Nico DosenbachWashington University in St. Louis | WUSTL , Wash U · Department of Neurology
Nico Dosenbach
MD, PhD
About
138
Publications
42,590
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
28,252
Citations
Publications
Publications (138)
Understanding sex differences in the adolescent brain is crucial, as these differences are linked to neurological and psychiatric conditions that vary between males and females. Predicting sex from adolescent brain data may offer valuable insights into how these variations shape neurodevelopment. Recently, attention has shifted toward exploring soc...
Structural connectivity (SC) between distant regions of the brain support synchronized function known as functional connectivity (FC) and give rise to the large-scale brain networks that enable cognition and behavior. Understanding how SC enables FC is important to understand how injuries to SC may alter brain function and cognition. Previous work...
Cognitive control is required to organize thoughts and actions and is critical for the pursuit of long-term goals. Childhood cognitive control relates to other domains of cognitive functioning and predicts later-life success and well-being. In this study, we used a randomized controlled trial to test whether cognitive control can be improved throug...
Deep brain stimulation is a viable and efficacious treatment option for dystonia. While the internal pallidum serves as the primary target, more recently, stimulation of the subthalamic nucleus (STN) has been investigated. However, optimal targeting within this structure and its complex surroundings have not been studied in depth. Indeed, multiple...
Although the general location of functional neural networks is similar across individuals, there is vast person-to-person topographic variability. To capture this, we implemented precision brain mapping functional magnetic resonance imaging methods to establish an open-source, method-flexible set of precision functional network atlases—the Masonic...
The Deep Brain Stimulation (DBS) Think Tank XI was held on August 9–11, 2023 in Gainesville, Florida with the theme of “Pushing the Forefront of Neuromodulation”. The keynote speaker was Dr. Nico Dosenbach from Washington University in St. Louis, Missouri. He presented his research recently published in Nature inn a collaboration with Dr. Evan Gord...
The red nucleus is a large brainstem structure that coordinates limb movement for locomotion in quadrupedal animals (Basile et al., 2021). The humans red nucleus has a different pattern of anatomical connectivity compared to quadrupeds, suggesting a unique purpose (Hatschek, 1907). Previously the function of the human red nucleus remained unclear a...
Functional MRI (fMRI) data are severely distorted by magnetic field (B0) inhomogeneities which currently must be corrected using separately acquired field map data. However, changes in the head position of a scanning participant across fMRI frames can cause changes in the B0 field, preventing accurate correction of geometric distortions. Additional...
Cortico-striato-thalamo-cortical loops have been heavily studied because of their importance in movement disorders such as Parkinson Disease and tremor. Capturing plasticity effect in this circuit has been mainly successful using animals or using invasive electrophysiology in patients. Given the importance of the striatum and thalamus for motor con...
The Cingulo-Opercular network (CON) is an executive network of the human brain that regulates actions. CON is composed of many widely distributed cortical regions that are involved in top-down control over both lower-level (i.e., motor) and higher-level (i.e., cognitive) functions, as well as in processing of painful stimuli. Given the topographica...
Structural connections (SC) between distant regions of the brain support synchronized function known as functional connectivity (FC) and give rise to the large-scale brain networks that enable cognition and behavior. Understanding how SC enables FC is important to understand how injuries to structural connections may alter brain function and cognit...
1
Summary
The relationship between the acute effects of psychedelics and their persisting neurobiological and psychological effects is poorly understood. Here, we tracked brain changes with longitudinal precision functional mapping in healthy adults before, during, and for up to 3 weeks after oral psilocybin and methylphenidate (17 MRI visits per...
The thalamus is a critical relay center for neural pathways involving sensory, motor, and cognitive functions, including cortico-striato-thalamo-cortical and cortico-ponto-cerebello-thalamo-cortical loops. Despite the importance of these circuits, their development has been understudied. One way to investigate these pathways in human development in...
This Viewpoint describes how precision functional mapping may be helpful for associating neuroanatomical regions with specific psychiatric disorders.
Motor cortex (M1) has been thought to form a continuous somatotopic homunculus extending down the precentral gyrus from foot to face representations1,2, despite evidence for concentric functional zones³ and maps of complex actions⁴. Here, using precision functional magnetic resonance imaging (fMRI) methods, we find that the classic homunculus is in...
Functional MRI (fMRI) data acquired using echo-planar imaging (EPI) are highly distorted by magnetic field inhomogeneities. Distortion and differences in image contrast between EPI and T1-weighted and T2-weighted (T1w/T2w) images makes their alignment a challenge. Typically, field map data are used to correct EPI distortions. Alignments achieved wi...
Primary motor cortex (M1) has been thought to form a continuous somatotopic homunculus extending down precentral gyrus from foot to face representations 1,2 . The motor homunculus has remained a textbook pillar of functional neuroanatomy, despite evidence for concentric functional zones ³ and maps of complex actions ⁴ . Using our highest precision...
In the absence of external stimuli, neural activity continuously evolves from one configuration to another. Whether these transitions or explorations follow some underlying arrangement or lack a predictable ordered plan remains to be determined. Here, using fMRI data from highly sampled individuals (~5 hours of resting-state data per individual), w...
Due to a tracking error during the peer review process, this article was published with the wrong received date. This article was received 19 May 2021, not 20 August 2020. Further, this article was originally published under the standard Springer Nature license (© The Author(s), under exclusive licence to Springer Nature Limited). It is now availab...
Imaging the infant brain with MRI has improved our understanding of early neurodevelopment. However, head motion during MRI acquisition is detrimental to both functional and structural MRI scan quality. Though infants are typically scanned while asleep, they commonly exhibit motion during scanning causing data loss. Our group has shown that providi...
How individual differences in brain network organization track behavioral variability is a fundamental question in systems neuroscience. Recent work suggests that resting-state and task-state functional connectivity can predict specific traits at the individual level. However, most studies focus on single behavioral traits, thus not capturing broad...
Magnetic resonance imaging (MRI) has transformed our understanding of the human brain through well-replicated mapping of abilities to specific structures (for example, lesion studies) and functions1–3 (for example, task functional MRI (fMRI)). Mental health research and care have yet to realize similar advances from MRI. A primary challenge has bee...
Diffusion imaging aims to non-invasively characterize the anatomy and integrity of the brain's white matter fibers. We evaluated the accuracy and reliability of commonly used diffusion imaging methods as a function of data quantity and analysis method, using both simulations and highly sampled individual-specific data (927-1442 diffusion weighted i...
The brain is organized into a broad set of functional neural networks. These networks and their various characteristics have been described and scrutinized through in vivo resting state functional magnetic resonance imaging (rs-fMRI). While the basic properties of networks are generally similar between healthy individuals, there is vast variability...
Developmental cognitive neuroscience is being pulled in new directions by network science and big data. Brain imaging [e.g., functional magnetic resonance imaging (fMRI), functional connectivity MRI], analytical advances (e.g., graph theory, machine learning), and access to large computing resources have empowered us to collect and process neurobeh...
Imaging the infant brain with MRI has improved our understanding of early stages of neurodevelopment. However, head motion during MRI acquisition is detrimental to both functional and structural MRI scan quality. Though infants are commonly scanned while asleep, they commonly exhibit motion during scanning, causing data loss. Our group has shown th...
The striatum and cerebral cortex are interconnected via multiple recurrent loops that play a major role in many neuropsychiatric conditions. Primate corticostriatal connections can be precisely mapped using invasive tract-tracing. However, noninvasive human research has not mapped these connections with anatomical precision, limited in part by the...
Significance
The finding that human hippocampal-cortical functional connectivity is nonunitary, separated along functional network borders (default mode network [DMN], self-oriented; parietal memory network [PMN], goal-oriented) in the anterior–posterior axis, raises various possibilities as to why this organization might be beneficial and could in...
Even in the absence of external stimuli, neural activity is both highly dynamic and organized across multiple spatiotemporal scales. The continuous evolution of brain activity patterns during rest is believed to help maintain a rich repertoire of possible functional configurations that relate to typical and atypical cognitive phenomena. Whether the...
Background
The Adolescent Brain Cognitive Development ™ Study (ABCD StudyⓇ) is an open-science, multi-site, prospective, longitudinal study following over 11,800 9- and 10-year-old youth into early adulthood. The ABCD Study aims to prospectively examine the impact of substance use (SU) on neurocognitive and health outcomes. Although SU initiation t...
A full list of affiliations appears at the end of the paper. T he ABCD Study ® aims to characterize adolescent development and evaluate many influences that might shape developmental trajectories. While numerous factors are plausibly associated with neurodevelopment (for example, nutrition, sleep, exercise, head injuries and substance use), we have...
The striatum is interconnected with the cerebral cortex via multiple recurrent loops that play a major role in many neuropsychiatric conditions. Primate cortico-striatal connections can be precisely mapped using invasive tract-tracing. However, noninvasive human research has not mapped these connections with anatomical precision, limited by the pra...
Significance
Many studies have examined plasticity in the primary somatosensory and motor cortex during disuse, but little is known about how disuse impacts the brain outside of primary cortical areas. We leveraged the whole-brain coverage of resting-state functional MRI (rs-fMRI) to discover that disuse drives plasticity of distant executive contr...
Functional MRI (fMRI) data acquired using echo-planar imaging (EPI) is highly distorted by magnetic field inhomogeneity. Distortion combined with underlying differences in image contrast between EPI and T1-weighted and T2-weighted (T1w/T2w) structural images makes the alignment of functional and anatomical images a challenge. Typically, separately...
Diffusion tensor imaging (DTI) aims to non-invasively characterize the anatomy and integrity of the brain's white matter fibers. To establish individual-specific precision approaches for DTI, we defined its reliability and accuracy as a function of data quantity and analysis method, using both simulations and highly sampled individual-specific data...
Aim
To examine individual variability between perceived physical features and hormones of pubertal maturation in 9–10-year-old children as a function of sociodemographic characteristics.
Methods
Cross-sectional metrics of puberty were utilized from the baseline assessment of the Adolescent Brain Cognitive Development (ABCD) Study—a multi-site samp...
The hippocampus is critically important for a diverse range of cognitive processes, such as episodic memory, prospective memory, affective processing, and spatial navigation. The human hippocampus has been thought of as being solely functionally connected to a set of neocortical regions known as the default mode network (DMN), which supports self-r...
Whole-brain resting-state functional MRI (rs-fMRI) during two weeks of limb constraint revealed that disused motor regions became more strongly connected to the cingulo-opercular network (CON), an executive control network that includes regions of the dorsal anterior cingulate cortex (dACC) and insula (1). Disuse-driven increases in functional conn...
Magnetic resonance imaging (MRI) continues to drive many important neuroscientific advances. However, progress in uncovering reproducible associations between individual differences in brain structure/function and behavioral phenotypes (e.g., cognition, mental health) may have been undermined by typical neuroimaging sample sizes (median N=25)1,2. L...
Significance
The human brain is organized into large networks. One important brain network is the Default network, which enables cognitive functions such as social thinking, memory, and reward. In group-averaged data, this network emerges as a unitary whole, despite its involvement in multiple cognitive functions. Here, we tested whether Default ne...
The manner through which individual differences in brain network organization track population-level behavioral variability is a fundamental question in systems neuroscience. Recent work suggests that resting-state and task-state functional connectivity can predict specific traits at the individual level. However, the focus of most studies on singl...
To induce brain plasticity in humans, we casted the dominant upper extremity for 2 weeks and tracked changes in functional connectivity using daily 30-min scans of resting-state functional MRI (rs-fMRI). Casting caused cortical and cerebellar regions controlling the disused extremity to functionally disconnect from the rest of the somatomotor syste...
Spontaneous infra-slow brain activity (ISA) exhibits a high degree of temporal synchrony, or correlation, between distant brain regions. The spatial organization of ISA synchrony is not explained by anatomical connections alone, suggesting that active neural processes coordinate spontaneous activity. Inhibitory interneurons (IINs) form electrically...
Denoising fMRI data requires assessment of frame-to-frame head motion and removal of the biases motion introduces. This is usually done through analysis of the parameters calculated during retrospective head motion correction (i.e., ‘motion’ parameters). However, it is increasingly recognized that respiration introduces factitious head motion via p...
The amygdala is central to the pathophysiology of many psychiatric illnesses. An imprecise understanding of how the amygdala fits into the larger network organization of the human brain, however, limits our ability to create models of dysfunction in individual patients to guide personalized treatment. Therefore, we investigated the position of the...
The basal ganglia, thalamus, and cerebral cortex form an interconnected network implicated in many neurological and psychiatric illnesses. A better understanding of cortico-subcortical circuits in individuals will aid in development of personalized treatments. Using precision functional mapping-individual-specific analysis of highly sampled human p...
Background:
When detected, children with asymmetrical motor impairment are referred for therapeutic interventions to maximize the child's ability to reach their health and developmental potential. Referal is dependent on standardized evaluation, which rarely examines upper extremity (UE) function within the context of real-world activity. Accelero...
Denoising fMRI data requires assessment of frame-to-frame head motion and removal of the biases motion introduces. This is usually done through analysis of the parameters calculated during retrospective head motion correction (i.e., ‘motion’ parameters). However, it is increasingly recognized that respiration introduces factitious head motion via p...
Studies comparing diverse groups have shown that many psychiatric diseases involve disruptions across distributed large-scale networks of the brain. There is hope that functional magnetic resonance imaging (fMRI) functional connectivity techniques will shed light on these disruptions, providing prognostic and diagnostic biomarkers as well as target...
Head motion represents one of the greatest technical obstacles in magnetic resonance imaging (MRI) of the human brain. Accurate detection of artifacts induced by head motion requires precise estimation of movement. However, head motion estimates may be corrupted by artifacts due to magnetic main field fluctuations generated by body motion. In the c...
Resting-state functional magnetic resonance imaging (fMRI) has provided converging descriptions of group-level functional brain organization. Recent work has revealed that functional networks identified in individuals contain local features that differ from the group-level description. We define these features as network variants. Building on these...
An important aspect of network-based analysis is robust node definition. This issue is critical for functional brain network analyses, as poor node choice can lead to spurious findings and misleading inferences about functional brain organization. Two sets of functional brain nodes from our group are well represented in the literature: (1) 264 volu...
Spontaneous infra-slow (<0.1 Hz) fluctuations in functional magnetic resonance imaging (fMRI) signals are temporally correlated within large-scale functional brain networks, motivating their use for mapping systems-level brain organization. However, recent electrophysiological and hemodynamic evidence suggest state-dependent propagation of infra-sl...
The 21-site Adolescent Brain Cognitive Development (ABCD) study provides an unparalleled opportunity to characterize functional brain development via resting-state functional connectivity (RSFC) and to quantify relationships between RSFC and behavior. This multi-site data set includes potentially confounding sources of variance, such as differences...
Date Presented 04/06/19
Identifying subtle motor delays in early childhood is challenging. Accelerometry is a novel way to characterize upper-extremity motor patterns in typically developing children. Differences are identified between typical children and those with unilateral motor deficits.
Primary Author and Speaker: Catherine Hoyt
Contributing...
Background:
Tourette syndrome (TS) is a neuropsychiatric disorder with symptomatology that typically changes over development. Whether and how brain function in TS also differs across development has been largely understudied. Here, we used functional connectivity magnetic resonance imaging to examine whole-brain functional networks in children an...
The network organization of the human brain varies across individuals, changes with development and aging, and differs in disease. Discovering the major dimensions along which this variability is displayed remains a central goal of both neuroscience and clinical medicine. Such efforts can be usefully framed within the context of the brain's modular...
fMRI studies of human memory have identified a "parietal memory network" (PMN) that displays distinct responses to novel and familiar stimuli, typically deactivating during initial encoding but robustly activating during retrieval. The small size of PMN regions, combined with their proximity to the neighboring default mode network, makes a targeted...
Importance
Affordable, quantitative methods to screen children for developmental delays are needed. Motor milestones can be an indicator of developmental delay and may be used to track developmental progress. Accelerometry offers a way to gather real-world information about pediatric motor behavior.
Objective
To develop a referent cohort of pediat...
The human brain is organized into specialized functional brain networks. Some networks are dedicated to early sensory processing, and others to generating motor outputs. Yet, the bulk of the human brain's functional networks is actually dedicated to control processes. The two control networks most important for the impressive repertoire of control-...
Background
Tourette syndrome (TS) is a neuropsychiatric disorder characterized by motor and vocal tics that typically change over development. Whether and how brain function in TS also differs across development has been largely understudied. Here, we used functional connectivity MRI to examine whole brain functional networks in children and adults...
An important aspect of network-based analysis is robust node definition. This issue is critical for functional brain network analyses, as poor node choice can lead to spurious findings and misleading inferences about functional brain organization. Two sets of functional brain nodes from our group are well represented in the literature: (1) 264 volu...
The cerebellum contains the majority of neurons in the human brain and is unique for its uniform cytoarchitecture, absence of aerobic glycolysis, and role in adaptive plasticity. Despite anatomical and physiological differences between the cerebellum and cerebral cortex, group-average functional connectivity studies have identified networks related...