Nicholas McKay

Nicholas McKay
Northern Arizona University | NAU · School of Earth and Sustainability

About

124
Publications
61,623
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
6,591
Citations

Publications

Publications (124)
Article
Full-text available
The quantity and preservation of carbon‐rich organic matter (OM) underlying permafrost uplands, and the evolution of carbon accumulation with millennial climate change, are large sources of uncertainty in carbon cycle feedbacks on climate change. We investigated permafrost OM accumulation and degradation over the Holocene using a transect of sedime...
Article
Full-text available
Paleoclimate reconstructions are now integral to climate assessments, yet the consequences of using different methodologies and proxy data require rigorous benchmarking. Pseudoproxy experiments (PPEs) provide a tractable and transparent test bed for evaluating climate reconstruction methods and their sensitivity to aspects of real-world proxy netwo...
Article
Full-text available
Plain Language Summary Continental ice sheets alter atmospheric circulation, influencing global heat and moisture distribution. Records of atmospheric circulation during previous periods of ice‐sheet retreat can provide insights into the changes that are possible in the future. This study examines summer atmospheric circulation in Baffin Bay from 1...
Article
Full-text available
Quantitative temperature reconstructions from lacustrine organic geochemical proxies including branched glycerol dialkyl glycerol tetraethers (brGDGTs) and alkenones provide key constraints on past continental climates. However, estimation of air temperatures from proxies can be impacted by non‐stationarity in the relationships between seasonal air...
Article
Full-text available
Substantial changes in terrestrial hydroclimate during the Holocene are recorded in geological archives and simulated by computer models. To identify spatial and temporal patterns during the past 12 ka, proxy records sensitive to changing precipitation and effective moisture (precipitation minus evaporation) were compiled from across the globe (n =...
Article
Lake‐based studies can provide seasonal‐ to millennial‐scale records of sediment yield to improve our understanding of catchment‐scale sediment transfer and complement shorter fluvial‐based sediment transport studies. In this study, sediment accumulation rates at 40 coring locations in Lake Peters, Brooks Range, Alaska, over ca. 42 years, calculate...
Article
Full-text available
The response of the hydrological cycle to anthropogenic climate change, especially across the tropical oceans, remains poorly understood due to the scarcity of long instrumental temperature and hydrological records. Massive shallow-water corals are ideally suited to reconstructing past oceanic variability as they are widely distributed across the t...
Article
Full-text available
Paleoclimatic records provide valuable information about Holocene climate, revealing aspects of climate variability for a multitude of sites around the world. However, such data also possess limitations. Proxy networks are spatially uneven, seasonally biased, uncertain in time, and present a variety of challenges when used in concert to illustrate...
Presentation
The Arizona Climate and Ecosystems (ACE) Isotope Laboratory at Northern Arizona University brought a MICADAS online on June 1, 2021. Our lab includes a Gas Ion Source (GIS) with a Carbonate Handling System (CHS2) and Automated Graphitization Equipment (AGE3), as well as manual graphitization equipment and a wet lab for sample pretreatment. In one y...
Preprint
Full-text available
The response of the hydrological cycle to anthropogenic climate change, especially across the tropical oceans, remains poorly understood due to the scarcity of long instrumental temperature and hydrological records. Massive shallow-water corals are ideally suited to reconstructing past oceanic variability as they are widely distributed across the t...
Article
Full-text available
The North American monsoon (NAM) is an important source of rainfall to much of Mexico and southwestern United States. Westerly winds (westerlies) can suppress monsoon circulation and impact monsoon timing, intensity, and extent. Recent Arctic warming is reducing the temperature gradient between the equator and the pole, which could weaken the weste...
Article
Full-text available
Annually laminated lake sediment can track paleoenvironmental change at high resolution where alternative archives are often not available. However, information about the chronology is often affected by indistinct and intermittent laminations. Traditional chronology building struggles with these kinds of laminations, typically failing to adequately...
Article
Full-text available
In 2013, the Intergovernmental Panel on Climate Change concluded that Northern Hemisphere temperatures had reached levels unprecedented in at least 1400 years. The 2021 report now sees global mean temperatures rising to levels unprecedented in over 100 000 years. This Technical Note briefly explains the reasons behind this major change. Namely, the...
Preprint
Full-text available
Paleoclimatic records provide valuable information about Holocene climate, revealing aspects of climate variability for a multitude of sites around the world. However, such data also possess limitations. Proxy networks are spatially uneven, seasonally biased, uncertain in time, and present a variety of challenges when used in concert to illustrate...
Article
Full-text available
Studying past climate variability is fundamental to our understanding of current changes. In the era of Big Data, the value of paleoclimate information critically depends on our ability to analyze large volume of data, which itself hinges on standardization. Standardization also ensures that these datasets are more Findable, Accessible, Interoperab...
Article
Full-text available
Despite extensive paleoenvironmental research on the postglacial history of the Kenai Peninsula, Alaska, uncertainties remain regarding the region's deglaciation, vegetation development, and past hydroclimate. To elucidate this complex environmental history, we present new proxy datasets from Hidden and Kelly lakes, located in the eastern Kenai low...
Article
Full-text available
Mesoscale convective systems (MCSs) supply a substantial portion of warm-season rainfall to the Great Plains of North America, and they are responsible for severe weather and flooding across the central United States. However, little is known about past behaviour and long-term drivers of these systems, limiting our ability to predict future extreme...
Article
Lakes and their catchments have been subjected to centuries to millennia of exploitation by humans. Efficient monitoring methods are required to promote proactive protection and management. Traditional monitoring is time consuming and expensive, which limits the number of lakes monitored. Lake surface sediments provide a temporally integrated repre...
Article
Holocene glacier fluctuations in south-central Alaska reflect hydroclimate changes in a region strongly influenced by large-scale features of North Pacific climate. Glacier fluctuations over the past approximately 2300 years were inferred from multiple geophysical and geochemical properties of a new 13-m-long sediment core from proglacial Skilak La...
Preprint
Full-text available
In 2013, the Intergovernmental Panel on Climate Change concluded that Northern Hemisphere temperatures had reached levels unprecedented in at least 1400 years. The 2021 report now sees global mean temperatures rising to levels unprecedented in over 100,000 years. This Technical Note briefly explains the reasons behind this major change. Namely, the...
Article
Suspended sediment delivery and deposition in proglacial lakes is generally sensitive to a wide range of hydrometeorologic and geomorphic controls. High discharge conditions are of particular importance in many glaciolacustrine records, with individual floods potentially recorded as distinctive turbidites. We used an extensive network of surface se...
Preprint
Full-text available
Suspended sediment delivery and deposition in proglacial lakes is generally sensitive to a wide range of hydrometeorologic and geomorphic controls. High discharge conditions are of particular importance in many glaciolacustrine records, with individual floods potentially recorded as distinctive turbidites. We used an extensive network of surface se...
Preprint
Full-text available
Annually laminated lake sediment can track paleoenvironmental change at high-resolution where alternative archives are often not available. However, information about both paleoenvironmental change and chronology are often affected by indistinct and intermittent varves. We present an approach that overcomes these and other obstacles by using a quan...
Article
Full-text available
Holocene climate reconstructions are useful for understanding the diverse features and spatial heterogeneity of past and future climate change. Here we present a database of western North American Holocene paleoclimate records. The database gathers paleoclimate time series from 184 terrestrial and marine sites, including 381 individual proxy record...
Article
Full-text available
Chronological uncertainty is a hallmark of the paleoenvironmental sciences and geosciences. While many tools have been made available to researchers to quantify age uncertainties suitable for various settings and assumptions, disparate tools and output formats often discourage integrative approaches. In addition, associated tasks like propagating a...
Article
Full-text available
The U.S. Southwest is naturally prone to dust and drought. With a high risk of unprecedented drought in the future due to climate change, changes in the dust cycle are expected. Whereas paleo records of dust deposition from the region suggest that past megadroughts did not coincide with elevated dust levels, modern studies indicate higher dust duri...
Article
Full-text available
A valuable analogue for assessing Earth's sensitivity to warming is the Last Interglacial (LIG; 129–116 ka), when global temperatures (0 to +2 ∘C) and mean sea level (+6 to 11 m) were higher than today. The direct contribution of warmer conditions to global sea level (thermosteric) is uncertain. We report here a global network of LIG sea surface te...
Article
Full-text available
The mid-Holocene (6000 years ago) is a standard time period for the evaluation of the simulated response of global climate models using palaeoclimate reconstructions. The latest mid-Holocene simulations are a palaeoclimate entry card for the Palaeoclimate Model Intercomparison Project (PMIP4) component of the current phase of the Coupled Model Inte...
Preprint
Full-text available
Holocene climate reconstructions are useful for understanding the diverse features and spatial heterogeneity of past and future climate change. Here we present a database of western North American Holocene paleoclimate records. The database gathers paleoclimate time series from 209 terrestrial and marine sites, including 382 individual proxy record...
Article
Full-text available
Reconstructions of global hydroclimate during the Common Era (CE; the past ∼ 2000 years) are important for providing context for current and future global environmental change. Stable isotope ratios in water are quantitative indicators of hydroclimate on regional to global scales, and these signals are encoded in a wide range of natural geologic ar...
Preprint
Full-text available
The climate of the Great Plains is dominated by mesoscale convective systems (MCS), which supply a significant portion of warm season rainfall and are responsible for severe weather and flooding across the region. However, little is known about past behavior and long-term drivers of these systems, limiting our ability to predict future changes in h...
Preprint
Full-text available
Chronological uncertainty is a hallmark of the paleosciences. While many tools have been made available to researchers to quantify age uncertainties suitable for various settings and assumptions, disparate tools and output formats often discourage integrative approaches. In addition, associated tasks like propagating age model uncertainties to subs...
Article
Full-text available
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Conference Paper
The future response of the Antarctic ice sheet to rising temperatures remains highly uncertain. A useful period for assessing the sensitivity of Antarctica to warming is the Last Interglacial (LIG) (129 to 116 ky), which experienced warmer polar temperatures and higher global mean sea level (GMSL) (+6 to 11 m) relative to present day. LIG sea level...
Article
Full-text available
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Article
Full-text available
Arctic precipitation is predicted to increase in the coming century, due to a combination of enhanced northward atmospheric moisture transport and local surface evaporation from ice-free seas. However, large model uncertainties, limited long-term observations, and high spatiotemporal variability limit our understanding of these mechanisms, emphasiz...
Article
Full-text available
An extensive new multi-proxy database of paleo-temperature time series (Temperature 12k) enables a more robust analysis of global mean surface temperature (GMST) and associated uncertainties than was previously available. We applied five different statistical methods to reconstruct the GMST of the past 12,000 years (Holocene). Each method used diff...
Article
Full-text available
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Article
Seasonal suspended sediment transfer in glaciated catchments is responsive to meteorological, geomorphological, and glacio‐fluvial conditions, and thus is a useful indicator of environmental system dynamics. Knowledge of multifaceted fluvial sediment‐transfer processes is limited in the Alaskan Arctic–a region sensitive to contemporary environmenta...
Article
Full-text available
A comprehensive database of paleoclimate records is needed to place recent warming into the longer-term context of natural climate variability. We present a global compilation of quality-controlled, published, temperature-sensitive proxy records extending back 12,000 years through the Holocene. Data were compiled from 679 sites where time series co...
Article
Irreversible shifts of large-scale components of the Earth system (so-called ‘tipping elements’) on policy-relevant timescales are a major source of uncertainty for projecting the impacts of future climate change. The high latitudes are particularly vulnerable to positive feedbacks that amplify change through atmosphere-ocean-ice interactions. Unfo...
Article
Full-text available
The future response of the Antarctic ice sheet to rising temperatures remains highly uncertain. A useful period for assessing the sensitivity of Antarctica to warming is the Last Interglacial (LIG) (129 to 116 ky), which experienced warmer polar temperatures and higher global mean sea level (GMSL) (+6 to 9 m) relative to present day. LIG sea level...
Preprint
Full-text available
Abstract. Reconstructions of global hydroclimate during the Common Era (CE; the past ~ 2000 years) are important for providing context for current and future global environmental change. Stable isotope ratios in water are quantitative indicators of hydroclimate on regional to global scales, and these signals are encoded in a wide range of natural g...
Preprint
Full-text available
Abstract. A valuable analogue for assessing Earth’s sensitivity to warming is the Last Interglacial (LIG; 129–116 kyr), when global temperatures (0−+2 °C) and mean sea level (+6–11 m) were higher than today. The direct contribution of warmer conditions to global sea level (thermosteric) are uncertain. We report here a global network of LIG sea surf...
Preprint
Full-text available
Abstract. The mid-Holocene (6000 years ago) is a standard experiment for the evaluation of the simulated response of global climate models using paleoclimate reconstructions. The latest mid-Holocene simulations are a contribution by the Palaeoclimate Model Intercomparison Project (PMIP4) to the current phase of the Coupled Model Intercomparison Pro...
Article
Full-text available
Datasets from a 4-year monitoring effort at Lake Peters, a glacier-fed lake in Arctic Alaska, are described and presented with accompanying methods, biases, and corrections. Three meteorological stations documented air temperature, relative humidity, and rainfall at different elevations in the Lake Peters watershed. Data from ablation stake station...
Article
Full-text available
The progress of science is tied to the standardization of measurements, instruments, and data. This is especially true in the Big Data age, where analyzing large data volumes critically hinges on the data being standardized. Accordingly, the lack of community-sanctioned data standards in paleoclimatology has largely precluded the benefits of Big Da...
Article
Millions of people in the arid Southwest United States rely on snow-fed Colorado River water. Dust deposition on snow accelerates snowmelt, posing a challenge for water managers who also need to grapple with increased likelihood of drought due to climate change. Dust production is thought to increase during drought, but the impact of drought on dus...
Article
Sediments that accumulate in high-latitude lakes serve as valuable environmental archives of changing conditions in a region currently undergoing rapid change. A previously unexplored sedimentary sequence reaching back 16,000 years from Lakes Peters and Schrader (Neruokpuk Lakes) in the northeastern Brooks Range (69°N), Alaska, shows distinct chang...
Article
Full-text available
Multidecadal surface temperature changes may be forced by natural as well as anthropogenic factors, or arise unforced from the climate system. Distinguishing these factors is essential for estimating sensitivity to multiple climatic forcings and the amplitude of the unforced variability. Here we present 2,000-year-long global mean temperature recon...
Article
Full-text available
Dust emissions from southwestern North America (Southwest) impact human health and water resources. Whereas a growing network of regional dust reconstructions characterizes the long‐term natural variability of dustiness in the Southwest, short‐term fluctuations remain unexplored. We present a 4.5‐millennia near‐annual record of dust mass accumulati...
Article
Full-text available
Datasets from a four-year monitoring effort at Lake Peters, a glacier-fed lake in Arctic Alaska, are described and presented with accompanying methods, biases, and corrections. Three meteorological stations documented air temperature, relative humidity, and rainfall at different elevations in the Lake Peters watershed. Data from ablation stake stat...
Article
Full-text available
Climate records exhibit scaling behavior with large exponents, resulting in larger fluctuations at longer timescales. It is unclear whether climate models are capable of simulating these fluctuations, which draws into question their ability to simulate such variability in the coming decades and centuries. Using the latest simulations and data synth...
Article
Full-text available
The latitudinal temperature gradient between the Equator and the poles influences atmospheric stability, the strength of the jet stream and extratropical cyclones1–3. Recent global warming is weakening the annual surface gradient in the Northern Hemisphere by preferentially warming the high latitudes4; however, the implications of these changes for...
Article
Full-text available
The ability to accurately predict ecosystem drought response and recovery is necessary to produce reliable forecasts of land carbon uptake and future climate. Using a suite of models from the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP), we assessed modeled net primary productivity (NPP) response to, and recovery fro...
Article
Developing robust chronological frameworks of lacustrine sediment is central to reconstructing past environmental changes. We present varve chronologies from five sites extending back 2300 years from Eklutna Lake, in the Chugach Mountains of south-central Alaska. The chronologies are built from image analysis of high-resolution photographs and CT s...
Conference Paper
Full-text available
A sediment core from Clear Lake, an alpine lake in southwestern Colorado, records paleoenvironmental changes over the last 6000 cal. yr BP. Resource extraction from mining was historically important in the area, but the effect on lake productivity and chemistry has not been assessed. To examine if, when, and to what extent ore mining impacted Clear...
Preprint
Full-text available
The future response of the Antarctic ice sheets to rising temperatures remains highly uncertain. A valuable analogue for assessing the sensitivity of Antarctica to warming is the Last Interglacial (129-116 kyr), when global sea level peaked 6 to 9 meters above present. Here we report a blue-ice record of ice-sheet and environmental change from the...
Article
The middle to late Holocene (8,200 years ago to present) in the Arctic is characterized by cooling temperatures and the regrowth and advance of glaciers. Whether this Neoglaciation was a threshold response to linear cooling, or was driven by a regional or Arctic-wide acceleration of cooling, is unknown. Here we examine the largest-yet-compiled mult...
Article
Full-text available
A new annually resolved sedimentary record of Southern Hemisphere mid-latitude hydroclimate was recovered from Lake Ohau, South Island, New Zealand, in March 2016. The Lake Ohau Climate History (LOCH) project acquired cores from two sites (LOCH-1 and -2) that preserve sequences of laminated mud that accumulated since the lake formed ∼ 17000 years a...