About
126
Publications
29,600
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
7,799
Citations
Introduction
Current institution
Additional affiliations
September 2014 - present
September 2011 - September 2014
Publications
Publications (126)
The population of the observed gravitational wave events encodes unique information on the formation and evolution of stellar-mass black holes, from the underlying astrophysical processes to the large-scale dynamics of the Universe. We use the ICAROGW analysis infrastructure to perform hierarchical Bayesian inference on the gravitational wave signa...
Massive black hole binary (MBHB) mergers detected by the Laser Interferometer Space Antenna (LISA) will provide insights on their formation via dark matter (DM) halo and galaxy mergers. We present a novel Bayesian inference pipeline to infer the properties of an analytical model describing the MBHB population. The flexibility of our approach allows...
Gravitational Wave (GW) sources are standard sirens that provide an independent way to map the cosmic expansion history by combining with an independent redshift measurement either from an electromagnetic counterpart for a bright siren or using different statistical techniques for dark sirens. In this analysis, we perform the first Blinded Mock Dat...
Massive black hole binary (MBHB) mergers will be detectable in large numbers by the Lisa Interferometer Space Antenna (LISA), which will thus provide new insights on how they form via repeated dark matter (DM) halo and galaxy mergers. Here we present a simple analytical model to generate a population of MBHB mergers based on a theoretical prescript...
Extreme mass-ratio inspirals (EMRIs), namely binary systems composed of a massive black hole and a compact stellar-mass object, are anticipated to be among the gravitational wave (GW) sources detected by the Laser Interferometer Space Antenna (LISA). Similarly to compact binary mergers detected by current GW detectors, EMRIs can be used as cosmic r...
In this work, we investigate detection rates and parameter estimation of strongly lensed extreme mass-ratio inspirals (LEMRIs) in the context of the Laser Interferometer Space Antenna (LISA). Our results indicate that LEMRIs constitute a new gravitational-wave target signal for LISA, with detection rates ranging from zero to ∼40 events over a four...
Third-generation (3G) gravitational wave detectors, in particular Einstein Telescope (ET) and Cosmic Explorer (CE), will explore unprecedented cosmic volumes in search for compact binary mergers, providing us with tens of thousands of detections per year. In this study, we simulate and employ binary black holes detected by 3G interferometers as dar...
The Laser Interferometer Space Antenna (LISA) has two scientific objectives of cosmological focus: to probe the expansion rate of the universe, and to understand stochastic gravitational-wave backgrounds and their implications for early universe and particle physics, from the MeV to the Planck scale. However, the range of potential cosmological app...
In this Letter, we investigate detection rates and parameter estimation of strongly-lensed extreme mass-ratio inspirals (LEMRIs) in the context of the Laser Interferometer Space Antenna (LISA). Our results indicate that LEMRIs constitute a new gravitational-wave target signal for LISA, with detection rates ranging from zero to $\sim 40$ events over...
We outline the “dark siren” galaxy catalog method for cosmological inference using gravitational wave (GW) standard sirens, clarifying some common misconceptions in the implementation of this method. When a confident transient electromagnetic counterpart to a GW event is unavailable, the identification of a unique host galaxy is in general challeng...
In this work, we investigate the effect of gravitational lensing on the gravitational wave (GW) signals of a population of tidal disruption events (TDEs). We estimate the number of lensed-magnified signals that we expect to detect with future space-based GW observatories, in particular LISA and DECIGO. We model the lens distribution using an hybrid...
Space-borne gravitational-wave (GW) detectors observing at millihertz and decihertz frequencies are expected to detect large numbers of quasimonochromatic signals. The first and second time derivative of the GW frequency (f˙0 and f¨0) can be measured for the most favorable sources and used to look for negative post-Newtonian corrections, which can...
Third-generation (3G) gravitational wave detectors, in particular Einstein Telescope (ET) and Cosmic Explorer (CE), will explore unprecedented cosmic volumes in search for compact binary mergers, providing us with tens of thousands of detections per year. In this study, we simulate and employ binary black holes detected by 3G interferometers as dar...
In this work, we investigate the effect of gravitational lensing on the gravitational wave (GW) signals of a population of tidal disruption events (TDEs). We estimate the number of lensed-magnified signals that we expect to detect with future space-based GW observatories, in particular LISA and DECIGO. We model the lens distribution using an hybrid...
We outline the ``dark siren'' galaxy catalog method for cosmological inference using gravitational wave (GW) standard sirens, clarifying some common misconceptions in the implementation of this method. When a confident transient electromagnetic counterpart to a GW event is unavailable, the identification of a unique host galaxy is in general challe...
The Laser Interferometer Space Antenna (LISA) has the potential to reveal wonders about the fundamental theory of nature at play in the extreme gravity regime, where the gravitational interaction is both strong and dynamical. In this white paper, the Fundamental Physics Working Group of the LISA Consortium summarizes the current topics in fundament...
In the next decade, the Laser Interferometer Space Antenna (LISA) will detect the coalescence of massive black hole binaries (MBHBs) in the range [104,108] M⊙, up to z∼10. Their gravitational wave (GW) signal is expected to be accompanied by an electromagnetic counterpart (EMcp), generated by the gas accreting on the binary or on the remnant BH. In...
Binaries of relatively massive black holes like GW190521 have been proposed to form in dense gas environments, such as the disks of active galactic nuclei (AGNs), and they might be associated with transient electromagnetic counterparts. The interactions of this putative environment with the binary could leave a significant imprint at the low gravit...
The Laser Interferometer Space Antenna (LISA) will detect and characterize ∼104 Galactic Binaries consisting predominantly of two White Dwarfs (WD). An interesting prospect within this population is a third object–another WD star, a Circumbinary Exoplanet (CBP), or a Brown Dwarf (BD)–in orbit about the inner WD pair. We present the first fully Baye...
In the next decade, the Laser Interferometer Space Antenna (LISA) will detect the coalescence of massive black hole binaries (MBHBs) in the range $[10^4, 10^8] \, \rm M_{\odot}$, up to $z\sim10$. Their gravitational wave (GW) signal is expected to be accompanied by an electromagnetic counterpart (EMcp), generated by the gas accreting on the binary...
The Laser Interferometer Space Antenna (LISA) has the potential to reveal wonders about the fundamental theory of nature at play in the extreme gravity regime, where the gravitational interaction is both strong and dynamical. In this white paper, the Fundamental Physics Working Group of the LISA Consortium summarizes the current topics in fundament...
Binaries of relatively massive black holes like GW190521 have been proposed to form in dense gas environments, such as the disks of Active Galactic Nuclei (AGNs), and they might be associated with transient electromagnetic counterparts. The interactions of this putative environment with the binary could leave a significant imprint at the low gravit...
The Laser Interferometer Space Antenna (LISA) will detect and characterize $\sim10^4$ Galactic Binaries consisting predominantly of two White Dwarfs (WD). An interesting prospect within this population is a third object--another WD star, a Circumbinary Exoplanet (CBP), or a Brown Dwarf (BD)--in orbit about the inner WD pair. We present the first fu...
The Laser Interferometer Space Antenna (LISA) has the potential to reveal wonders about the fundamental theory of nature at play in the extreme gravity regime, where the gravitational interaction is both strong and dynamical. In this white paper, the Fundamental Physics Working Group of the LISA Consortium summarizes the current topics in fundament...
The Laser Interferometer Space Antenna (LISA) has two scientific objectives of cosmological focus: to probe the expansion rate of the universe, and to understand stochastic gravitational-wave backgrounds and their implications for early universe and particle physics, from the MeV to the Planck scale. However, the range of potential cosmological app...
The propagation of gravitational waves (GWs) at cosmological distances offers a new way to test the gravitational interaction at the largest scales. Many modified theories of gravity, usually introduced to explain the observed acceleration of the Universe, can be probed in an alternative and complementary manner with respect to standard electromagn...
Gravitational-wave science is rapidly growing in maturity as a research area; in May 2021 the next generation of gravitational-wave scientists gathered together to create a vision of the future of the field.
The science objectives of the LISA mission have been defined under the implicit assumption of a 4-years continuous data stream. Based on the performance of LISA Pathfinder, it is now expected that LISA will have a duty cycle of $$\approx 0.75$$ ≈ 0.75 , which would reduce the effective span of usable data to 3 years. This paper reports the results...
Gravitational wave science is a dynamical, fast-expanding research field founded on results, tools and methodologies drawn from different research areas and communities. Early career scientists entering this field must learn and combine knowledge and techniques from a range of disciplines. The Workshop on Gravitational-Wave Astrophysics for Early C...
The next generation of ground-based gravitational-wave detectors will observe coalescences of black holes and neutron stars throughout the cosmos, thousands of them with exceptional fidelity. The Science Book is the result of a 3-year effort to study the science capabilities of networks of next generation detectors. Such networks would make it poss...
The next generation of ground-based gravitational-wave detectors will observe coalescences of black holes and neutron stars throughout the cosmos, thousands of them with exceptional fidelity. The Science Book is the result of a 3-year effort to study the science capabilities of networks of next generation detectors. Such networks would make it poss...
The Laser Interferometer Space Antenna (LISA) will open the mHz frequency window of the gravitational wave (GW) landscape. Among all the new GW sources expected to emit in this frequency band, extreme mass-ratio inspirals (EMRIs) constitute a unique laboratory for astrophysics and fundamental physics. Here we show that EMRIs can also be used to ext...
The propagation of gravitational waves (GWs) at cosmological distances offers a new way to test the gravitational interaction at the largest scales. Many modified theories of gravity, usually introduced to explain the observed acceleration of the universe, can be probed in an alternative and complementary manner with respect to standard electromagn...
The science objectives of the LISA mission have been defined under the implicit assumption of a 4 yr continuous data stream. Based on the performance of LISA Pathfinder, it is now expected that LISA will have a duty cycle of $\approx 0.75$, which would reduce the effective span of usable data to 3 yr. This paper reports the results of a study by th...
Since the very beginning of astronomy the location of objects on the sky has been a fundamental observational quantity that has been taken for granted. While precise two dimensional positional information is easy to obtain for observations in the electromagnetic spectrum, the positional accuracy of current and near future gravitational wave detecto...
We propose a space-based interferometer surveying the gravitational wave (GW) sky in the milli-Hz to μ-Hz frequency range. By the 2040s, the μ-Hz frequency band, bracketed in between the Laser Interferometer Space Antenna (LISA) and pulsar timing arrays, will constitute the largest gap in the coverage of the astrophysically relevant GW spectrum. Ye...
We present a method to include lensing selection effects due to the finite horizon of a given detector when studying lensing of gravitational wave (GW) sources. When selection effects are included, the mean of the magnification distribution is shifted from one to higher values for sufficiently high-redshift sources. This introduces an irreducible (...
Since 2015 the gravitational-wave observations of LIGO and Virgo have transformed our understanding of compact-object binaries. In the years to come, ground-based gravitational-wave observatories such as LIGO, Virgo, and their successors will increase in sensitivity, discovering thousands of stellar-mass binaries. In the 2030s, the space-based LISA...
Since 2015 the gravitational-wave observations of LIGO and Virgo have transformed our understanding of compact-object binaries. In the years to come, ground-based gravitational-wave observatories such as LIGO, Virgo, and their successors will increase in sensitivity, discovering thousands of stellar-mass binaries. In the 2030s, the space-based LISA...
Quasars have recently been used as an absolute distance indicator, extending the Hubble diagram to high redshift to reveal a deviation from the expansion history predicted for the standard, ΛCDM cosmology. Here we show that the Laser Interferometer Space Antenna (LISA) will efficiently test this claim with standard sirens at high redshift, defined...
GW190521 is the compact binary with the largest masses observed to date, with at least one black hole in the pair-instability gap. This event has also been claimed to be associated with an optical flare observed by the Zwicky Transient Facility in an active galactic nucleus (AGN), possibly due to the postmerger motion of the merger remnant in the A...
The Laser Interferometer Space Antenna (LISA) will open the mHz frequency window of the gravitational wave (GW) landscape. Among all the new GW sources expected to emit in this frequency band, extreme mass-ratio inspirals (EMRIs) constitute a unique laboratory for astrophysics and fundamental physics. Here we show that EMRIs can also be used to ext...
We present a method to include lensing selection effects due to the finite horizon of a given detector when studying lensing of gravitational wave (GW) sources. When selection effects are included, the mean of the magnification distribution is shifted from one to higher values for sufficiently high-redshift sources. This introduces an irreducible (...
The gravitational-wave astronomical revolution began in 2015 with LIGO’s observation of the coalescence of two stellar-mass black holes. Over the coming decades, ground-based detectors like laser interferometer gravitational-wave observatory (LIGO), Virgo and KAGRA will extend their reach, discovering thousands of stellar-mass binaries. In the 2030...
Quasars have recently been used as an absolute distance indicator, extending the Hubble diagram to high redshift to reveal a deviation from the expansion history predicted for the standard, $\Lambda$CDM cosmology. Here we show that the Laser Interferometer Space Antenna (LISA) will efficiently test this claim with standard sirens at high redshift,...
GW190521 is the compact binary with the largest masses observed to date, with at least one in the pair-instability gap. This event has also been claimed to be associated with an optical flare observed by the Zwicky Transient Facility in an Active Galactic Nucleus (AGN), possibly due to the post-merger motion of the merger remnant in the AGN gaseous...
In this paper, which is of programmatic rather than quantitative nature, we aim to further delineate and sharpen the future potential of the LISA mission in the area of fundamental physics. Given the very broad range of topics that might be relevant to LISA, we present here a sample of what we view as particularly promising directions, based in par...
Gravitational waves have opened a new observational window through which some of the most exotic objects in the universe, as well as some of the secrets of gravitation itself, can now be revealed. Among all these new discoveries, we recently demonstrated¹⁵ that space-based gravitational wave observations will have the potential to detect a new popu...
Gravitational waves have opened a new observational window through which some of the most exotic objects in the Universe, as well as some of the secrets of gravitation itself, can now be revealed. Among all these new discoveries, we recently demonstrated [N. Tamanini & C. Danielski, Nat. Astron., 3(9), 858 (2019)] that space-based gravitational wav...
We investigate the ability of the Laser Interferometer Space Antenna (LISA) to measure the center of mass acceleration of stellar-origin black hole binaries emitting gravitational waves. Our analysis is based on the idea that the acceleration of the center of mass induces a time variation in the redshift of the gravitational wave, which in turn mod...
We provide an updated assessment of the fundamental physics potential of LISA. Given the very broad range of topics that might be relevant to LISA, we present here a sample of what we view as particularly promising directions, based in part on the current research interests of the LISA scientific community in the area of fundamental physics. We org...
Aims. We explore the prospects for the detection of giant circumbinary exoplanets and brown dwarfs (BDs) orbiting Galactic double white dwarfs (DWDs) binaries with the Laser Interferometer Space Antenna (LISA).
Methods. By assuming an occurrence rate of 50%, motivated by white dwarf pollution observations, we built a Galactic synthetic population o...
We explore here the prospects for detection of both giant circumbinary exoplanets, and brown dwarfs orbiting Galactic double white dwarfs binaries (DWDs) with the LISA mission. By assuming an occurrence rate of 50%, motivated by white dwarf pollution observations, we build a Galactic synthetic population of P-type giant exoplanets and brown dwarfs...
We investigate possible signatures of quantum gravity which could be tested with current and future gravitational-wave (GW) observations. In particular, we analyze how quantum gravity can influence the GW luminosity distance, the time dependence of the effective Planck mass and the instrumental strain noise of interferometers. Using both model-depe...
Dimensional flow, the scale dependence of the dimensionality of spacetime, is a feature shared by many theories of quantum gravity (QG). We present the first study of the consequences of QG dimensional flow for the luminosity distance scaling of gravitational waves in the frequency ranges of LIGO and LISA. We find generic modifications with respect...
So far, around 4,000 exoplanets have been discovered orbiting a large variety of stars. Owing to the sensitivity limits of the currently used detection techniques, these planets populate zones restricted either to the solar neighbourhood or towards the galactic bulge. This selection problem prevents us from unveiling the true galactic planetary pop...
The gravitational-wave astronomical revolution began in 2015 with LIGO's observation of the coalescence of two stellar-mass black holes. Over the coming decades, ground-based detectors like LIGO will extend their reach, discovering thousands of stellar-mass binaries. In the 2030s, the space-based LISA will enable gravitational-wave observations of...
We propose a space-based interferometer surveying the gravitational wave (GW) sky in the milli-Hz to $\mu$-Hz frequency range. By the 2040s', the $\mu$-Hz frequency band, bracketed in between the Laser Interferometer Space Antenna (LISA) and pulsar timing arrays, will constitute the largest gap in the coverage of the astrophysically relevant GW spe...
Since the very beginning of astronomy the location of objects on the sky has been a fundamental observational quantity that has been taken for granted. While precise two dimensional positional information is easy to obtain for observations in the electromagnetic spectrum, the positional accuracy of current and near future gravitational wave detecto...
The grand challenges of contemporary fundamental physics—dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem—all involve gravity as a key component. And of all gravitational phenomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarkable...
Modifications of General Relativity leave their imprint both on the cosmic expansion history through a non-trivial dark energy equation of state, and on the evolution of cosmological perturbations in the scalar and in the tensor sectors. In particular, the modification in the tensor sector gives rise to a notion of gravitational-wave (GW) luminosit...
We investigate possible signatures of quantum gravity which could be tested with current and future gravitational-wave (GW) observations. In particular, we analyze how quantum gravity can influence the GW luminosity distance, the time dependence of the effective Planck mass and the instrumental strain noise of interferometers. Using both model-depe...
We investigate the ability of the Laser Interferometer Space Antenna (LISA) to measure the center of mass acceleration of stellar-origin black hole binaries emitting gravitational waves. Our analysis is based on the idea that the acceleration of the center of mass induces a time variation in the redshift of the gravitational wave, which in turn mod...
Modifications of General Relativity leave their imprint both on the cosmic expansion history through a non-trivial dark energy equation of state, and on the evolution of cosmological perturbations in the scalar and in the tensor sectors. In particular, the modification in the tensor sector gives rise to a notion of gravitational-wave (GW) luminosit...
Dimensional flow, the scale dependence of the dimensionality of spacetime, is a feature shared by many theories of quantum gravity (QG). We present the first study of the consequences of QG dimensional flow for the luminosity distance scaling of gravitational waves in the frequency ranges of LIGO and LISA. We find generic modifications with respect...
This Astro-2020 White Paper deals with what we might learn from future gravitational wave observations about the early universe phase transitions and their energy scales, primordial black holes, Hubble parameter, dark matter and dark energy, modified theories of gravity and extra dimensions.
There are two big questions cosmologists would like to answer -- How does the Universe work, and what are its origin and destiny? A long wavelength gravitational wave detector -- with million km interferometer arms, achievable only from space -- gives a unique opportunity to address both of these questions. A sensitive, mHz frequency observatory co...
There are two big questions cosmologists would like to answer – How does theUniverse work, and what are its origin and destiny? A long wavelength gravitationalwave detector – with million km interferometer arms, achievable only from space– gives a unique opportunity to address both of these questions. A sensitive, mHzfrequency observatory could use...
To date more than 3500 exoplanets have been discovered orbiting a large variety of stars. Due to the sensitivity limits of the currently used detection techniques, these planets populate zones restricted either to the solar neighbourhood or towards the Galactic bulge. This selection problem prevents us from unveiling the true Galactic planetary pop...
A significant fraction of stars are members of gravitationally bound hierarchies containing three or more components. Almost all low-mass stars in binaries with periods shorter than three days are part of a hierarchical system. We therefore anticipate that a large fraction of compact galactic binaries detected by the Laser Interferometer Space Ante...
The grand challenges of contemporary fundamental physics---dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem---all involve gravity as a key component. And of all gravitational phenomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarka...
We present a detailed investigation of the dynamical behavior of mimetic gravity with a general potential for the mimetic scalar field. Performing a phase-space and stability analysis, we show that the scenario at hand can successfully describe the thermal history of the universe, namely the successive sequence of radiation, matter, and dark-energy...
We consider scalar field models of dark energy interacting with dark matter through a coupling proportional to the contraction of the four-derivative of the scalar field with the four-velocity of the dark matter fluid. The coupling is realized at the Lagrangian level employing the formalism of Scalar-Fluid theories, which use a consistent Lagrangia...
The Nobel Prize winning confirmation in 1998 of the accelerated expansion of our Universe put into sharp focus the need of a consistent theoretical model to explain the origin of this acceleration. As a result over the past two decades there has been a huge theoretical and observational effort into improving our understanding of the Universe. The c...
The Nobel Prize winning confirmation in 1998 of the accelerated expansion of our Universe put into sharp focus the need of a consistent theoretical model to explain the origin of this acceleration. As a result over the past two decades there has been a huge theoretical and observational effort into improving our understanding of the Universe. The c...
We present a detailed investigation of the dynamical behavior of mimetic gravity with a general potential for the mimetic scalar field. Performing a phase-space and stability analysis, we show that the scenario at hand can successfully describe the thermal history of the universe, namely the successive sequence of radiation, matter, and dark-energy...
The present work deals with the dynamical system investigation of interacting dark energy models (quintessence and phantom) in the framework of Loop Quantum Cosmology by taking into account a broad class of self-interacting scalar field potentials. The main reason for studying potentials beyond the exponential type is to obtain additional critical...
We consider a modification of General Relativity motivated by the treatment of anisotropies in Continuum Mechanics. The Newtonian limit of the theory is formulated and applied to galactic rotation curves. By assuming that the additional structure of spacetime behaves like a Newtonian gravitational potential for small deviations from isotropy, we ar...
Multifrequency gravitational wave (GW) observations are useful probes of the formation processes of coalescing stellar-mass binary black holes (BBHs). We discuss the phase drift in the GW inspiral waveform of the merging BBH caused by its center-of-mass acceleration. The acceleration strongly depends on the location where a BBH forms within a galax...
The present work deals with the dynamical system investigation of interacting dark energy models (quintessence and phantom) in the framework of Loop Quantum Cosmology by taking into account a broad class of self-interacting scalar field potentials. The main reason for studying potentials beyond the exponential type is to obtain additional critical...
We consider scalar field models of dark energy interacting with dark matter through a coupling proportional to the contraction of the four-derivative of the scalar field with the four-velocity of the dark matter fluid. The coupling is realized at the Lagrangian level employing the formalism of Scalar-Fluid theories, which use a consistent Lagrangia...
We perform a forecast analysis of the ability of the LISA space-based interferometer to reconstruct the dark sector interaction using gravitational wave (GW) standard sirens at high redshift. We employ Gaussian process methods to reconstruct the distance-redshift relation in a model independent way. We adopt simulated catalogues of standard sirens...
We perform a forecast analysis of the ability of the LISA space-based interferometer to reconstruct the dark sector interaction using gravitational wave (GW) standard sirens at high redshift. We employ Gaussian process methods to reconstruct the distance-redshift relation in a model independent way. We adopt simulated catalogues of standard sirens...
Multi-frequency gravitational wave (GW) observations are useful probes of the formation processes of coalescing stellar-mass binary black holes (BBHs). We discuss the phase drift in the GW inspiral waveform of the merging BBH caused by its center-of-mass acceleration. The acceleration strongly depends on the location where a BBH forms within a gala...
Following the selection of The Gravitational Universe by ESA, and the successful flight of LISA Pathfinder, the LISA Consortium now proposes a 4 year mission in response to ESA's call for missions for L3. The observatory will be based on three arms with six active laser links, between three identical spacecraft in a triangular formation separated b...
We extend the dynamical systems analysis of Scalar-Fluid interacting dark energy models performed in C. G. Boehmer et al, Phys. Rev. D 91, 123002 (2015), by considering scalar field potentials beyond the exponential type. The properties and stability of critical points are examined using a combination of linear analysis, computational methods and a...
We extend the dynamical systems analysis of Scalar-Fluid interacting dark energy models performed in C. G. Boehmer et al, Phys. Rev. D 91, 123002 (2015), by considering scalar field potentials beyond the exponential type. The properties and stability of critical points are examined using a combination of linear analysis, computational methods and a...
This paper summarises the potential of the LISA mission to constrain the expansion history of the universe using massive black hole binary mergers as gravitational wave standard sirens. After briefly reviewing the concept of standard siren, the analysis and methodologies of Ref. [1] are briefly outlined to show how LISA can be used as a cosmologica...
We perform a forecast analysis of the capability of the eLISA space-based interferometer to constrain models of early and interacting dark energy using gravitational wave standard sirens. We employ simulated catalogues of standard sirens given by merging massive black hole binaries visible by eLISA, with an electromagnetic counterpart detectable by...
Third generation ground-based interferometers as well as the planned space-based interferometer LISA are expected to detect a plethora of gravitational wave signals from coalescing binaries at cosmological distance. The emitted gravitational waves propagate in the expanding universe through the inhomogeneous distribution of matter. Here we show tha...
Third generation ground-based interferometers as well as the planned space-based interferometer LISA are expected to detect a plethora of gravitational wave signals from coalescing binaries at cosmological distance. The emitted gravitational waves propagate in the expanding universe through the inhomogeneous distribution of matter. Here we show tha...
We perform a forecast analysis of the capability of the eLISA space-based interferometer to constrain models of early and interacting dark energy using gravitational wave standard sirens. We employ simulated catalogues of standard sirens given by merging massive black hole binaries visible by eLISA, with an electromagnetic counterpart detectable by...
Consistency conditions for nonminimally coupled f(R) theories have been derived by requiring the absence of tachyons and instabilities in the scalar fluctuations. This note confirms these results and clarifies a subtlety regarding different definitions of sound speeds.
We extend the chameleon models by considering scalar-fluid theories where the coupling between matter and the scalar field can be represented by a quadratic effective potential with density-dependent minimum and mass. In this context, we study the effects of the scalar field on Solar System tests of gravity and show that models passing these string...
We investigate the cosmological dynamics of the recently proposed extended chameleon models at both background and linear perturbation levels. Dynamical systems techniques are employed to fully characterize the evolution of the universe at the largest distances, while structure formation is analysed at sub-horizon scales within the quasi-static app...
We investigate the capability of various configurations of the space interferometer eLISA to probe the late-time background expansion of the universe using gravitational wave standard sirens. We simulate catalogues of standard sirens composed by massive black hole binaries whose gravitational radiation is detectable by eLISA, and which are likely t...
We expand the dynamical systems investigation of cosmological scalar fields characterized by kinetic corrections presented in N. Tamanini, Dynamics of cosmological scalar fields, Phys. Rev. D 89, 083521 (2014). In particular we do not restrict the analysis to exponential potentials only, but we consider arbitrary scalar field potentials and derive...
We expand the dynamical systems investigation of cosmological scalar fields characterised by kinetic corrections presented in [N. Tamanini, Phys. Rev. D 89 (2014) 083521]. In particular we do not restrict the analysis to exponential potentials only, but we consider arbitrary scalar field potentials and derive general results regarding the correspon...
We investigate the capability of various configurations of the space interferometer eLISA to probe the late-time background expansion of the universe using gravitational wave standard sirens. We simulate catalogues of standard sirens composed by massive black hole binaries whose gravitational radiation is detectable by eLISA, and which are likely t...