f external.log

This produces two log files with the start- and end-points of all internal and external recombination events.

To simulate sequences undergoing internal and external recombination with mutation in an external recombinant in-

terval occurring with probability in the interval [0.5, 1], run:

./SimBac -N 100 -B 100000 -R 0.01 -D 500 -r 0.01 -e 500 -m 0.5 -M 1 -o sequences.fasta -c clonal.nwk

This produces the sequences and clonal genealogy.

To produce a DOT file with the ancestral information included in the graph run:

./SimBac -n 10 -B 1000 -R 0.01 -D 50 -r 10 -e 50 -d graph.dot -a

To simulate a linear genome, add a large gap to the end of the genome to prevent any recombinant intervals includ-

ing both the first and last elements of the genome. For example to simulate a linear genome of length 100kbp run:

./SimBac -N 100 -B 100000 -G 1000000 -o sequences.fasta -c clonal.nwk

This places a gap of 1Mbp at the end of the genome.

2
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Supplementary Methods

Hereby we will use the notation of [2], except that we will assume that there is a circular genome of length G (with

sites 1 . . . G), and that ancestral material of each lineage is a subset of this genome. Ancestral material for a sample

(an ARG tip) need not be the whole genome, but might be a subset of the genome made of different loci, for example

in the case of MLST data, so that we can simulate both genome data or MLST data. Ancestral material for a node

consists of b non-overlapping ordered intervals, I1 . . . Ib, of lengths respectively L1 . . . Lb, and with Ii = [si, ei] (implying

ei−si = Li−1). Also for easiness of presentation (due to genome circularity) we will set e0 = eb−G, which is intendedly

negative. The recombination rate per site per genome will be R/2. It should be noted that ρ = 2R, where ρ is the rate

of recombination initiation or termination in LDhat [3]. Lastly, recombining intervals have a geometric distribution with

mean δ.

Effective recombination rate for a lineage

In [2], the recombination rate per site is R/2. We call a the ancestral material of this lineage. If a recombination event

happens on the considered lineage, then a recombining interval r is picked at random from the genome, and if r ∩ a 6= ∅
(and a − r 6= ∅ for lineages not in the clonal frame) then the two new recombining lineages are created, otherwise the

recombination event is rejected.

Here we propose to sample recombination events and recombining intervals conditional on r ∩ a 6= ∅, a − r 6= ∅, or

just on r ∩ a 6= ∅ for lineages in the clonal frame, such that no rejection ever occurs while simulating. To do this, we

first define a lineage-specific effective recombination rate. This is the rate at which recombination events occur satisfying

r ∩ a 6= ∅, a − r 6= ∅ (or just r ∩ a 6= ∅ for clonal frame lineages). As in [2], we assume that the rate of initiation of a

recombination event is the same for each site of the genome. Under these assumptions, and assuming as in [1] a geometric

distribution with mean δ for recombination interval lengths, the rate at which a recombination event is started between

e0 and s1, and includes s1, is:

Rs1−e0
2

=
R

2

s1−e0−1∑
i=0

(1− δ−1)i =

=
R

2

[ ∞∑
i=0

(1− δ−1)i −
∞∑

i=s1−e0

(1− δ−1)i

]
=

=
R

2

[
δ − δ(1− δ−1)(s1−e0)

]
=

=
R

2
δ(1− (1− δ−1)(s1−e0)).

Where
(
1− δ−1

)i
is the probability of a recombinant break having length greater than i. Now, let us assume we have

a lineage with ancestral material a = ∪bi=1[si, ei] union of non-empty, ordered, disjoint intervals. As mentioned before,

e0 = eb −G. The amount of ancestral material in a lineage is defined as: L =
∑b

i=1 Li The rate of recombination events

satisfying r ∩ a 6= ∅ for that lineage is then:

Ra

2
=

(
b∑

i=1

Rsi−ei−1

2

)
+
R

2
(L− b).

Finally, the lineage-specific recombination rate satisfying r ∩ a 6= ∅, and a− r 6= ∅ is:

R′a
2

=
Ra

2
−

(
b∑

i=1

Rsi−ei−1

2
(1− δ−1)G−(si−ei−1)

)
− R

2
(1− δ−1)G−1(L− b).

Additionally, for a clonal lineage without ancestral material the recombination rates will be 0.
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Probability of recombination initiating sites

Conditional on an effective recombination event on a non clonal frame lineage (that is, satisfying r ∩ a 6= ∅, a− r 6= ∅)
occurring on ancestral material a, the probability that the first ancestral site affected by r is si is:

P ′si =
Rsi−ei−1

(1− (1− δ−1)G−(si−ei−1)

R′a
,

and the probability that it is any other site in a is

R(1− (1− δ−1)G−1)

R′a
.

If the considered recombining lineage is in the clonal frame instead (with recombination satisfying only r ∩ a 6= ∅), the

probabilities are

Psi =
Rsi−ei−1

Ra
,

and
R

Ra

respectively.

After the starting site of r ∩ a has been picked, the ending site of r is chosen according to a geometric distribution

with mean δ for a lineage in the clonal frame. In a non-clonal lineage, the ending site of r is chosen according to the same

geometric distribution, but conditional on |r| ≤ G− (si − ei−1) if the starting site of r is si, or |r| ≤ G− 1 otherwise.

External recombination events

Simulation of external recombination events follows the same protocol as that of a clonal recombination event, with

Re/2 and δe replacing R/2 and δ, respectively. As we are only interested in the imported fragment from the external

species, the recombinant interval need only satisfy the condition r ∩ a 6= ∅, as in a clonal lineage.
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Technical description of SimBac

Here, n denotes the number of isolates for which the data is to be simulated. For a genome of length G, simulate the
ARG with internal recombination rate Ri/2 and external recombination rate Re/2. The average length of internal and
external recombining segments are given by δi and δe, respectively.

Input: n, Ri/2, Re/2, δi, δe, G
Output: Simulated ancestral recombination graph with clonal genealogy

Set number of lineages k = n
for x = 1 . . . n do

Calculate internal and external recombination rates,
Ri,x

2
,
Re,x

2
Ancestral material ax is given by [0, G]
Lineage x is clonal

end for
while k > 1 do

Calculate the rates of internal and external recombination given by:
Ri

2
=
∑k

x=1

Ri,x

2
and

Re

2
=
∑k

x=1

Re,x

2

Increment current time by an amount distributed exponentially with parameter
(
k
2

)
+
Ri

2
+
Re

2
Let u ∼ U (0, 1)
if u < k(k − 1)/(k(k − 1) +Ri +Re) then

Coalescent event
Choose two lineages x and y at random from the k remaining nodes and replace with the new lineage z
The lineage z is clonal if x or y is clonal
The ancestral material of z is az = ax ∪ ay
Update total number of lineages containing each element of the genome
for all Nucleotides do

if Number of lineages containing given nucleotide is one then
Remove nucleotide from az

end if
end for

Calculate the internal and external rate of recombination for the new lineage,
Ri,z

2
and

Re,z

2
The number of lineages, k is decreased by one

else if u < (k(k − 1) +Ri)/(k(k − 1) +Ri +Re) then
Internal recombination event

Choose one lineage x weighted by
Ri,x

2
Determine a recombining interval, r, distributed geometrically with parameter δi.
if x is clonal then

Choose r such that r ∩ ax 6= ∅
else

Choose r such that r ∩ ax 6= ∅ and a− r 6= ∅
end if
Create two new lineages, y and z.
Lineage z is clonal if x is clonal
ay = ax ∩ r and az = ax − r
Lineage y is not clonal

Calculate the new recombination rates for lineages y and z,
Ri,y

2
,
Re,y

2
,
Ri,z

2
and

Re,z

2
The number of lineages, k is increased by one

else
External recombination event

Choose one lineage, x weighted by
Re,x

2
Choose a recombinant interval, r, distributed geometrically with parameter δe conditioned on r ∩ ax 6= ∅
The material satisfying ax ∩ r will be simulated as genetic material from an external species

end if
end while
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Methods Validation

Fig. S 1: Validation of SimBac. To validate SimBac we compared summary statistics of its simulated data to those of
simMLST and ms. Not all statistics are available for every software. Genome length is 105bp. On X axis is always shown the
scaled, per-site recombination rate R and error bars represent ± 1 standard deviations. 10 simulations were performed for R=0.02
and 0.05 in simMLST in the top two plots, 100 simulations in all other cases. (a) Total number of recombination events. (b) Height
of the ARG. (c) Number of local trees (identical neighbouring local trees were merged). (d) Average sum of branch lengths for
local trees (ms values are scaled by a factor of 2 as it assumes diploidy, while SimBac and SimMLST assume haploidy).
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